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The seascapes on which many millions of people make their living and secure food have

complex and dynamic spatial features—the figurative hills and valleys—that influence

where and how people work at sea. Here, we quantify the physical mosaic of the surface

ocean by identifying Lagrangian Coherent Structures for a whole seascape—the U.S.

California Current Large Marine Ecosystem—and assess their impact on the spatial

distribution of fishing. We observe that there is a mixed response: some fisheries track

these physical features, and others avoid them. These spatial behaviorsmap to economic

impacts, in particular we find that tuna fishermen can expect to make three times more

revenue per trip if fishing occurs on strong Lagrangian Coherent Structures. However,

we find no relationship for salmon and pink shrimp fishing trips. These results highlight a

connection between the biophysical state of the oceans, the spatial patterns of human

activity, and ultimately the economic welfare of coastal communities.

Keywords: spatial behavior, seascape, biophysical, fronts, fishing, lagrangian coherent structures, social-

ecological systems, livelihoods

INTRODUCTION

When quantifying the dynamics of coupled natural-human systems it is vital to consider the ways
in which human activity occurs and where it is focused (Levin et al., 2013). For example, the spatial
distribution of agriculture, urban expansion, and maritime shipping have respectively affected fire
regimes in African savannas (Archibald et al., 2012), whole terrestrial food-webs (Faeth et al., 2005),
and large-scale patterns of phytoplankton diversity (Hallegraeff, 1998). So too in fisheries, where
the spatial distribution of fishing effort is both fundamental to the organization of marine food-
webs (Essington et al., 2006) and to our calculations of sustainable fisheries production (Murawski
et al., 2005). Indeed, almost all fisheries management actions are designed to influence the (spatial)
behavior of fishermen (Branch et al., 2006; Hilborn, 2007), yet the issue of where they decide to
fish and why, remains a key obstacle to achieving sustainable fisheries (Fulton et al., 2011; Hobday
et al., 2011). This uncertainty is not for want of effort. Many disciplines have examined fishing
location choice, from economics (Gordon, 1954; Holland and Sutinen, 2000) to anthropology
(Orbach, 1977) to ecology (Hilborn and Ledbetter, 1979). From this work it is clear that fishermen
behavior is at least partially explained by a desire to maximize individual well-being (via profits),
but that this consideration alone is not the whole story. In the absence of a full understanding
of the factors driving fishermen’s spatial behavior, their actions will continue to surprise fisheries
managers, potentially undermining management systems and jeopardizing the sustainability of
fisheries (Fulton et al., 2011).
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The choice of where to fish is in part determined by gradients
in ocean properties such as temperature, salinity, and pollution,
that persist over timescales equivalent to or greater than those
of a fishing trip (Lehodey et al., 1997). These often sharp
gradients are created by fronts of various kinds, including
buoyancy currents, tidal mixing, shelf-slope/shelf-break flow,
upwelling and boundary currents, and marginal ice zone fronts.
Most fronts are characterized by a surface convergence, which
contributes to the aggregation of nutrients and increases in
primary production (Kahru et al., 2012). As a consequence,
ocean fronts collectively define a dynamic mosaic of transient
micro-habitats that numerous organisms use (MacKenzie et al.,
2004), and are known to be “hot spots" of marine life (Bost
et al., 2009; Godø et al., 2012; Scales et al., 2014; Woodson
and Litvin, 2015). Fronts are observable in satellite derived
maps of sea surface temperature, primary production and ocean
color. However, cloud cover, flow discontinuities and noise,
and low spatial resolution of satellite data present challenges
for identifying the location of fronts (Ullman and Cornillon,
2000). To overcome these challenges, recent work has focused
on the spatiotemporal extent of fronts identified by Lagrangian
Coherent Structures (LCSs; frontal areas of convergence in
the surface ocean, see Figure 1 and Supplementary Movie;
Harrison and Glatzmaier, 2012). These are areas of attraction

FIGURE 1 | Finite-time Lyapunov Exponent values (d−1) from the U.S. West

Coast on January 1st 2009. Strong frontal activity or—Lagrangian Coherent

Structures—are generally considered values > 0.1 d−1. Overlaid are mock

locations of several fishing events for different fisheries: the tuna fishery in red

and the salmon fishery in purple. Due to privacy restrictions we will not show

actual fishing locations, instead these are random points sampled from within

the 95% kernel density contour of each fishery.

and repulsion, typically calculated for the surface ocean, which
identify frontal structures in advected tracers (d’Ovidio et al.,
2004; Lehahn et al., 2007). They have also been shown to
correspond to biological activity. For example, it has been shown
that the spatial distribution of planktonic organisms (Harrison
et al., 2013), foraging frigate birds (Olascoaga et al., 2008),
elephant seals (Della Penna et al., 2015), and baleen whales (Kai
et al., 2009), correspond with the location of LCSs. However,
while there exists evidence that fishing effort is colocated with
LCSs (Prants et al., 2012), it remains unknown whether this is
a systematic relationship across different marine systems and
across fisheries, and also whether any relationship between LCSs
and fishing influences catch rates and the revenue generated by
fishing.

To understand whether fishermen track LCSs and whether
doing so has economic impacts, we compiled data on the
location of over 1,000 fishing vessels every hour in the U.S.
California Current Large Marine Ecosystem (CCLME) for the
period 2009–2013 produced from a Vessel Monitoring System
(VMS), and collated corresponding fisheries catch and price data.
We focused on the spatial dynamics of vessels operating in three
commercially important fisheries: the albacore tuna (Thunnus
alalunga) troll, chinook and coho salmon (Oncorhynchus
tshawytscha and Oncorhynchus kisutch respectively) troll and
pink shrimp (Pandalus jordani) trawl fisheries, which account
for roughly 35, 45, and 50 million US dollars in annual
revenue respectively (values from www.oceaneconomics.org/).
Complementing this, we gathered oceanographic information
for the same time period, from a 4-dimensional variational
(4D-Var) data-assimilation Regional Ocean Modeling System
(ROMS) solution to the US west coast (Moore et al., 2011a).
This ROMS model operates at a higher spatial and temporal
resolution than satellite altimetry data, which is commonly
used to answer similar questions, and assimilates as much
data as possible to make the best possible reconstruction
of past oceanic conditions for the U.S. West Coast. We
used the ROMS velocity fields to identify LCSs, and with
these data, we assessed whether fishing events from the tuna,
salmon and shrimp fisheries are associated with attracting
LCSs, and whether this impacts the revenue generated by
fishing.

METHODS

To assess the relationship between the spatial distribution of
fishing effort and the location of LCSs, we synthesized fisheries
landings data. Using these data we then defined fisheries for the
CCLME. Then, using spatially explicit vessel monitoring data
for the tuna, salmon and pink shrimp fisheries, we identified
fishing locations. In parallel to these analyses of fisheries data,
oceanographic data produced from a regional ocean model
were used to identify LCSs in the CCLME for the same time-
period as covered by the fisheries data. Combining the two, we
assessed whether vessels, operating in different fisheries, appear
to search for and catch fish preferentially on LCSs. The following
subsections expand on each of these steps.

Frontiers in Marine Science | www.frontiersin.org 2 February 2018 | Volume 5 | Article 46

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Watson et al. Fishing on Fronts

Identifying Fisheries from Landings Data
Fisheries catch and price data were obtained from fish-tickets
compiled through the Pacific Fisheries Information Network
(PacFIN), and describe the time, location, catch and revenue of
340,466 trips, spanning 5,980 vessels for the time period 2009–
2013. Using these data, we identified fisheries as groups of similar
trips based on what was caught. These trip-groups are otherwise
called métiers (mostly in Europe; Deporte et al., 2012). At its
heart, a métier analysis groups trips based on the gear used,
and the revenue and species composition of landings (Davie
and Lordan, 2011; Boonstra and Hentati-Sundberg, 2016). This
methodology requires choices in the way similarity among trips
are measured, a clustering algorithm for grouping similar trips
together, and scalability so that it can be applied to the 340,466
trips we had data for.

The first step was to calculate the similarity of every pair of
trips, measured using the Hellinger distance D (Legendre and
Legendre 2012). The Hellinger distance was calculated from the
species composition of two fishing trips A and B as follows:

DAB =

√

√

√

√

S
∑

i=1

(ai − bi)2, (1)

where ai is the fraction of revenue derived from species i on trip
A, bi is the fraction of revenue derived from species i on trip
B, and S is the total number of species collected in both trips.
Hence, as the difference in revenue attributable to each of the S
species increases, trips A and B become increasingly dissimilar.
Applied to every pair of fishing trips results in a trip distance
matrix.

The next step was to transform the Hellinger distance matrix
into a similarity matrix. This was done by subtracting each
element of the distance matrix from the maximum value of
the whole matrix. From this similarity matrix, we identified
métiers as groups of trips with similar target assemblages
using the infoMap community detection algorithm (Rosvall and
Bergstrom, 2008). This algorithm examines networks (which the
similarity matrix represents, where nodes are trips and edges are
trip similarity) for subgraphsmore interconnected to one another
than the network in which it is embedded.

Our dataset contained 340,466 unique trips, and due to
computational limits, we were not able to implement the infoMap
algorithm using a single matrix containing all pairwise trip
similarities. To overcome this computational challenge, and
obtain manageable matrix sizes, we first performed the métier
analysis on one year’s worth of landings data, for example 2010.
Then for each trip in other years (e.g., 2009, 2011, 2012, and
2013), we identified which 2010 trip was “nearest” to it, in terms
of species composition, using a k-nearest neighbors algorithm.
Each trip in 2009, 2011, 2012, and 2013 then inherited the métier
of its nearest 2010 trip. In this way, we managed to assign
all trips from the whole dataset to specific métiers. We tested
this method using different “base” years (i.e., different to 2010
in the above example), and found our results robust to this
decision.

Linking Fishery Definitions to Vessel-Monitoring

System Data
In total, the fisheries trip data contained numerous fisheries. We
subsetted these data and focused our analysis on the albacore
tuna, salmon and pink shrimp métiers. Pacific albacore tuna
is a migratory species, caught relatively far from shore (see
Figure 1: red dots) by towing artificial lures with barbless hooks
or “trolling.” Of the three species we have studied, albacore tuna
is the most likely to have a behavioral relationship with LCSs.
Indeed there is strong anecdotal evidence that tuna fishermen
look for frontal features when trolling for tuna (gained from
personal communications with tuna fishermen). The salmon
fishery consists mainly of chinook and coho salmon, which
similarly to albacore tuna are caught by trolling, but are found
mainly in areas closer to shore. Pink shrimp are associated
with soft-sediment benthos, and are harvested by trawling nets
along the sea-floor. As a consequence, of the three focal species,
they are the least likely to be affected by surface LCSs, which
will only impact the sea floor through the sinking of organic
particles from phytoplankton blooms, which occurs over time-
scales longer than considered here. Hence, we included shrimp
precisely because LCSs are expected to have no relationship.

The locations of tuna, salmon and shrimp vessels were
obtained from a Vessel Monitoring System (VMS) dataset
provided by the National Marine Fisheries Service’s Office of Law
Enforcement (OLE). VMS is required for all vessels commercially
fishing federally managed groundfish in the past 5 years. Many
of these “groundfish” vessels operate in other fisheries and
as a consequence the VMS data contained numerous tuna,
salmon and shrimp trips. Vessel locations have an accuracy of
approximately 500 meters and in total, we amassed 22 million
GPS pings, hourly over the period 2009-2013, for 1,183 vessels.
However, no contextual data is provided with the VMS data, for
example when a vessel is in port, when it is fishing, or what kind
of vessel it is. As a consequence, the first challenge with these
data is to link them to the fisheries definitions obtained from the
trip landings data, and then identify different spatial behaviors—
searching for and catching fish vs. transiting—from the location
time-series.

The first step to analyzing the VMS data was to identify trips.
This was done in two steps. First, we assigned any VMS location
less than 1.5km from the shore and stationary for greater than
3 hours as “in-port”. Distances to land were calculated using
NOAA’s GSHHG high-resolution geography dataset (Wessel and
Smith, 1996). This resulted in a subset of the VMS data that
included only “at-sea” locations. Then, trip-times (time-out and
time-in) from the fisheries landing ticket data were matched
with the at-sea VMS data points. This matching allowed us to
assign a unique index for sets of VMS data-points associated with
a distinct fishing trip. Furthermore, once the fisheries analysis
of the landing ticket data was performed, we were also able to
assign a fishery to each trip in the at-sea VMS data. Doing so
identified what species was being harvested on each trip in the
VMS database.

The last step was to link a NOAA Fisheries West Coast
Groundfish Observer Program data to the at-sea VMS data,
for the purpose of validating the spatial behavior segmentation
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(i.e., identifying when a vessel was fishing or not). This involved
matching vessel identifiers and time-points in each database.
These observer data included descriptions of the vessel, the
location, and time-in and -out of a fishing set (i.e., the time
when fishing happened) for 8,932 trips spanning 334 vessels over
the period 2009–2013. We identified which at-sea VMS data
points lay within these set-in/set-out time-spans, and used this
information in validating the behavioral segmentation algorithm
described below. Importantly, the NOAA observer data only
covered a fraction of the trips in the at-sea VMS data, for example
13% of shrimp trips.

Vessel Monitoring System Data Behavioral
Segmentation
The at-sea VMS data remained a collection of lat/lon time-
series, grouped by trip and fishery. In order to identify when and
where fishing occurred from these time-series, we developed an
unsupervised behavioral segmentation algorithm, which works as
follows. Vessel speed was calculated as the distance traveled per
unit time between sequential location pings for all trips, making
sure to also calculate the spatial mid-point between consecutive
lat/lon points. Furthermore, for each trip, checks were made for
extreme and unrealistic speeds. Then, for each vessel we subsetted
trips by fishery, and calculated empirical speed distributions.
To these empirical distributions we fitted Gaussian Mixture
Models (GMM), varying in the number of components (i.e.,
modes) modeled. The “best” model was selected using Bayesian
Information Criterion. The last step was to identify the 50th
percentile value of the first Gaussian component of the best
model. This speed value was used as a cut-off: any locations
with speeds less than or equal to this value were assumed to
be fishing-intended or fishing activity. This speed identifies the
where the first component (i.e., fishing) becomes less likely
than the second component (i.e., steaming). As an example,
Figure S1 shows the empirical speed distributions, the best
GMMs, and the cut-off speeds for a vessel that participated in
a tuna, salmon and shrimp trip. All locations with speeds less
than or equal to the cut-off, for that specific type of trip and
for that vessel, were assumed to be fishing or fishing-intended
events.

Vessel-speed criteria are commonly use to infer whether a
VMS record corresponds to fishing activity (Murawski et al.,
2005; Eastwood et al., 2007; Lee et al., 2010; Gerritsen and
Lordan, 2011). For example, vessel speeds are commonly used to
determine when trawling is in progress, with 8 knots considered
to represent the upper limit of trawling speed for North Sea
beam trawlers (Dinmore et al., 2003). Some authors who have
used a similar approach have reported a significant number
of false-positive results (where vessels were traveling at fishing
speeds, but were not actually engaged in fishing). However,
false-negative results tend to be rare. Indeed, previous work has
included directionality in addition to speed, as determinants of
fishing, but they only resulted in a very small improvement
on speed alone (Mills et al., 2007). Further, unsupervised
behavioral segmentation algorithms like ours are commonly used
(Murawski et al., 2005; Gerritsen et al., 2012; Jennings and

Lee, 2012), and although supervised classification methods are
available (Joo et al., 2015), and access to the NOAA observer
data meant we had the means to construct and test them, there
are several caveats to the observer data (see paragraph below),
and ultimately we would only be able to develop supervised
methods for a small subset of fisheries due to data restrictions.
Furthermore, these supervised classification methods would
perform poorly for those fisheries to which they could not be
trained (i.e., the tuna and salmon fisheries). As a consequence,
we used a simple unsupervised approach based solely on speed
that could be applied across fisheries. We used the NOAA
observer data post-hoc to calculate the precision of our method,
and we found it to perform well for all fisheries for which
we could validate, averaging 83% (see Table 1; precision was
calculated from the frequency of true-positives—locations that
both the NOAA observer data and our algorithm identified as
fishing.). Importantly, we accounted for the precision of our
classification method using bootstrap methods in all subsequent
statistical analyses, meaning our results are robust to the
choice of using a simple unsupervised behavioral segmentation
method.

Another challenge that we came across, that affected our
decision to use an unsupervised classification scheme, was
systematic error in the start and end times of fishing in the
NOAA observer data. For example, in Figure S2 we show a
mock fishing trajectory where colored dots identify a fishing
vessel’s location, and the color the speed. We cannot show the
tracks of a real fishing trajectory, but this mock-up copies exactly
a problem seen throughout our data. Specifically, the NOAA
observer set-in and set-out dates identify VMS locations that
are not likely fishing events. In the top-panel of Figure S2, the
dots surrounded by a grey-circle identify those VMS locations
identified as fishing by the observer data. It is obvious that
the observer data suggest this vessel is fishing, while steaming
fast away from the true fishing location (the knot of points in
blue). In contrast, our speed algorithm identifies what by eye
are likely the true fishing locations (gray circles in the bottom
panel of Figure S2). This potential error in the NOAA observer
data contributed to our decision not to develop a supervised
classification scheme.

TABLE 1 | The precision of the VMS segmentation algorithm, applied to different

métiers that we had NOAA observer data for.

Common Name N Precision

Sablefish (longline) 756 0.659

Sablefish (pot) 277 0.884

Dungeness crab (pot) 78 0.962

Dover sole (trawl) 5626 0.828

California halibut (trawl) 62 0.516

Pacific pink shrimp (trawl) 1651 0.732

Precision is the fraction of VMS-fishing behaviors that were actually fishing events (i.e.,

true positives). The reasonable level of precision of our algorithm, across this broad range

of metíers, meant we were confident of its use for the tuna and salmon (for which we had

no observer data) and shrimp metíers. The average precision of the algorithm (83%) was

used in the subsequent analyses.
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Oceanographic Data
The spatial distribution of attracting LCSs for the whole U.S.
California Current Large Marine Ecosystem, for the period
2009-2013, was estimated using modeled surface ocean currents
produced from a 4-dimensional variational (4D-Var) data
assimilation Regional Ocean Modeling System (ROMS) solution
(Haidvogel et al., 2000, 2008; Shchepetkin and McWilliams,
2003, 2005). The ROMS model and domain is described
in detail elsewhere (Moore et al., 2011a) so only a brief
description is given here. The domain spans the region 134◦W
to 116◦W and 31◦N to 48◦N, extending from midway down
the Baja Peninsula to Vancouver Island at 1/10 degree (roughly
10 km) resolution, with 42 terrain-following levels resolving
vertical structure in ocean properties. We chose to use surface
currents from the high-resolution ROMS reanalysis to identify
LCSs and corresponding fronts, instead of geostrophic velocity
fields derived from satellite altimetry used in several previous
studies of LCSs. We made this choice for several reasons:
(i) the altimetry-based approach cannot be applied reliably
in coastal regions, where the geostrophic balance no longer
holds because of strong lateral and bottom boundaries and
nearshore forcing; (ii) geostrophic surface currents derived
from satellite altimetry are only available at coarser spatial
resolution (at 1/4o or roughly 25 km in our domain); (iii)
altimetry accuracy decreases near the coast, where much fishing
occurs, due to measurements being affected by the presence
of land in the satellite footprint (i.e., <50 km from the
shore).

The circulation of the US west coast is dominated by the
California Current system, which is characterized by energetic
mesoscale variability, and by pronounced seasonal upwelling
driven by alongshore wind stress and offshore wind stress curl.
High productivity in the California Current system is sustained
by the supply of cool, nutrient-rich waters upwelled to the
sunlit surface layer by alongshore winds. Coastal upwelling has a
strong signature in sea surface temperature (SST) and chlorophyll
concentration as illustrated in Figures S3, S4, which show the
observed SST and chlorophyll concentration for August 23rd
2010. Figures S3, S4 also illustrate the complex circulation and
intense mesoscale activity characterizing the dynamics of the
California Current system circulation.

In order to build reliable estimates of past ocean conditions
in this highly dynamic region and accurately represent the
complex evolution of the true ocean state, the ROMS model uses
4D-Var data assimilation, which synthesizes numerous oceanic
observations to produce the best linear unbiased estimate of the
circulation of the California Current system (for an extensive
description of the ROMS 4D-Var capability and implementation,
see Moore et al., 2011a,b). For example, daily AVISO Sea Level
Anomalies provide information of the sea surface height; and
sea surface temperature data (SST) is obtained from numerous
satellite platforms (i.e., AVHRR/PathFinder, AMSR-E, GOES and
MODIS-Terra). The ROMS 4D-Var data assimilation system
produces daily snapshots of the full 3-dimensional structure
of the ocean extending from the surface to the ocean bottom.
To utilize model information with the best agreement with
past observations, we used the posterior circulation estimate,

provided online here http://oceanmodeling.ucsc.edu/. Examples
of the SST and surface velocity fields produced by the ROMS
4D-Var data assimilation system are shown in Figure S5, which
should be compared to empirical observations for the same
day shown in Figure S3 (surface temperature) and Figure S4

(surface chlorophyll) for a qualitative verification of its ability to
reproduce past ocean conditions.

Lagrangian Coherent Structures
Using the ROMS modeled surface velocities, we identified the
location of LCSs through time (Castruccio et al., 2013). These
flow features are material curves that map filamentation and
transport boundaries (Harrison et al., 2013). Fluid particles
straddling a LCS will either diverge (repelling LCS) or converge
(attracting LCS) in forward time (Haller and Yuan, 2000).
LCSs thus delineate the boundary between dynamically distinct
regions of the flow field, effectively allowing us to visualize
the skeleton of turbulent transport (e.g., Haller, 2002; d’Ovidio
et al., 2004; Shadden et al., 2005). Whereas the resolution of
the ROMS velocities may appear relatively coarse compared
to the spatial scales of fishing, the topological structure
of surface ocean LCSs has been shown to be robust to
noise and low spatial resolution velocity fields (Harrison and
Glatzmaier, 2012). The spatial organization of LCSs has a
large impact on the coastal environment not only because
they influence the dispersion of tracers in the water but
also because by separating dynamically distinct regions of
flow, they can define fluid dynamical niches, which contribute
to the structuring of marine ecosystems (d’Ovidio et al.,
2004; Cotté et al., 2011). We focused on attracting LCSs
because they identify regions of confluence and shear, and
have been shown to correspond strongly with the location
of fronts and the foraging behavior of marine top predators
such as frigate birds (Kai et al., 2009), elephant seals
(Della Penna et al., 2015), and baleen whales (Cotté et al.,
2011).

There have been various proposed methods for identifying
attracting LCSs. Among all these approaches, the definition of
LCSs as ridges of the Finite-time Lyapunov Exponent (FTLE)
field has been especially successful. Near LCSs, neighboring fluid
parcels are strained by differing amounts by the flow field. These
differences in stretching rates allow the detection of LCSs by
Lyapunov exponents, which measures the rate of separation of
infinitesimally close trajectories exhibiting exponential behavior
with time (Nese, 1989). It is defined as:

λ = lim
t→∞

1

t
ln

δt

δ0
, (2)

where δ0 and δt are the initial deviation and the deviation at time
t, respectively. This concept has been previously introduced to
the flow analysis (Haller and Yuan, 2000; Haller, 2001). FTLEs
measures the maximum separation of close-by particles of a
time-dependent flow field after a fixed, finite particle advection
time. Here we have computed the FLTE on a regular grid with
1/80 degree horizontal resolution (approximatively 1km in the
CCS). We naturally used the initial separation δ0 of the particles
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equal to the grid spacing. The final separation δt is computed
as the maximum separation after a particle advection time of 10
days, which is the typical mesoscale eddy-turnover time in the
region. Large FTLE values identify regions where the stretching
induced by mesoscale and submesoscale activity is strong and are
typically organized in convoluted lines encircling submesoscale
filaments. A line of local maxima of FTLE (more precisely, a
ridge) can be used to predict the location of tracer fronts induced
by horizontal advection and stirring; in other words, the location
of LCSs. A snap-shot of the spatial distribution of backward
FTLE values and the complementing probability distribution
are shown in Figure 1 and Figure S6 respectively. Further, an
animation showing the dynamic nature of FTLE fields is provided
in the Supplementary Movie. These maps and the animation
highlight the complex spatial patterns exhibited by LCSs (large
FTLE values), and the probability distribution shows that FTLE
values are roughly log-normally distributed, with a mode around
0.1d−1. The LCS’s ability to outline observed tracer patterns in
geophysical flows is well illustrated by Figure S5 where LCSs
align with frontal structures and filamentation in temperature.

Statistical Analysis of Fishing and
Lagrangian Coherent Structures
The behaviorally segmented VMS data consists of a list of
locations where fishing or fishing-intended activities occurred
over the period 2009-2013. In total, these data included 3233
tuna, 2201 salmon and 7762 shrimp fishing locations. We then
linearly interpolated in space and time the FTLE data, produced
from the ROMS modeled velocity data, to these locations. The
result is a unique FTLE value per fishing location. The next step
was to generate a null dataset with which to compare VMS-
FTLE values. Following the approach of (Cotté et al., 2011), for
every fishing location estimated from the VMS data, a random
location was chosen from within the 95% kernel polygon of
the fishing location’s parent fishery (see Figure S7 for maps
showing the spatial distribution of fishing effort for each fishery).
The kernel density estimation was performed on each fishery’s
fishing locations only, and results often identified numerous
distinct polygons. In this case, random points were created by
first choosing a polygon probabilistically, in proportion to its
area, and then a choosing a location randomly from within
that polygon. FTLE values were then linearly interpolated in
space and time to each random point. The result is a set of
random points in the “preferred fishing region” of each fishery.
These random-FTLE distributions were then compared with the
corresponding VMS-FTLE distributions.

In order to explore differences between the VMS and random-
FTLE distributions, we performed Kolmogorov-Smirnov tests
and G-tests of goodness-of-fit. The Kolmogorov-Smirnov test
quantifies the significance of the largest difference between two
cumulative density functions, whereas the G-test quantifies the
significance of the difference in the frequency of particular
events. Both Kolmogorov-Smirnov and G-tests were repeated
1,000 times, subsampling 83% of the VMS- and random-FTLE
distributions to reflect the behavioral segmentation precision.
For the G-test, we calculated the frequency of VMS- and

random-FTLE points greater than or less than 0.1 d−1, which
is a threshold value that corresponds to frontogenesis timescales
faster than 1 month—a time span that has been shown to be
ecologically significant, attracting numerous taxa (d’Ovidio et al.,
2004; Olascoaga et al., 2008; Kai et al., 2009).

We repeated this statistical comparison of VMS-FTLE and
random-FTLE distributions, using a different random test. Here,
instead of choosing random points from within the 95% contour
of each fishery, we chose them randomly from within the whole
U.S. CCLME domain. Like the fishery-specific random test, we
performed Kolmogorov-Smirnov tests and G-tests of goodness-
of-fit.

In addition to testing whether fishing was randomly associated
with high FTLE values and LCSs, or not, we also explored
whether fishing on high FTLE values impacts the revenue
generated by a trip. To do so, we performed linear univariate
regression analysis and fit linear mixed models with the
maximum VMS-FTLE value per trip as the explanatory variable,
and trip-revenue as the dependent variable. In the case of the
linear mixed models, vessel length was additionally included as a
fixed effect, and vessel-ID as a random effect. In order to estimate
the significance of the regression parameters, we bootstrapped
these analyses by taking only 83% of values, reflecting the
expected behavioral segmentation precision, and repeating the
regression analyses 1,000 times. This bootstrap approach allowed
us to estimate a distribution and p-value for each regression
parameter (i.e., the slope).

RESULTS

The VMS-FTLE and random-FTLE distributions for the tuna,
salmon and shrimp fisheries are shown in Figure 2. Values range
from past −0.1 day−1 to 0.5 day−1, with median values for
each fishery all around 0.1 day−1. From these violin plots it
is possible to identify systematic qualitative differences between
the VMS-FTLE and random-FTLE values. For example, for the
tuna fishery the VMS-FTLE median, 25th and 75th percentiles
are all greater than the corresponding random-FTLE values.
The Kolmogorov-Smirnov tests identified that the tuna and
salmon VMS-FTLE distributions are significantly different from
random, but that there is no significant difference between the
shrimp VMS-FTLE and random-FTLE distributions (Figure 2;
Kolmogorov-Smirnov p-values are given below the fishery
names). In addition, we found that for the tuna, salmon and
shrimp fisheries respectively, 57, 47.5, and 55% of fishing events
happen on FTLE values ≥ 0.1day−1, relative to 52, 50.5, and
54% of random events (see Figure 3A). The G-test p-values
reflect those from the Kolmogorov-Smirnov tests, that is the
fraction of fishing events occurring on FTLE values ≥ 0.1day−1

in the tuna and salmon fisheries are significantly different from
random, whereas in contrast, there is no significant difference
for shrimp fishing. The differences between the VMS- and
random FTLE values, for the tuna fishery, are 2–3 times less
than those observed for foraging baleen whales (Cotté et al.,
2011) (the fraction of baleen whales found on FTLE values
greater than 0.1day−1 was roughly 10–15% greater than would
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FIGURE 2 | Distributions of backward finite-time Lyapunov exponent values

from VMS (left of axis/green) and random (right of axis/orange; sampled from

within the 95% density contour of each fishery) locations. Median values are

identified by the dashed lines, and upper and lower quartiles are identified by

the dotted lines. Kolmogorov-Smirnov p-values are indicated below fishery

names, indicating the significance of the difference between the VMS- and

random-distributions (i.e., only the shrimp fishery VMS-FTLE distribution is not

significantly different from random).

be expected at random). This suggests that tuna fishermen are
not tracking these surface frontal features as closely as baleen
whales.

To highlight the way in which these distributions differ from
random, we calculated the difference in VMS- and random-
FTLE survival functions, 1surv, bootstrapping values with an
83% sample size to create confidence intervals that reflect the
behavioral segmentation precision (in the case for shrimp, for
which we had fishing observations, we used 75% precision: see
Table 1). Survival functions identify the fraction of points with
a certain FTLE value or greater (formally, they are 1 minus a
cumulative density function), and the difference between the
VMS- and random-survival functions identifies the magnitude
and type of non-random association fishermen have with LCSs.
For example, from the 1surv curves shown in Figure 3B, it is
evident that tuna fishing events always occur on FTLE values
greater than would be expected from random, that is the red
curve is always positive over the entire range of FTLE values. This
strongly suggest that tuna fishermen preferentially search for and
catch tuna on LCSs, as quantified by FTLEs.

In contrast to tuna fishing, salmon fishing always occurs
on FTLE values less than would be expected from random,
that is 1surv values are negative. This can be interpreted
in three ways. First, salmon fishermen may search for and
catch fish in specific areas of the coast that have reduced
frontal activity relative to nearby waters. Second, the spatial

FIGURE 3 | (A) Bar-plot showing the fraction of fishing (red-tuna,

gray-salmon, blue-shrimp) and random (gold; sampled from within the 95%

density contour of each fishery) points with a FTLE value greater than or equal

to 0.1d−1. G-test p-values are shown below each fishery label. (B) The

difference in VMS- and random-FTLE survival functions (1Surv) for the three

fisheries with 95% confidence intervals. These curves highlight that tuna

fishermen search for and catch fish in areas of the ocean with FTLE values

greater than would be expected by chance. In contrast, salmon fishermen are

found preferentially in areas with low FTLE values.

resolution of the ROMS model, from which the FTLE data were
calculated, is not sufficient to resolve the physical features that
salmon fishermen use to locate salmon. This is an important
caveat to this work, and is expanded upon in the discussion.
Third, salmon fishing may occur in places where LCSs were
recently. We do not account for the possible time-lag between
fishing and the presence of an LCS, but we can hypothesize
that a time-lag would only happen if salmon track some
trailing effect of LCSs. This is clearly possible, as the ecosystem
effects of fluid convergence, caused by LCSs, will be integrated
over space and time. In contrast to both tuna and salmon
fishing, there is less difference between the shrimp VMS- and
random-survival functions. In general, the shrimp 1surv curve
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hugs the zero-line (the point at which there is no significant
difference to random). Hence, when combined with non-
significant p-values from the Kolmogorov-Smirnov and G-tests,
this information confirms our expectation that shrimp fishing
has no spatial correspondence with LCSs and surface frontal
features.

The results of the whole-domain random test contrast strongly
with those produced from the fishery-specific random test
(compare Figure 3 and Figure S8). Here, all fisheries—tuna,
salmon and shrimp—show negative1surv curves. This identifies
that each of these fisheries operates in areas of the California
Current with low FTLE values relative to the rest of the domain. It
is an interesting oceanographic question to ask why this happens,
but because our focus is on the spatial relationship between
individual fishing events and specific FTLE features, and not
with LME-scale biophysical patterns, we do not answer it in
this paper. One point to note is that the qualitative differences
between the 1surv curves of each fishery are consistent across
the fishery-specific and whole-domain tests. That is, the tuna
curve is the least negative, the shrimp curve is an intermediate
case and the salmon curve is the most negative. This qualitative
consistency reflects the results of the fishery specific tests (i.e., that
tuna fishermen track FTLE values that are relatively high when
compared to shrimp and salmon fishermen).

These FTLE statistics reveal that tuna fishermen preferentially
search for and catch fish in areas of high oceanic filamentation,
in other words areas of the ocean with strong fronts. In contrast
salmon fishing occurs in areas of low filamentation, and shrimp
fishing occurs independently of the FTLE context. Do these
behaviors translate into economic terms for fishermen? In order
to answer this question we assessed the relationship between
total revenue gained per trip (in log10$) and the maximum
FTLE value experienced whilst fishing, for every trip for each
fishery (Figure 4). Our data consisted of 753 tuna, 670 salmon
and 1907 shrimp trips (made by 94, 69, and 56 unique vessels
respectively), and we found that for tuna fishing, there is
a significant positive linear relationship between logarithmic
trip revenue and the maximum FTLE value experienced while
fishing. The slope of this linear relationship is 1.44 log$ per
unit FTLE (with a standard error of 0.12 log$ per unit FTLE,
calculated from bootstrapping the regression and subsampling
the data by 83% to account for the segmentation precision).
This univariate analysis implies that a tuna vessel that searches
for and catches fish on a front with FTLE value 0.1 d−1 can
be expected to make roughly $3,500 on a single trip, while a
vessel that catches fish on a front with FTLE value 0.4 d−1

is expected to make $10,000 on a single trip, roughly three
times the revenue. Flat and non-significant relationships were
observed for salmon and shrimp trips indicating that trip revenue
in these fisheries are not affected by the FTLE conditions
experienced while fishing. These results are mirrored when
trip revenue is substituted by trip landings (in units of mass:
Figure S9), but they are not found when the expected FTLE
experienced whilst fishing is used in place of the maximum
(Figure S10; this highlights that themaximum FTLE experienced
while fishing on a given trip is a better measure of catch
success).

FIGURE 4 | Logarithmic trip revenue (log$) as a function of the maximum

finite-time Lyapunov exponent (FTLE) experienced while fishing on a particular

trip, for all (A) tuna, (B) salmon, and (C) shrimp fisheries. Marker size is

proportional to vessel length. We find a significant linear relationship for tuna

fishing trips, indicating that tuna fishermen make more money the more they

fish on fronts. This is confirmed using a linear mixture model that accounts for

the effect of vessel size. Both the salmon and shrimp trips show flat and

non-significant relationships.

Vessel size plays a role in determining trip revenue (Figure 4:
marker size is proportional to vessel length), because larger
vessels have more storage space and hence a greater capacity
for bringing fish to harbor. Using generalized linear mixed
models (bootstrapping results using subsamples similar to the
univariate analysis) we indeed found that vessel size and tuna
revenues are strongly and positively correlated (slope = 1.805,
p-value < 0.001). However, we still also found a positive
and significant (albeit secondary) effect of FTLE values on
trip revenue (slope = 0.582, p-value < 0.001). In contrast,
vessel size and FTLE values were not important determinants
of salmon (slopes = 0.588, 0.344; all p-values > 0.05) or shrimp
(slopes= −0.001, 0.369; all p-values > 0.05) trip revenues.
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DISCUSSION

Our results have identified a connection between fine-scale
physical ocean features and the spatial patterns of human
activity, and ultimately the economic welfare of fishermen.
Specifically, our results infer that fishermen targeting albacore
tuna track LCSs, as identified by large backward Finite-time
Lyapunov exponents. This is reflected in the location of tuna
fishing events, which are consistently found on LCSs, more so
than would be expected at random, and also in the revenue
gained by tuna fishermen. That there is significant positive
correspondence between the spatial distribution of fine-scale
(and ephemeral) physical features of the ocean and the income
of fishermen is surprising, for there are many possible reasons
why one fisherman might make more money than another
(Fulton et al., 2011). For example, the institutional context, skill
and experience, gear and weather all play a role in how much
money a fishermen might make on any given trip (Hilborn,
1985; Bjarnason and Thorlindsson, 1993; Allison and Ellis, 2001).
Thus, the clear signal of the physical ocean environment—the
seascape—in the revenue garnered by tuna fishermen highlights
the potential for strong natural-human coupling in the California
Current system.

In contrast to tuna fishing events, we observed a negative
relationship between salmon fishing and FTLE values, and no
relationship for shrimp fishing. The absence of any relationship
for shrimp fishing was expected, as shrimp fishing targets the
benthos (Eales and Wilen, 1986), and as a consequence the
surface physical structures described by FTLE values would
not be expected to have an impact. However, the negative
relationship seen in salmon fishing raises an important caveat
of this work. It is impossible to tell whether this observation
arises from an actual avoidance behavior of salmon fishermen,
or whether this simply arises due to the inability for the ROMS
model to resolve ocean processes close to shore, which is where
salmon fishing typically occurs (see Figure 1). Although at the
time of this work, the ROMS model data has a finer spatial
resolution than satellite data, which is typically used to assess
the impact of LCSs on predator foraging (e.g., Kai et al., 2009;
Cotté et al., 2011; Della Penna et al., 2015), it is still too coarse to
resolve coastal zone processes, which likely include even finer-
scale physical ocean features than the LCS assessed here. For
example, the FTLE value of 0.1d−1 that we used has been adopted
in previous works studying the relationship between marine
top-predators and LCSs (e.g., Cotté et al., 2011). But these studies
all focused on ocean regions far from shore (at least several tens
of kilometers). Most likely, a different FTLE value will identify
dominant frontal features in coastal zones. Hence, while 0.1d−1

is appropriate for tuna fishing which occurs relatively far from
shore, for studying the spatial behavior of vessels operating closer
to shore, a different value should be identified using new higher
resolution oceanographic information.

Indeed, the spatial scale at which fisherman behavior is
assessed is a critical choice on the part of the investigator (Levin,
1992). Our choice to use the ROMS modeled data (produced
at a spatial resolution of roughly 10km) allowed us to assess
the impact of physical ocean features at this same spatial scale,

that persist over timescales of roughly less than a month. If we
were to have used higher spatial resolution data, we would have
assessed the impact of even finer spatial scale and potentially
more ephemeral physical ocean features on fishing. Importantly,
at some fine scale there will cease to be any relationship. This
is the spatial and temporal scale at which fishermen no longer
are able to sense and react to the seascape. It is an interesting
question to ask at what scale this is, and it likely relates to the
technology that fishermen employ to search for fish. Because it is
related to technology, thisminimum spatiotemporal scale is likely
decreasing, as vessels improve in speed and sensory ability.

In contrast to examining finer scale behaviors, one could
coarse-grain the (ROMS) data, and assess the relationship
between fishing and aggregate measures of the seascape. These
coarse graining experiments have been used to examine the
relationship between pelagic predators and relatively large areas
of the ocean, characterized by different biophysical properties
(Scales et al., 2017). Coarse graining experiments like these move
the focus away from the behavior of individual fishermen and
fishing vessels, and instead ask questions about where groups
of vessels (fleets) operate. This is a vital consideration because
while management typically focuses on directing the behavior of
individual humans, their performance is often measured at the
fleet level (Hilborn, 2007), and fleets themselves vary in their
composition and in where their aggregate effort is directed (e.g.,
Figure S7;Boonstra and Hentati-Sundberg, 2016).

An important aspect of fisheries management that this
study relates to is the impact of LCS-focused foraging on the
organization and dynamics of the underlying marine food-web
(Woodson and Litvin, 2015). Spatially focused foraging and
consumption has been shown to impact fish stocks through
a phenomenon known as “local depletion” (Bertrand et al.,
2012), and in ecology these non-linearities in predator-prey
interactions change the long-run mortality rate of prey, and
the population growth rate of predators (Fryxell et al., 2007).
This is important because the ecosystem models that we
currently employ to quantify and predict the dynamics of marine
ecosystems (e.g., Watson et al., 2015), possibly in the context of
evaluating the potential response of management changes, use
very simple linear mathematical functions to represent predator-
prey encounter rates (e.g., the numerator in a Type II feeding
function). These linear functions assume that prey are uniformly
distributed over a given area, and predators move randomly over
this area (Barbier and Watson, 2016). We know that in reality
that this is not so, and our analysis confirms this. It is fair to say
that all models are abstractions of reality; however, it is important
to know the effect of these simplifying assumptions on the
predictive skill of our ecosystem models. Our analysis suggests
that more sophisticated predator-prey encounter functions that
account for spatially focused foraging, and other important
factors such as cooperation and advanced fishing technologies,
are likely to provide new insights into fisheries dynamics (Fulton
et al., 2011; Barbier and Watson, 2016).

One major policy tool that will benefit from improved
understanding of the fine-scale spatial behavior of fishermen is
marine spatial planning. Marine spatial planning takes many
forms, for example Marine Protected Areas (MPAs) which have
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been widely adopted around the world (Edgar et al., 2014), and
define areas of the ocean that are off-limits to fishing. Obviously,
because vessels operating in different fisheries search for and
catch fish in different places, MPAs will have a varying impact
on people’s income, depending on which fisheries they work in.
Knowing in which oceanic regions and at what times of the year
different fisheries operate is key to designing MPAs efficiently
(Le Pape et al., 2014). Further, there are more sophisticated
approaches to marine spatial planning, for example temporary
closures (Brown et al., 2015), and policies directed at specific
spatial behaviors, for example bycatch move-on rules (Dunn
et al., 2014). Like MPAs, improved understanding of the spatial
behavior of fishermen, at fine spatial and temporal resolution, will
be critical to advancing these arguably more sophisticated forms
of marine spatial planning.

Marine spatial planning extends to other ocean-industries, not
just fishing. Indeed, much applied research is currently focused
on “cross-sector” marine spatial planning, which aims to develop
policies that optimize the (sustainable) use of the oceans by all
sectors, for example fishing, aquaculture, shipping, tourism and
oil and mineral extraction (Lester et al., 2013; Klinger et al.,
2017). Like in the case of marine spatial planning geared solely
for fisheries (e.g., MPAs), cross sector spatial policies will depend
on a detailed quantification of spatial behavior. Importantly,
this advanced understanding will not only improve our ability
to design cross-sector policies for optimal/sustainable use of
multiple ocean resources, but it will help us anticipate how people
(like fishermen) will respond to these new policies (Klein et al.,
2017). This is key to developing cross-sector policies that will
provide opportunities for (economic) growth in the long-run, as
the social and ecological organization of marine systems change
(Klinger et al., 2018).

A final consideration for integrating detailed understanding
of fishing spatial behavior into marine management is that
fishermen typically work in numerous fisheries over a given
year (Kasperski and Holland, 2013; Fuller et al., 2017). As a
consequence, fishermen will move across, exploit and make
money from different parts of a seascape at different parts of
the year. Hence, they will have many relationships with different
parts of the seascape. For example, a fisherman on the U.S. west
coast that works in the albacore tuna fishery may also work in
the dungeness crab fishery. As a consequence, high FTLE ocean
features will be important to this fisherman during the tuna
season, but not when they operate in the crab fishery. This is
similar to agriculturalists that grow different crops in different
parts of a landscape at different parts of the year. Indeed, just like
in agricultural management (Iverson et al., 2014), spatial marine
policies will be improved if they acknowledge that fishermen’s
diverse harvest portfolios connect different parts of seascapes
(Hobday et al., 2011).

In summary, coastal management andmarine spatial planning
that recognizes and accounts for feedbacks between fishermen
behavior and the dynamic and structured nature of seascapes is
likely to meet with greater compliance and provide for stronger
resilience in the face of cumulative anthropogenic impacts.
Indeed, flexibility and resilience—the ability to cope with change
(Folke, 2006)—are key properties of coastal human communities
that managers are looking to bolster, especially in the context of

impending shifts in species ranges expected with climate change
(Pinsky et al., 2013). Furthermore, incorporating fine spatial-
scale information into management policies is essential if we
are to continue to improve the efficiency of fisheries (Hobday
et al., 2011). Increased fisheries efficiency would lead to fishermen
spending less time at sea, and as a consequence reduced risk
of harm. Of course, in the interest of long-term sustainability
this increase in efficiency should be matched by changes in
governance institutions that prevent over harvest. Ultimately,
given the coupled nature of social-ecological systems, integrating
high resolution data on physical, chemical, ecological and social
factors will improve both how and to what extent we use living
natural resources (Wilen, 2004), leading to improved chances of
prosperity now and in the future.

AUTHOR CONTRIBUTIONS

JW, EF, FC, and JS all contributed data, designed the scientific
approach, analyzed the data and wrote the manuscript.

FUNDING

JW and EF acknowledge the support of the NSF Dynamics of
Coupled Natural-Human Systems grant GEO-1211972 and NSF
GRFP: DGE-1148900 respectively.

ACKNOWLEDGMENTS

We would like to thank Frank Davenport, Claudie Beaulieu
for their help in preparing this manuscript. We would
especially like to thank Brad Stenberg and the Pacific Fisheries
Information Network (PacFIN), the Pacific States Marine
Fisheries Commission, Kelly Spalding and the VMS Program
at the National Marine Fisheries Service’s Office of Law
Enforcement, the NWFSC Observer Program, and Chris
Edwards at UC Santa Cruz for providing the ROMS data. We
also thank the Washington, Oregon and California Departments
of Fish and Wildlife for sharing their data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2018.00046/full#supplementary-material

Figure S1 | The probability density function of speed from (A) tuna, (B) salmon,

and (C) shrimp trips. Empirical distributions are shown in gray, the “best” fitted

Gaussian Mixture Models in orange, and the cut-off speeds that are used to

segment fishing and non-fishing behaviors is identified by the blue dashed line.

Figure S2 | A mock-example of one trip. We are not allowed to show real fishing

trajectories due to privacy constraints, so instead we created this mock-up based

on a real example. Fishing vessel locations are identified by the colored dots (each

separated by 5 min.) and speed (m/s) is identified by color. For this particular trip

there are two searching/fishing events, identified by the clusters of slow-speed

points. One problem we identified was that the NOAA observer data can

sometimes be obviously erroneous. This is explained in the (Top), where the VMS

locations circled in gray identify when the NOAA observer recorded that fishing is

happening. For the top-most fishing event, there is clearly an overshoot. In

contrast, our behavioral segmentation approach (Bottom) based on vessel speed

is much more conservative.
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Figure S3 | Observed sea surface temperature provided by the Operational Sea

Surface Temperature and Sea Ice Analysis (OSTIA, Donlon et al., 2012). OSTIA

uses satellite data provided by the GHRSST project, together with in-situ

observations to determine the sea surface temperature. The analysis is produced

daily at a resolution of 1/20o (approximately 5 km).

Figure S4 | Observed chlorophyll concentration (Maritorena et al., 2010) for May

23rd 2010, made using Level 3, daily, binned imagery from SeaWiFS,

MODIS-Aqua, and Meris.

Figure S5 | ROMS 4D-Var posterior estimate of Sea surface temperature (color

shading) and surface velocity (vector) for May 23rd 2010. Attracting Lagrangian

Coherent Structures (LCSs) are ridges of the Finite-time Lyapunov Exponent

(FTLE) field, and are identified by the white lines.

Figure S6 | Probability density function of finite-time Lyapunov values on Jan 1st

2009, for the ROMS US west coast modeled domain.

Figure S7 | Fishing intensity (log10 fishing days) for the tuna, salmon and shrimp

métiers, calculated from the VMS data over the period 2009–2013.

Figure S8 | Statistical analysis produced from the “whole-domain” random rest.

(A) Bar-plot showing the fraction of fishing (red-tuna, blue-shrimp, gray-salmon)

and random (gold) events with a FTLE value greater than or equal to 0.1d1. G-test

p-values are shown below each fishery label. (B) The difference in VMS- and

random-FTLE survival functions (1 Surv) for the three fisheries with 95%

confidence intervals.

Figure S9 | Logarithmic trip landing (log10 lbs) as a function of the max finite-time

Lyapunov exponent experienced while fishing on a given trip, for all (A) tuna, (B)

salmon, and (C) shrimp trips. We find a significant linear relationship for tuna

fishing trips, indicating that tuna fishermen make more money the more they fish

on strong filaments. Both the salmon and shrimp trips show now (significant)

relationships. Marker-size is proportional to vessel length.

Figure S10 | Logarithmic trip revenue (log$) as a function of the expected

finite-time Lyapunov exponent (FTLE) experienced while fishing on a particular trip,

for all (A) tuna, (B) salmon, and (C) shrimp fisheries. Marker size is proportional to

vessel length. We find no significant linear relationships for any of the fisheries

studies.
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