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Species inhabiting deep-sea hydrothermal vents are strongly influenced by the geological

setting, as it provides the chemical-rich fluids supporting the food web, creates

the patchwork of seafloor habitat, and generates catastrophic disturbances that can

eradicate entire communities. The patches of vent habitat host a network of communities

(a metacommunity) connected by dispersal of planktonic larvae. The dynamics of the

metacommunity are influenced not only by birth rates, death rates and interactions of

populations at the local site, but also by regional influences on dispersal from different

sites. The connections to other communities provide a mechanism for dynamics at a

local site to affect features of the regional biota. In this paper, we explore the challenges

and potential benefits of applying metacommunity theory to vent communities, with a

particular focus on effects of disturbance. We synthesize field observations to inform

models and identify data gaps that need to be addressed to answer key questions

including: (1) what is the influence of the magnitude and rate of disturbance on

ecological attributes, such as time to extinction or resilience in ametacommunity; (2) what

interactions between local and regional processes control species diversity, and (3) which

communities are “hot spots” of key ecological significance. We conclude by assessing

our ability to evaluate resilience of vent metacommunities to human disturbance (e.g.,

deep-sea mining). Although the resilience of a few highly disturbed vent systems in the

eastern Pacific has been quantified, these values cannot be generalized to remote locales

in the western Pacific or mid Atlantic where disturbance rates are different and information

on local controls is missing.
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METACOMMUNITY FRAMEWORK AS A
MULTISCALE APPROACH TO VENT
DYNAMICS

When the unique, lush animal communities at deep-sea
hydrothermal vents were first discovered in 1977, scientists
focused much of their inquiry on species traits, such as the
unusual morphologies and adaptations, and on the large body
sizes and population densities despite the paucity of input
from surface primary production. Attention then broadened
to the scale of vent habitats, including distribution patterns
and interactions between species and their fluid environment.
As more vents were discovered, research focus expanded to
a regional and even global scale, exploring the processes
that allowed ecological and genetic connectivity (exchange of
individuals and genes) among some widely separated vents, while
creating biogeographic boundaries among others. At roughly the
same time that this expansion in scale of vent investigations
was occurring, metapopulation theory was increasingly being
applied to both terrestrial and aquatic ecosystems (Hanski and
Simberloff, 1997; Sale et al., 2006). The metapopulation concept,
and its multi-species, metacommunity analog, have opened a new
way to frame ecological questions that involve both local and
regional processes (e.g., Leibold et al., 2004; Logue et al., 2011).
It is rapidly becoming a key tool for developing science-based
societal solutions to managing fisheries (Guichard et al., 2004),
protecting vulnerable ecosystems, and predicting how effects
of point-source human disturbance (e.g., mining, pollution)
propagate regionally. For hydrothermal vent systems, however,
metapopulation and metacommunity theory remains largely
unused (but see Jollivet et al., 1999; Neubert et al., 2006).

In this review, we explore the challenges and potential benefits
of applying metacommunity theory to vent communities,
and draw comparisons with cold seeps, both of which are
systems with spatially fragmented distributions. The goal is to
inform ecologists who work on deep-sea patchy ecosystems
about the value of the metacommunity approach, and to
inform metacommunity modelers about unique attributes of
vent ecosystems. We present and synthesize field observations
on aspects of vent communities relevant to metacommunity
processes, identifying data gaps that need to be filled to
answer key questions. Finally, we evaluate whether and how the
metacommunity concept can be used to predict resilience in
these systems, defined here as the ability to maintain or recover
overall function and structure in the face of natural and human
disturbance. We consider disturbance along a spectrum, ranging
from catastrophic events that eradicate entire communities to
more modest environmental changes that influence the ability of
individual species to colonize and persist.

Metacommunity Theory
A population is a collection of individuals of a single species that
are interacting with each other, reproducing, and dying. Classical
theory for population dynamics is rooted in demography—
the study of how the rates of development, survival, and
reproduction depend upon environmental conditions (including

population density) and how those rates give rise to patterns of
change in population-level properties such as population growth
rate, equilibrium population size and extinction probability.

A metapopulation is a population of populations. As
originally conceived by Levins (1969), it is a collection of
populations occupying distinct spatial locations, or “patches.”
These populations interact with each other as individuals
disperse between them. Populations “reproduce” by colonizing
unoccupied patches. Each population is also vulnerable to
extinction, typically as the result of a disturbance to the patch.
The balance between colonization of unoccupied patches and
local extinctions determines the dynamics of the metapopulation
and quantities such as the proportion of patches occupied at
equilibrium.

Levins (1969, 1970) translated these ideas into a simple
mathematical model called a patch-occupancy model because
it tracks the occupancy state of patches of habitat. According
to this model, some but not all patches are occupied at any
one time (some can become colonized while others may go
extinct). Occupied patches produce colonizers that can settle
randomly on any patch, some of which are empty (see Box 1).
The number of occupied patches changes over time at a rate that
is the difference between the colonization and local extinction
rates (Eq. 1). Patch-occupancy models make two important,
but implicit, assumptions (Caswell and Cohen, 1993). The first
is that within-patch dynamics, which are ignored, occur much
more quickly than other processes in the metapopulation. The
second is that the spatial arrangement of patches is not important.
Patches can be colonized by individuals originating in any other
patch; the only spatial scales that appear are the local patch scale
and the metapopulation scale.

Other mathematical formulations of metapopulation
dynamics—including coupled map lattices (Kaneko, 1993),
which track within-patch population density, and cellular
automata (Caswell and Etter, 1993; Molofsky, 1994; Keymer
et al., 1998), which account for the spatial arrangement of
habitat—relax some of these assumptions. In doing so, these
models generate a richer set of dynamical behaviors than patch
occupancy models, and allow the modeler to address a much
larger set of interesting ecological questions. There is, however, a
trade off: coupled map lattices and cellular automata are typically
less mathematically and computationally tractable than patch
occupancy models.

Despite its obvious simplicity, the metapopulation concept
represents an important advance in theoretical ecology
(Hanski and Gilpin, 1991). By shifting focus away from the
interactions among individuals within a population toward the
interactions between populations, and through the formulation
of simple mathematical descriptions of metapopulation
dynamics, Levins and others, who have extended his ideas
since, have provided a powerful way to address a suite of
ecological questions that continue to be pursued by both
theoretical and empirical ecologists. Of particular interest
has been the way in which the spatial distribution of viable
habitat, the production of offspring, the dispersal behavior
of individuals (which together influence colonization rates),
and disturbance (which influences local extinction rates)
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BOX 1 | Mathematical formulation of the patch-occupancy model proposed by Levins.

Levins (1969, 1970) imagined a large number of habitat patches, N, of which X (t) are occupied at time t. The remainder, N − X (t), are empty and available for

colonization by individuals dispersing from the occupied patches. Imagine that each occupied patch produces potential colonizers at the rate c. These propagules

settle, randomly, on any patch; a fraction (N − X )/N land on empty patches that they colonize. The total colonization rate is then cX (N − X )/N. Occupied patches

are assumed to suffer extinction events at the rate e. The number of occupied patches changes over time at a rate that is the difference between the colonization

and local extinction rates; i.e.,

dX

dt
= cX

(N − X)

N
− eX (1)

The rate of change of the proportion of all patches that are occupied, x = X/N, measured in time units chosen so that the average persistence time of a local

population is 1 (i.e., τ = et), is even simpler:

dx

dτ
= rx (1− x) − x, (2)

where r = c/e.

After a sufficient period of time, the proportion of occupied patches in the metapopulation comes to an equilibrium at the level x∗ = (r − 1)/r as long as r > 1 and

x (0) > 0. If r < 1, global extinction is assured in the long run.

Note that under model (1), while aggregate descriptions of the entire metapopulation (like the proportion of occupied patches, x) come to equilibrium, no individual

patch is at equilibrium. Individual patches continue to change state between unoccupied and occupied.

interact to determine whether species persist, and for how
long.

A metacommunity (Gilpin and Hanski, 1991; Wilson, 1992)
has similar spatial structure as a metapopulation but includes
multiple species that may interact with each other through
trophic interactions, facilitation, competition, or other processes.
These interactions can influence colonization by modifying the
rates of production of dispersers, and by determining which
of those dispersing individuals are able to invade a given local
community. For example, a specialist predator may only be able
to colonize a patch that is already occupied by its prey, or an
individual may not be able to colonize a patch already occupied
by a population of a superior competitor. Interactions can also
affect local extinction if colonizers displace resident species.

An important aspect of any metacommunity dynamic model
is the specification of the interspecific interactions. The number
of potential pairwise interspecific interactions between s species
can be as large as s(s−1)/2. The number of possible patch
states grows even more quickly with the number of species. To
simplify, theoreticians often limit the number of species in their
model metacommunities and limit the number of interactions
between species by making strong biological assumptions. For
example, to capture successional dynamics (the change in species
structure over time), Neubert et al. (2006) specified a strict
hierarchy wherein species with higher ranks could only colonize
patches that were previously colonized by species lower in the
hierarchy. Alternatives to the facilitation model of succession are
the tolerance model (wherein any species can colonize available
habitat first) or the inhibition model (wherein early colonizers
modify the environment to preclude later colonizers; Connell and
Slatyer, 1977).

A key feature of both metapopulation and metacommunity
theory is the ability to incorporate multiple scales, while
recognizing that different processes may apply at the
different scales. When a local community is embedded in a

metacommunity, its dynamics are influenced not only by birth
rates, death rates and interactions of populations spawned at
the local site, but also by dispersal. The connections to other
communities provide a mechanism for dynamics at a local site
to affect features of the regional biota. Metacommunity models
tend to approach ecological questions from different perspectives
(Leibold et al., 2004), each of which emphasizes a different
dominant influence, including patch quality (“species sorting”),
dispersal (“patch dynamics”), or the influence of immigration
on local competitive exclusion (“mass effects”). At deep-sea
hydrothermal vents, the dominant influence is likely to vary,
depending on the geological and oceanographic setting.

Integrating Metacommunity Theory and
Field Observations
Interpreting field observations from a metacommunity
perspective can be a challenge, as most field studies focus
on either local (e.g., species’ responses to local environment or
species interactions) or regional (e.g., dispersal, colonization)
processes, but not both. However, to fully understand the
processes driving community structure, species diversity and
resilience, observations are needed at both scales. Studies
from a few terrestrial habitats stand out as examples of this
combined approach. In a system of pitcher plants inhabited by
a community of protists and their mosquito-larvae predators,
a manipulative field study showed that dispersal frequency
increased the number of species in individual plants, but
only in the absence of predators (Kneitel and Miller, 2003).
Similarly, in a system of ponds, dispersal between sites increased
diversity of resident zooplankton communities, despite the
strong site-specific influences of macrophyte cover and fish
predation (Cottenie et al., 2003). In contrast, in a pond system
where individual ponds differed in permanence (some dried up),
disturbance rate, rather than dispersal distance, was the primary
influence on community structure (Urban, 2004). In systems
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such as rivers where dispersal is strongly directional, the spatial
arrangement of sites may become important. For example, an
investigation of benthic invertebrates in a dendritic (branching)
river showed that the community was influenced mainly by local
environmental conditions in the isolated headwaters, but by
dispersal in the mainstream sections (Brown and Swan, 2010).

Field studies of marine metacommunities are uncommon,
but one study of coral reef fish species showed that species
composition in individual reef sites was influenced mostly
by local habitat structure for many functional groups (e.g.,
planktivores, corallivores and piscivores), while dispersal
appeared to be important for others (detritivores and grazers)
(MacNeil et al., 2009). In both marine and terrestrial systems, it
is becoming clear that understanding resilience to disturbance
requires investigation of dispersal in addition to local influences,
as demonstrated by field studies in estuaries (Thrush et al., 2008),
forests (Bloch et al., 2007), and streams (Campbell et al., 2015).

Vent Communities as Metacommunities
To understand why deep-sea hydrothermal vents are particularly
well suited to application of metacommunity theory, we provide
some background on their environmental setting and biological
communities. Hydrothermal vents form in geologically and
tectonically active areas of the seafloor where heated, chemical-
rich fluids escape up through cracks in the ocean crust (explained
further in section Global Patterns of Vent Distributions,
Disturbance Frequency, and Longevity). Where these fluids mix
with oxygenated seawater, they support lush communities fueled
by microbial chemoautotrophy. The large size, high densities
and taxonomic novelty of organisms discovered at hydrothermal
vents challenged the prevailing view of the deep sea as a sparsely
populated desert inhabited mostly by small individuals.

Vent communities occur in all ocean basins, with over 500
deep-sea vent fields having been observed along mid-ocean
spreading centers and in subduction zones (Figure 2; Beaulieu
et al., 2015). Vents occur in discrete patches (vent fields) that
may be separated by a few to many hundreds of km and may
comprise multiple vent orifices. The intervening areas of seafloor
lack the hydrothermal fluids, and associated microbes, that fuel
vent food webs. As a result, most species inhabiting deep-sea
vents, including over 500 species of invertebrates (Desbruyères
et al., 2006), cannot persist in typical marine habitats, and are
endemic to vents.

Many deep-sea vent communities are transient because they
are perched on top of active volcanoes and other dynamic
seafloor features. The distances between vent patches and the
disturbance rate at vents depend on the magmatic, tectonic and
hydrological processes that result in release of hydrothermal
fluids (Fornari and Embley, 1995; detail in section Global
Patterns of Vent Distributions, Disturbance Frequency, and
Longevity). In areas with relatively high magma supply, such
as the eastern Pacific, vents are spaced relatively closely but
the communities may be eradicated by seafloor eruptions on
decadal time scales. These natural eruptive disturbances may be a
fundamental regulating feature of vent ecosystems at volcanically
active areas. However, in areas with slower spreading rates,
such as the mid-Atlantic Ridge and many backarc spreading

systems, vents are spaced farther apart, but are subject to large
eruptions less often. Here, age and stability are reflected in
the large mineral deposits that have accumulated over many
thousands of years (Jamieson et al., 2013). For many vent sites,
our observation timeline (only decades) is too short to assess
disturbance frequency.

Vent species are distributed in discrete biogeographic
provinces, each of which has a characteristic fauna (e.g., Moalic
et al., 2012), and extends through all or part of an ocean basin.
Patterns of species diversity and occurrence differ between these
regions. Diversity at an individual vent tends to be high in the
eastern tropical Pacific, reduced in the northeastern Pacific, and
low in the Atlantic (Juniper and Tunnicliffe, 1997; Tsurumi,
2003; Bachraty et al., 2009). Within a region, individual vent
patches rarely host the full species pool (Van Dover et al., 2002).
In some regions, neighboring vents may differ strikingly in
species composition, as has been observed in the mid-Atlantic
(Desbruyères et al., 2001) western Pacific (Podowski et al., 2010;
Metaxas, 2011), and Gulf of California (Goffredi et al., 2017). In
contrast, in the eastern Pacific, individual vents tend to host a
subset of the province’s species pool, without geographic clines
(Juniper et al., 1990; Van Dover and Hessler, 1990).

These differences in patterns of species diversity and
occurrence between ocean regions and between vents within
regions have been attributed to various processes, including
habitat variation (e.g., differences in the composition of the
vent fluids between neighboring vent patches; Desbruyères et al.,
2001), but disturbance frequency and dispersal barriers also likely
play a role (O’Mullan et al., 2001; Mullineaux, 2014). Juniper
and Tunnicliffe (1997) suggested that the rate of disturbance and
habitat heterogeneity contribute to these patterns on ecological
time scales, while regional (tectonic) age operates on differences
on evolutionary scales. A high disturbance rate may result in low
diversity at individual vents, but it may also result in a mosaic
of communities at different stages in succession, thus elevating
regional diversity. Alternatively, the spacing of vents, as well
as the presence of transform faults and seamounts, can limit
dispersal and the potential for recovery from perturbations and
may even contribute to extinction of populations at individual
vent fields (Turnipseed et al., 2003; Breusing et al., 2016).

The patchy distribution and species endemicity of vents
underscore the importance of dispersal in maintaining
population connectivity among vents. Since the adults of
most species are sessile or of low motility, dispersal occurs
mainly through planktonic larvae which, despite showing some
behaviors, are mainly transported by currents (Adams et al.,
2011, 2012). Larval retention within a vent field (scale of∼100m)
can be high and contributes to local larval supply (Metaxas,
2004). However, following catastrophic eruptions that extirpate
local populations, larvae of some species from remote vents can
quickly recolonize (Mullineaux et al., 2010).

Species interactions can dictate the sequence of successional
patterns at hydrothermal vents. Competitive inhibition,
facilitation, and habitat provision or modification influence the
abundance of different species during initial colonization but
also throughout the development of communities following
a disturbance (Sarrazin et al., 1997; Mullineaux et al., 2003;
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Podowski et al., 2010). For instance, on the East Pacific Rise
(EPR), the presence of the small tubeworm Tevnia may facilitate
colonization by the giant tubeworm Riftia (Mullineaux et al.,
2000) which then appears to be excluded by mussels. Predation
can modulate local abundance of vent communities at any point
in time, from colonization to community maturity, as described
for fish predation on a dominant gastropod species (Micheli
et al., 2002; Sancho et al., 2005).

The metacommunity concept appears to be particularly
suitable as a framework for exploring the processes responsible
for observed patterns in vent community composition, dynamics
and persistence. The patchy distribution and transient nature
of suitable habitat, along with the occurrence of chronic or
episodic disturbance at various frequencies and magnitudes,
underlie the importance of ecological connectivity (via larval
dispersal) and succession in regulating community dynamics
at hydrothermal vents. The interaction between dispersal
ability and habitat distribution will determine recolonization
potential, with particular sequences of succession dependent
on subsequent facilitative or competitive interactions. Given
the habitat topology, species distributions and endemicity, and
species tolerance to a certain suite of environmental conditions,
the models of patch dynamics and species sorting (Leibold
et al., 2004) can be applied to communities at hydrothermal
vents. Ecosystems at other deep-sea chemosynthetic habitats,
such as cold seeps, and whale and wood falls, share some of the
metacommunity attributes with hydrothermal vent ecosystems.
Although the focus herein is on vents, seeps offer an interesting
comparison, as they differ in the frequency and magnitude of
disturbance, and their species overlap with the surrounding non-
chemosynthetic deep-sea (Levin et al., 2016a).

Objectives for Metacommunity
Investigation
Field studies of metacommunity dynamics are challenging in
almost any habitat and are particularly difficult in the remote and
difficult to access ecosystems of the deep sea. For that reason, the
most promising approach in applying metacommunity theory to
questions in vent ecology is in coupling metacommunity models
with carefully targeted field observations. Themodels can be used
to synthesize observations at local and regional scales, to explore
hypotheses about what processes underlie observed patterns, and
to direct future field efforts. They can also be used to explore
community resilience and potential for recovery from natural
and anthropogenic disturbances.

In this paper, we focus on three components of
metacommunity dynamics that are relevant to vent systems:
disturbance, regional controls, and local controls (Figure 1).
Vent communities are particularly fascinating in the context of
these components because of the global geological dynamics that
control vent distributions and disturbance rates, the interactions
between physical ocean dynamics and seafloor topography
that mediate ecological connectivity, and the unusual suite of
species that participate in chemosynthesis-based food webs. The
differences across and between ocean basins in disturbance rates,
current-mediated dispersal, and species composition provide a

natural laboratory for comparative studies of metacommunity
processes, and their influence on diversity, persistence, and
resilience of these unique communities. Field observations from
various vent systems (and related chemosynthetic habitats) that
can inform this effort are presented in section Field Observations
and Synthesis, and a set of key questions that are feasible to
address are proposed in section Synthesis of Field Observations
and Key Questions. In section Evaluating Resilience to Human
Disturbance, we apply observations and theory to the topic of
vulnerability and resilience to disturbance of vent communities,
and the extent to which vulnerability and resilience can be
predicted and evaluated for management decisions on seafloor
mining and protected areas.

FIELD OBSERVATIONS AND SYNTHESIS

Global Patterns of Vent Distributions,
Disturbance Frequency and Longevity
The global distribution of hydrothermal vents aligns with sources
of heat deep in Earth’s lithosphere—in general, magma upwelling
at plate boundaries (Figure 2; Beaulieu et al., 2013, 2015).
Buoyant fluids from sub-seafloor hydrothermal circulation are
expressed as focused or diffuse vents, often found in close
proximity (on the order of 10–100m) and forming vent fields.
The spatial scale of a vent field best matches the spatial scale of a
“patch” for metacommunity dynamics. Delineation of vent fields
can be challenging and often is based on separation distance, e.g.,
>1 km (Beaulieu et al., 2013). As of 2015, the global inventory
of vent fields was 572 at depths > 200m, with 344 at mid-ocean
ridges, 117 at back-arc spreading centers, 106 at volcanic arcs, and
5 at intraplate hotspots (Beaulieu, 2015).

On spreading ridges, the range in expected spacing between
vent fields is from 25 to 90 km, inversely proportional to the
magnitude of the spreading rate (150–10 mm/yr; Beaulieu et al.,
2015); however these distances may be over-estimates. For
example, although previous observations indicated a spacing of
∼20–25 km between vent fields from 9 to 13◦ N on the fast-
spreading East Pacific Rise (EPR; Beaulieu, 2015), a spacing of
3 kmmay be more accurate (Baker et al., 2016). Also, venting has
been observed off-axis at ridge flanks but has not been studied
well (Haymon et al., 2005). At volcanic arcs, average spacing
between volcanic centers can be as little as 20–30 km, but not
all of these are volcanically or hydrothermally active (de Ronde
et al., 2007; Baker et al., 2008). Hydrothermal vents are found at
a wide range of depths from <200 to ∼5,000m; some vent fields
that appear closely spaced horizontallymay differ greatly in depth
(e.g., the Von Damm and Piccard vent fields in the Caribbean
Sea are only ∼20 km apart in latitude/longitude but differ by
∼2,600m in depth). Furthermore, the spatial variation of patch
quality, as influenced by vent fluid composition, differs between
ridges. Although some ridges may have similar composition of
venting fluids across great distances (e.g., 1,000-km scale on the
basalt-hosted EPR), others have diverse chemistries [e.g., 100-km
scale due to the combination of basalt- and ultramafic-hosted
systems on the Mid-Atlantic Ridge (MAR); Schrenk et al., 2013;
German et al., 2016]. Arc/back-arc settings may have vent fields
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FIGURE 1 | Processes affecting metacommunity dynamics through local controls (influences of habitat and biological interactions), regional controls (larval exchange,

connectivity, and gene flow), and disturbance. Examples in parentheses are of specific features, influences, or characteristics.

FIGURE 2 | Locations of active hydrothermal vent fields (circles), confirmed (thick outline) or inferred (thin outline), at water depths >200m. Spreading rates

categorized to: ultraslow (<20 mm/yr), slow (20–50 mm/yr), intermediate (50–80 mm/yr), fast (80–140 mm/yr), superfast (>140 mm/yr). Region labels: EPR, East

Pacific Rise; JFR, Juan de Fuca Ridge; MAR, Mid-Atlantic Ridge. Map data: InterRidge Vents Database Version 3.3 (Beaulieu, 2015), PB2002 plate boundaries (Bird,

2003), ETOPO1 bathymetry (Amante and Eakins, 2009). Map produced with QGIS 2.18 (QGIS DevelopmentTeam, 2017).

that greatly differ in fluid chemistry at the 10-km scale (German
and Seyfried, 2013).

Natural disturbance at vents occurs mainly at the local scale
through volcanic eruptions or landslides but may also result
from tectonic events such as earthquakes, that affect the regional
scale (Van Dover, 2014). For the patch occupancy model of

metapopulation dynamics, major disturbance that eradicates the
community for an entire patch may occur abruptly (over the
course of days)—for example, through emplacement of lava after
a volcanic eruption or through mass wasting from a landslide—
or may take some time (years), as in the cessation of venting.
Disturbance may also create new habitat. The frequency of
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disturbance may range from almost continuous at vents on
submarine arc volcanoes with multiyear eruptions (e.g., NW
Rota-1; Rubin et al., 2012; Schnur et al., 2017) to very infrequent
at vents hosted in ultraslow spreading settings. At spreading
ridges, the frequency of volcanic eruptions is related to time-
averagedmagma supply and spreading rate (Perfit and Chadwick,
1998). For example, at the fast-spreading EPR, vent communities
have been observed to be eradicated by seafloor eruptions on
decadal time scales (Rubin et al., 2012), but at the slow-spreading
MAR an eruption might not occur for 10,000 years (Perfit and
Chadwick, 1998). Some arc volcanoes “grow and collapse on
human timescales” due to frequent eruptions as well as landslides
(Schnur et al., 2017). Other non-volcanic natural disturbances,
such as earthquake activity or cessation of a vent within the patch,
may lead to minor to moderate disturbances that affect patch
size or quality. In general, at fast-spreading ridges, earthquakes
tend to be frequent but too small in magnitude to impact vent
fauna (e.g., ∼10 per day at magnitude <2 on the EPR; Tolstoy
et al., 2006). At slow-spreading ridges earthquakes of greater
magnitude tend to be more common (Dziak et al., 2012). For
example, on the MAR the frequency of events with magnitude
>3 was ∼1 per km of ridge axis per year, with larger events
(magnitude >5) ∼1 per km of ridge axis per 100 years (Escartín
et al., 2008).

The longevity of hydrothermal systems depends on the
setting. For example, long-lived vent fields have deep and stable
conduits for hydrothermal circulation, whereas venting in the
aftermath of volcanic eruptions may be short-lived. In general,
at spreading ridges the shortest-lived vent fields occur at fast-
spreading ridges, where they are under magmatic control, and
the longest-lived (i.e., “thousands of years”; German et al., 2016)
at slow-spreading systems controlled by tectonics. The age of a
vent (time since initiation of hydrothermal activity) differs from
longevity (duration of most recent hydrothermal activity), since
hydrothermal activity may wax and wane over time (Cherkashov
et al., 2017). Age tends to be inversely related to spreading
rate (Jamieson et al., 2013), ranging from ∼100 years at 13◦

N vent field on the fast-spreading EPR (Lalou et al., 1985) to
∼20,000 years at the TAG active field on the slow-spreading
MAR (Cherkashov et al., 2017), but less is known about longevity.
Hydrothermal systems at volcanic arcs may be active for several
thousands of years (e.g., Kermadec arc; de Ronde et al., 2007),
whereas others may have decadal spans of activity that are more
intimately related to volcanic cycles (Embley et al., 2014).

Local Controls of Environment and Species
Interactions
Local environmental conditions in vent habitats can be extreme
and variable, and exert a strong influence on species occurrence.
Undiluted hydrothermal fluids exit the seafloor at temperatures
that may exceed 400◦C, and often are characterized by low
oxygen levels, low pH, and elevated concentrations of toxic
metals. Only where the fluids mix with ambient seawater are
the conditions suitable for vent communities. At this interface,
microbial chemosynthetic production, fueled by reducing
compounds such as hydrogen sulfide or methane, provides

the trophic base for vent ecosystems. Thus, the location and
flux of hydrothermal fluids constrain organismal distributions,
depending on the species’ physiological tolerances and their
nutritional requirements. Measurements at vents with precisely
placed probes have demonstrated a close correspondence
between distributions of individual species and temperature,
pH, oxygen, hydrogen sulfide, and various metal compounds
(Sarrazin et al., 1999; Luther et al., 2001; Matabos et al.,
2008a).

Differences in the chemical composition of vent fluids
between vent fields have the potential to affect species occurrence,
as do other characteristics, such as substratum type and depth. In
the Lau Basin (western Pacific), along a 400-km long segment of
the spreading center, a latitudinal gradient in lava type (basaltic
to andesitic) and associated hydrothermal fluid chemistry
is correlated with species composition in vent communities
(Podowski et al., 2010). At some unusual vent sites in this
region, where smoker chimneys are distinctly reddish brown,
snails and mussels are notably absent, replaced by low densities
of shrimps, crabs, polynoid polychaetes, and limpets. This faunal
anomaly may be in response to high metal concentrations (Mottl
et al., 2011). On the northern MAR, vent communities along a
3,000 km section between 11 and 38◦N differ markedly in species
composition, in patterns that correspond to both depth and fluid
chemistry (Desbruyères et al., 2000).

Species composition may vary between vent sites that share
a similar geological setting but differ in the extent of sub-
seafloor mixing of vent fluids with seawater. The plumbing
system that delivers vent fluids up to the seafloor typically
creates distinct spatial gradients in the flux and concentration
of vent fluids that correspond to species distributions. If the
high-flux end of this gradient (where there would be more
reduced compounds and thus greater productivity) is missing at
a particular vent, the species that rely on those environmental
conditions also will be absent. On the EPR, communities display
a striking zonation in the large foundation species: Pompeii
worms live directly on the black smoker chimneys, while
giant tubeworms (siboglinid polychaetes, formerly known as
vestimentiferans) occur in vigorous “diffuse” (diluted) fluid flux,
mussels and clams in moderate flux, and various suspension
feeders, including barnacles and serpulid polychaetes, in weak
flux (Hessler et al., 1985; Micheli et al., 2002). Smaller species
(macro- and meiofauna) also exhibit zonation (Mills et al.,
2007; Gollner et al., 2010). Analogous patterns are seen on
the Juan de Fuca Ridge, where a species of alvinellid worm
dominates the high-flux habitats, while a mixed assemblage of a
siboglinid tubeworm, polychaetes, and gastropods inhabit lower-
flux environments (Sarrazin et al., 1999). In the Lau Basin, one
large species of snail is found in the high flux areas, a second snail
species in moderate flux, and mussels in lower flux (Podowski
et al., 2010). On the MAR, the high-flux regions are populated by
shrimp, followed along the flux gradient by mussels, and grazers
and suspension feeders (Cuvelier et al., 2009). In vent fields on the
East Scotia Rise (Southern Ocean), assemblages in high flux are
dominated by yeti crabs, whereas lower fluxes are inhabited by
small gastropods, stalked barnacles, and carnivorous anemones
(Marsh et al., 2012).
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Field observations of species interactions at vents are
difficult to obtain, but information about trophic interactions,
competition and facilitation is available for several regions.
Most vent species can be classified into major trophic groups
of producers (in association with bacterial symbionts), grazers
and suspension feeders, predators and scavengers, and parasites,
based on morphological and stable isotopic analyses (e.g., Fisher
et al., 1994; Colaço et al., 2002; Reid et al., 2013). In some cases,
a species may function at multiple trophic levels. For example,
mussels may host symbionts and suspension feed, gastropods
have symbionts and also graze, and crabs often are opportunistic
predators and scavengers. Behavioral observations, exclusion
experiments, and gut-content analyses provide more detail on
interactions, such as demonstrating that specialized feeding of
a vent fish on a dominant limpet in vents on the EPR allows a
diverse group of gastropod grazers to persist (Micheli et al., 2002;
Sancho et al., 2005). While competitive interactions between
grazers (e.g., active displacement of new recruits) have been
observed or inferred in areas with high fluid flux at vents in
the eastern Pacific (Mullineaux et al., 2003; Bates et al., 2005),
facilitative interactions also occur. In most cases, the facilitation
is by sessile, tube-dwelling species that appear to disrupt grazers
of, or provide habitat for, new colonizers (Mullineaux et al.,
2003; Govenar, 2010), but gregarious settlement of gastropods
and tubeworms has also been proposed (Kelly et al., 2007; Short
and Metaxas, 2011). Aggregations of large, symbiont-hosting
species, such as giant tubeworms and mussels, have the potential
to strip hydrogen sulfide from vent fluids (e.g., Johnson et al.,
1988), making a patch inhospitable to new colonists. The sorts
of interactions described here may be important in primary
succession and are discussed further in section Regional and
Local Influences on Succession.

Range of Capabilities for Planktonic
Dispersal
Benthic invertebrates with low to no motility as adults, such
as the species that dominate hydrothermal vents, exhibit a
suite of different reproductive and life history strategies, which
in turn affect dispersal potential and colonization ability. For
example, some species may reproduce continuously, producing
small numbers of larvae at any one time throughout the year.
Others can reproduce over a short period of time, when the
entire population is synchronized, and all larvae are released
at the same time. In the former scenario, recruitment may be
continuous, and in the latter discontinuous, showing episodic
peaks over time. Although much still remains unknown, the
species that inhabit vents exhibit the entire range of reproductive
and life history strategies known for benthic invertebrates. For
example, some species show synchronous reproduction with
discontinuous recruitment while others show asynchronous
reproduction and continuous recruitment. The latter strategy
may be more relevant for ensuring rapid local colonization
after a continuous disturbance or for long-distance dispersal
after a catastrophic disturbance as some proportion of the
population is always in a reproductive state and can provide
larvae. Reproductive output can be influenced by patch quality,

being greatest in areas of vigorous fluid flux and lowest in
senescing vents (Kelly and Metaxas, 2007).

Dispersal potential is influenced by a number of biotic
factors (including larval feeding mode, duration of the larval
period, larval physiology and behavior) and abiotic factors (e.g.,
ocean circulation, hydrothermal plume characteristics, density
structure of the water column; see section Physical Transport and
Ecological Connectivity). The biotic factor most widely believed
to influence dispersal potential in vent species is planktonic larval
duration (Hilario et al., 2015). Larvae may be planktotrophic,
feeding in the water column, and thus able to survive for
long periods before needing to find a suitable location to
settle. Or they can be lecithotrophic, relying on energy stores
in the egg and thus limited in the time they can spend in the
plankton before starving. Larval duration has been calculated
from larval culturing studies for only a few vent species at
hydrothermal vents and it ranges from roughly 6 weeks for
siboglinid tubeworms (38 days for Riftia pachyptila in (Marsh
et al., 2001); 45 days for Lamellibrachia satsuma in Miyake et al.,
2006) to more than 3 months for a crustacean (the barnacle
Neoverruca intermedia, Watanabe et al., 2004). Indirect methods
have been used to infer larval durations of many months for
bresiliid shrimp (Herring and Dixon, 1998). In general, a longer
duration implies a greater dispersal potential. However, this does
not necessarily confer higher recruitment success for species
at hydrothermal vents, particularly at mid-ocean ridges and
seamounts, where a longer larval durationmay result in loss from
a region of suitable habitat (e.g., Marsh et al., 2001).

Larval duration is in turn influenced by a number of intrinsic
characteristics, such as larval feeding mode and physiological
tolerances. A wide variety of larval developmental modes occurs
at vents, ranging from direct development, which is associated
with extremely low dispersal potential mostly in direct proximity
to the adults, to indirect development of either planktotrophic or
lecithotrophic larvae. Many vent invertebrate species considered
to date have lecithotrophic larvae, relying entirely on energy
stores provided in the egg, thus with a predetermined larval
period (Van Dover, 2000), others are lecithotrophic for at least
part of their development (Marsh et al., 2001), but may feed
in later stages. Energy availability is, in turn, determined by
respiration rates, which can vary greatly with temperature. Larval
duration for lecithotrophs can be prolonged, and thus dispersal
potential enhanced, if development can proceed in the low
temperature of ambient seawater as larvae disperse between
vents (see Pradillon et al., 2005). Species such as mussels and
crabs exhibit planktotrophic larval development, which is not
limited by energy stores but can continue as long as the larvae
can locate and consume food (e.g., Herring and Dixon, 1998;
Trask and Van Dover, 1999). It is suggested that these larvae
have great dispersal potential and can migrate in the water
column hundreds of meters above the vents. The availability of
food in the water column, as well as exposure to a wide range
of temperatures, will directly affect development rate for these
larvae. Consequently, physiological tolerance to temperatures
on-vent (high) and off-vent (low) can influence larval duration
and dispersal potential irrespective of larval developmental
mode.
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Larval behavior has been shown to influence larval dispersal
potential in shallow water systems (Daigle et al., 2016) but has
been less studied at hydrothermal vents. Here, we define larval
behavior as a modification in the larva’s horizontal or vertical
position by active swimming. Larval swimming speeds are weak
relative to horizontal current velocities, but less so relative to
time-averaged vertical velocities. In shallow water systems, larval
swimming has been reported to modify larval vertical position
and expose them to different current velocities and density
layers. At hydrothermal vents, fluid motions are influenced by
local processes, as well as regional circulation. For instance, the
hot vent fluids generate buoyant plumes that entrain ambient
seawater and planktonic organisms and move them upward. On
ridges, topographic interactionsmay cause current velocities near
the seafloor to be stronger than a 100m above. Consequently, in
this setting, the role of larval swimming in larval transport is not
clear. Observational studies have suggested that larval swimming
toward the seafloor or induced passive sinking can be retentive,
limiting dispersal distance, whereas modeling studies suggested
that being near the seafloor rather than higher in the plume may
actually increase dispersal, except when constrained by valley
walls (McGillicuddy et al., 2010; Metaxas, 2011; Mullineaux et al.,
2013). Although there is some evidence to support the role of
behavior in larval retention at vents, more research is necessary
on this topic.

From a metacommunity perspective, the wide range in
reproductive strategies (including fecundity, spawning frequency
and development) among species found at vents will influence
the resilience to, and possible outcomes after, a disturbance. The
combination of life-history variation (e.g., larval survival and
settlement) and the frequency and magnitude of disturbance
has been shown to affect local population resilience for at least
one vent species, but likely many more, particularly in locations
with highly retentive circulation (Kelly and Metaxas, 2010). The
range in dispersal potential will determine the larval source to
any vent field because of the spatial separation among vents.
Consequently, the ranges in dispersal potential and colonization
ability of different species will indirectly influence the outcome
of species interactions within a vent field. Further, after a
catastrophic disturbance, only those species with long-range
dispersal potential will be available to colonize vents from a
non-local larval source.

Physical Transport and Ecological
Connectivity
Nearly all known hydrothermal vents are found on active
spreading centers, or on the summit or flanks of arc- or intraplate
volcanoes. In terms of dispersal, these sites can be grouped into
three broad categories of larval sources: (i) topographic peaks
of spreading centers (mostly fast-spreading ridges without deep
median valleys and back-arc basins), (ii) inside median valleys
of slower-spreading mid-ocean ridges, and (iii) seamounts. Of
these settings, dispersal from sources in median valleys is most
clearly constrained by topography. The depth of the rift valley co-
varies with ridge spreading rate. On ridges with slow spreading
rates, such as the Mid-Atlantic Ridge, hydrothermal vent fields

are often located so deep inside the rift valleys that not even
the neutrally buoyant hydrothermal plumes rise above the valley
walls (German et al., 1995), in which case near-field horizontal
dispersal of passive particles is restricted to the along-valley
direction. Velocity and hydrographic observations over several
decades inside the MAR rift valley between 36◦ and 38◦N,
which contains at least 7 hydrothermal vent fields, are consistent
with deep northward along-valley mean flow (Thurnherr et al.,
2002, 2008). Evidence for southward return flow above the deep
northward-flowing layer suggests that bi-directional dispersal
along the valley is possible, at least for larvae capable of active
vertical displacement. Similar unidirectional deep along-valley
flows have been suggested from other rift-valley segments as well
(Saunders and Francis, 1985;Wilson et al., 1995). ForMAR, there
is also evidence for persistent inflows of dense water across deep
sills on the rift valley walls near 36 and 38◦N (Thurnherr et al.,
2002, 2008), implying mean upwelling within and out of the
valley (exit pathway for rift-valley water).

Hydrothermal sources on fast-spreading mid-ocean ridges
without median valleys tend to occur along the ridge crests,
where topographic blocking does not constrain effluent and
larval dispersal. At 9◦50′N on the East Pacific Rise (EPR),
long-term dispersal (years to decades) of the hydrothermal
effluents is primarily westward across the Pacific (Lupton, 1998;
Thurnherr et al., 2011), although short-term dispersal may not
be limited to the west. This pattern is common in the deep
ocean where horizontal dispersal on time scales of weeks to
months is often omnidirectional (dominated by eddy stirring)
and unidirectional advection by the weak mean flows only
becomes dominant on longer time scales (Speer et al., 2003).
Even though the ridge topography along the EPR near 9◦50′N
does not extend significantly above the hydrothermal sources,
strong, narrow boundary currents along the upper ridge flanks
can cause dispersal on time scales of weeks to favor the along-
ridge directions (McGillicuddy et al., 2010). Because of horizontal
and vertical shear associated with these ridge-crest boundary
currents, dispersal depends on larval vertical positioning and
the direction of the instantaneous flow at the time of larval
release (Jackson et al., 2010). Similar ridge-crest boundary
currents affecting regional dispersal have been observed in the
northeastern Pacific along the Juan de Fuca Ridge (Cannon
et al., 1991; Cannon and Pashinski, 1997; Helfrich et al., 1998).
Characterized by an intermediate spreading rate, this ridge has
a relatively shallow median valley. As a result, near-bottom
dispersal is topographically constrained in the along-valley
direction (Thomson et al., 2003; Veirs et al., 2006), similarly to the
rift valley of the MAR. Plumes from high-temperature vents rise
above the ridge topography where dispersal by oceanic currents
is not directly constrained by topographic blocking (Baker and
Massoth, 1987), similarly to the EPR.

Hydrothermal sources also occur on volcanically active
seamounts and along submarine slopes of island volcanoes,
where topographic blocking constrains near-source horizontal
dispersal along- and down-slope. Observed velocities over
seamounts (Eriksen, 1991) and in saddles on seamount chains
(Thurnherr and St. Laurent, 2011) are often significantly elevated
compared to the open ocean, with important implications for
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dispersal. Rectification of oscillatory background flows, e.g., due
to the passage of mesoscale eddies, can drive closed circulation
cells around the crest and upper flanks of isolated seamounts and
are sometimes inferred to help retain propagules in their vicinity
(Lavelle and Mohn, 2010). Conversely, isolated seamounts and
islands in strong cross-flows can shed vortices that increase
dispersal by stirring background gradients.

The spatial separation between vent fields often is invoked as
a potential barrier to larval connectivity, but it is important to
recognize that dispersal time (not distance) and its magnitude
relative to larval time scales (e.g., precompetency period or
pelagic larval duration) is the critical metric. Any discussion
of dispersal barriers needs to include an evaluation of physical
transport dynamics (including variability imposed by tides and
seasons), and larval time scales, many of which are species-
specific. The examples above demonstrate that there are many
ways for seafloor topography to facilitate, rather than restrict,
dispersal.

Within the context of metacommunity modeling, the relevant
dispersal timescales typically span many days to months and
in a few cases years (see section Range of Capabilities for
Planktonic Dispersal). On these timescales, the effects of most
oceanic dispersal processes can be encoded in dispersal kernels
(the distributions of larval destination locations), which quantify
connectivity between larval-source and colonization sites. Often,
only horizontal dispersal is considered because the typical length
scales of vertical dispersal due to turbulent mixing does not
exceed tens of meters on such time scales. In addition to
physical dispersal processes in the ocean, the dispersal kernels
can also include effects of active larval transport, such as
swimming and buoyancy regulation. Dispersal kernels can be
constructed from numerical models of the oceanic circulation,
possibly augmented with biological components, and/or from
oceanographic observations (Mitarai et al., 2016). Provided
sufficient supporting information is available, dispersal kernels
can be constructed for any region of the ocean and for any
organism. While dispersal kernels are expected to be region-
specific, many chemosynthetic organisms occur primarily or
exclusively at hydrothermal vents or hydrocarbon seeps, both of
which are associated with specific topographic settings, allowing
some generalization.

Dispersal patterns of vent species influenced by bottom
currents and topography may connect vent populations
heterogeneously, resulting in a set of highly connected hub
populations. Under such circumstances, loss of key populations
due to disturbances may lead to a system-wide metapopulation
failure (Watson et al., 2011). Furthermore, physical connectivity
of vent populations should be inherently stochastic, driven by
mesoscale and sub-mesoscale eddies. Eddies are ubiquitous,
even at great ocean depths, and necessarily make larval
transport trajectories highly variable and unpredictable (Adams
et al., 2011; Mitarai et al., 2016). The stochastic nature of
connectivity may promote species coexistence by making
dispersal patterns of less competitive species uncorrelated from
those of competitors (Siegel et al., 2008; Berkley et al., 2010).
To assess dispersal influence on persistence and diversity of
vent species, metacommunity models must account for both

stochasticity and heterogeneity in population connectivity of key
species.

Some vent larvae may disperse high in the water column,
where their dispersal patterns are less constrained by bottom
topography (Pond et al., 2000; Dittel et al., 2008). They can be
transported over greater distances by shallower, directional ocean
currents (e.g., deep penetration of western boundary currents).
Given quantitative information about larval development and
behavior, coupled physical-biological models should be able to
characterize species-specific connectivity patterns, both on intra-
and inter-regional scales (Thomson et al., 2009; McGillicuddy
et al., 2010; Mitarai et al., 2016) For instance, one such model
suggested that the South Equatorial Current could bridge the
entire southwest Pacific vent complex with strong directionality
(e.g., migration from the Lau to Manus Basins; Mitarai et al.,
2016). Similarly, vent fields in the Okinawa Trough and the
Izu-Bonin Arc may be connected by the Kuroshio Current. It
is estimated that interregional (e.g., basin-to-basin) connections
should occur infrequently, once in tens to hundreds of thousands
of years (Mitarai et al., 2016). While quantifying connectivity
on interregional scales (e.g., between vent fields in distant
basins) is valuable for understanding gene flows of vent-restricted
animals on evolutionary time scales, such information may be
difficult to interpret in terms of metacommunity dynamics on
ecological (months to years) time scales (but see section Genetic
Approaches to Metacommunity Dynamics on Ecological Time
Scale).

Effects of Long-Distance Dispersal on
Metacommunity Dynamics
Field studies in vent systems show the potential for limited
larval dispersal distances (local retention on scales of kilometers
or less), but also provide evidence for occasional long-distance
events. These data are limited, as measuring dispersal of marine
larvae is difficult and particularly challenging in the remote
deep sea. Approaches used in coastal environments for direct
tracking of larvae, such as visual follows, mark and recapture
studies, analysis of naturally occurring geographically specific
chemical tags, or genetic parentage analyses, have not yet
been applied to vent systems. Most of the evidence for short-
distance dispersal is indirect, coming from interpretations of
larval abundances in the water (Metaxas, 2004; Mullineaux et al.,
2005), analyses of circulation patterns (Thomson et al., 2003)
and coupled bio-physical models (McGillicuddy et al., 2010). The
mechanisms limiting dispersal on ridges in the eastern Pacific
appear to be a combination of transport constraints induced by
topographically-steered flows and vertical swimming behaviors
of the larvae (e.g., Mullineaux et al., 2013).

In contrast, the evidence for long-distance dispersal comes
from laboratory studies of larval physiology, field investigations
of colonization, and molecular genetic analysis of field samples.
Experiments on the metabolism and energy stores of larvae
of the giant vent tubeworm Riftia pachyptila indicate that this
species has the potential to disperse distances of a 100 km or
more (Marsh et al., 2001) in typical ridge-aligned currents.
A fortuitous observation of colonization of vents on the EPR
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after a seafloor eruption by the limpet Ctenopelta porifera,
whose closest known source population was over 350 km away
(Mullineaux et al., 2010), indicates that dispersal over very
long distances, although rare, is possible. The physical transport
mechanisms responsible for such long-distance dispersal may
include deep currents that interact with ridge topography
(Lavelle et al., 2010) or mesoscale eddies (Adams et al., 2011).
Additional support for episodic long-distance dispersal comes
from molecular genetic analyses that reveal instances of low
genetic variation between geographically separated populations
(see review in Vrijenhoek, 2010). This approach is examined in
more detail in section Genetic Approaches to Metacommunity
Dynamics on Ecological Time Scale.

The capability for long-distance dispersal may be considered
a species trait, as it is constrained by behavior and planktonic
larval duration, but the realized dispersal distances of individual
larvae within a species cover a broad range. This distribution
of larval destination locations is the dispersal kernel (section
Physical Transport and Ecological Connectivity). Models of
populations and communities have shown that a distribution of
dispersal distances, and not just the mean dispersal distance, is
essential for explaining recruitment patterns, range expansion
rates, genetic structure, and metapopulation dynamics (reviewed
in Levin et al., 2003). In both terrestrial and marine ecosystems,
most propagules move short distances away from the source,
making long-distance dispersal events rare (Trakhtenbrot et al.,
2005), although possibly more prevalent in marine systems (e.g.,
Kinlan andGaines, 2003). This pattern results in dispersal kernels
with long tails, and those tails have important implications for
metacommunity properties such as succession and resilience to
disturbance.

The tails of dispersal kernels in deep-sea vent systems are
prohibitively difficult to measure, but insights may be gained
from theory. It is well known that long-distance dispersal
can increase metapopulation survival, as dispersers provide a
rescue effect that counteracts local extinctions (reviewed in
Briggs and Hoopes, 2004). If, however, dispersal is sufficient
to synchronize dynamics of the subpopulations, it can lead
to large system-wide fluctuations and no longer acts as an
effective stabilizer. These opposing effects of dispersal contribute
to complex metapopulation dynamics (Abbott, 2011), but
there is often an intermediate dispersal optimum that bolsters
overall metapopulation growth. Similarly, local extinction rates
appear to play a role, as long-distance dispersal may increase
metapopulation survival when local extinction probabilities
are intermediate (Bohrer et al., 2005). Experimental studies
provide evidence for stabilizing, destabilizing or neutral effects of
dispersal on metapopulation dynamics (reviewed in Wang et al.,
2015).

These counter-intuitive effects of dispersal on metapopulation
dynamics raise intriguing questions about how long-distance
dispersal in vent ecosystems may influence recruitment and
succession at individual sites, and overall diversity and resilience
of regional metacommunities. For modeling studies, the
interactions between probabilities of long-distance dispersal
and disturbance may produce interesting and non-intuitive
patterns of metapopulation dynamics. Species interactions, such

as facilitation or competition, between long-distance colonists
and later arrivers during post-disturbance colonization may
then influence species composition at individual sites and
diversity in the metacommunity, particularly if the dispersers
trigger alternative states at disturbed sites. Understanding these
dynamics from a theoretical perspective allows for a more
informed interpretation of field observations, particularly of
post-disturbance succession and regional diversity, and an
improved capability to predict resilience to both natural and
human disturbance (e.g., Trakhtenbrot et al., 2005).

Regional and Local Influences on
Succession
At deep-sea hydrothermal vents, primary succession—the non-
seasonal, directional continuous pattern of colonization and
extinction (Begon et al., 1990)—is typically initiated by formation
of new, unoccupied habitat, such as from lava flow caused
by volcanic eruptions. These major disturbance events, as well
as subsequent changes in vent fluid flow that affect habitat
quality, shape metacommunities at some deep-sea hydrothermal
vents. In the framework of succession, metapopulation and
metacommunity concepts (Leibold et al., 2004; Logue et al.,
2011) are manifested as local (within/between species and
their environment) and regional (dispersal) controls on species
distributions through time, as illustrated in Figure 1.

Vent primary succession has been observed along the fast-
spreading 9◦50′NEPR in 1991 and 2006, and at the intermediate-
spreading Juan de Fuca Ridge (JFR) onAxial Volcano in 1998 and
on Co-Axial Segment in 1993. On the EPR, within 5 years of each
eruption, rapid and sequential colonizations were observed from
white bacterial mats, to the small siboglinid tubeworm Tevnia
jerichonana, to the giant tubeworm Riftia pachyptila, and to the
mussel Bathymodiolus thermophilus (Shank et al., 1998; Fornari
et al., 2012). The transition from Tevnia to Riftia appears to
correspond to waning vent fluid flux but may also be influenced
by biogenic settlement cues (Mullineaux et al., 2000; Sievert and
Vetriani, 2012). The mussels are slower to get established, but
once they reach adult size and high densities, may reduce the
hydrogen sulfide available for tubeworms. Also within 5 years,
the macrofauna and meiofauna had reached 40–70% of their
pre-eruption species richness (Shank et al., 1998; Gollner et al.,
2015). Following the 2006 eruption, both the macrofaunal and
meiofaunal communities showed a shift in species composition
over time (Mullineaux et al., 2010, 2012; Gollner et al., 2015).

After volcanic eruptions at the JFR, grazing polychaetes
colonized new vents, followed by the tubeworm Ridgeia piscesae.
The tubeworm-associated macrofauna sequentially changed in
dominance from polychaetes to limpets and total faunal richness
at vent sites recovered to 75–90% of pre-eruption values within
2 years, representing 30–60% of species from the larger regional
species pool (Tunnicliffe et al., 1997; Marcus et al., 2009; Gollner
et al., 2017). Notably, during the short observation periods
after the eruptions in both Pacific regions, death of foundation
species in small aggregations resulted from cessation of vent
flow. These observations point to the high temporal variability
of venting and community structure on faster-spreading centers
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(Tsurumi and Tunnicliffe, 2001; Gollner et al., 2013; Klose
et al., 2015; described further in section Global Patterns
of Vent Distributions, Disturbance Frequency and Longevity;
Figure 3).

Temporal changes in species composition at sites not
disturbed by recent eruptions tend to be modest, except
when venting ceases. Long-term studies at the Logatchev and
Lucky Strike sites on the Mid Atlantic Ridge that experience
volcanic eruptions on millennia time scale (Perfit and Chadwick,
1998) revealed rather stable mussel assemblages over 10–14
years of observations with small-scale variations in community
composition related to changes in fluid flow (Gebruk et al.,
2010; Cuvelier et al., 2011; Sarrazin et al., 2015). At Juan
de Fuca Ridge, directed changes in community composition
from polychaetes (Paralvinella sulfincola and P. palmiformis) to
limpets (Lepetodrilus fucensis) to tubeworms (Ridgeia piscesae)
over 4 years were related to both changes in fluid flow and
associated interactions, appearing to follow a dynamic succession
model that allows reversal with changes in fluid flow (Sarrazin
et al., 1997). Non-vent endemic deep-sea species appeared in
patches where venting subsided (Podowski et al., 2010; Sen et al.,
2014).

Changes in community composition after eruptive
disturbances coincide with changes in fluid flow conditions. At
fast-spreading centers, hydrothermal fluid flux typically wanes
within a few years after an eruption (Shank et al., 1998; Le Bris
et al., 2006) and species diversity tends to increase (Mullineaux
et al., 2012; Gollner et al., 2015). Under these conditions, it
can be difficult to distinguish between effects of changing
environmental conditions and biological succession. The
influence of species interactions, however, are very clear in cases
when foundation species provide complex physical structures

that enhance the surface area and the range of chemical regimes
(e.g., warmer hydrothermal fluid at the base of giant tubeworm
clusters, and more moderate and cooler regimes at the top)
potentially facilitating colonization of other species and playing
an important role in succession (Sarrazin et al., 1997; Govenar
and Fisher, 2007; Kelly and Metaxas, 2008; Marcus et al., 2009).

Manipulative colonization experiments that mimic
disturbance by providing new substratum have proven useful at
EPR vents for investigating biotic processes such as facilitation,
inhibition and predation. Colonization surfaces exposed for
overlapping intervals showed that early mobile colonizers at
active vents may inhibit later colonists whilst sessile colonizers
may facilitate settlement of later colonists (Mullineaux et al.,
2003). Inhibition by grazing or predation was more prominent
in areas of high fluid flux, productivity, and faunal densities,
whilst facilitation was stronger in areas of low temperatures,
productivity, and densities (Micheli et al., 2002; Mullineaux
et al., 2003). Competitive exclusion or changes in larval supply
may have led, for example, to replacement of the pioneer limpet
Lepetodrilus tevnianus by its congener L. elevatus unrelated to
changes in fluid flow (Mullineaux et al., 2012; Gollner et al.,
2015).

Regional controls in the form of larval supply strongly
influence primary succession because they determine which
species are first to arrive and become established. Larval supply
of some species appears to be relatively continuous, but others
arrive only episodically, hence we are unable to predict timing
of recovery after a disturbance (Adams and Mullineaux, 2008;
Mills et al., 2013). For instance, the arrival of a pioneer
limpet Ctenopelta porifera after the 2006 EPR eruption was
completely unexpected, yet had a strong and persistent effect on
communities at both disturbed and near-by undisturbed vents

FIGURE 3 | Succession of vent communities after the volcanic eruption at the 9◦50′N East Pacific Rise in 2006. (A–C) at P-Vent: Small patches of tubeworms Tevnia

jerichonana ∼1 year posteruption (A) changed into a mixed T. jerichonana and Riftia pachyptila community 2 years posteruption (B), to mostly dead tubeworms due

to ceased vent fluids 4 years posteruption (C). (D–F) at Tica site: Patches of T. jerichonana 1 year posteruption (D) sequentially changed into a mixed T. jerichonana

and R. pachyptila community ∼2 years posteruption (E), and to a mixed R. pachyptila and T. jerichonana community 4 years posteruption (F). Permission to re-use

material from Klose et al. (2015).
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in the region (Mullineaux et al., 2012). Limited larval supply
may delay recovery even after benthic habitats have transitioned
to conditions that favor later-successional species (Mullineaux
et al., 2010; Mills et al., 2013). Meiofauna succession at the EPR
was consistent with dispersal potential. Copepod species with
great pelagic dispersal capabilities and high genetic connectivity
demonstrated rapid recovery (Gollner et al., 2016), whereas
nematode species lacking pelagic dispersal stages demonstrated
slow recovery (Gollner et al., 2013).

Observations of vent succession suggest complex recovery
dynamics in metacommunities, with species differing in their
dispersal ability and with successful colonizers outcompeting
poor competitors. Abiotic controls constrain the change of
hydrothermal fluid conditions through time, thus determining
the presence or absence of symbiotic foundation species that can
be mobile (snails, mussels), or sessile (tubeworms). These species
strongly influence the physical structure at vents and themselves
modify the abiotic environment for the associated fauna.

Genetic Approaches to Metacommunity
Dynamics on Ecological Time Scales
Genetic diversity and connectivity of hydrothermal vent animal
populations have been studied at various spatial scales along
the global mid-ocean ridge and arc-backarc systems. The studies
have led to a series of discoveries of common or varying
geographical subdivisions among diverse vent taxa, which, in
turn, have deepened our understanding about the effect of several
environmental (e.g., geomorphology of oceanic ridges, spatial
and temporal stability of vent habitats, and deep-sea currents)
and biological (e.g., species-specific life histories, larval duration,
motility and behavior) factors on the connectivity of vent
metapopulations (reviewed in Vrijenhoek, 2010). Population
connectivity and genetic diversity are influenced by historical
factors such as vicariance, range and/or demographic expansion
through dispersal, and introgressive hybridization (backcrossing
of an interspecific hybrid with one of its parent species), both
in mid-ocean ridge and arc-backarc systems (Young et al., 2008;
Plouviez et al., 2009; Johnson et al., 2014; Yahagi et al., 2015;
Zhang et al., 2015; Jang et al., 2016).

Population genetics have been widely used to infer the spatial
extents of ventmetapopulations through the detection of patterns
of genetic differentiation and structure. In the EPR and the
Gorda and Juan de Fuca ridge systems, extrinsic factors, such as
discontinuities of oceanic ridges, their associated hydrographic
features, as well as the spatial and temporal patchiness of vent
habitats, appear to be some of the most important influences
on genetic connectivity at regional scales. Within segments
along the EPR, there is relatively low genetic differentiation
among populations, even those separated by distances of more
than a 100 km (Vrijenhoek, 2010; Coykendall et al., 2011; Jang
et al., 2016; but see Matabos et al., 2008b). The apparent
genetic homogeneity among some populations within segments
is consistent with the long-distance larval dispersal potential of
many vent species (Marsh et al., 2001; McGillicuddy et al., 2010).

In the western Pacific area, hydrothermal vent fields are
located in discontinuous arc and backarc basin systems. In these

settings the patterns of genetic structure of metapopulations are
species-specific. For some species, significant genetic structuring
occurs among populations from different basins due to limited
larval transport (Mitarai et al., 2016), but for some others
this structuring is less pronounced or non-existent, probably
due to differences in reproductive strategies (Kumagai et al.,
2015). Populations of Neoverruca barnacles, Shinkailepas limpets
and alvinocaridid shrimps on volcanic arcs show lower genetic
diversity than those in backarc basins (Watanabe et al., 2005;
Yahagi et al., 2015, 2017), whereas the diversity in populations
of Bathymodiolus mussels is comparable between backarc basin
and mid-ocean ridge systems (Breusing et al., 2015).

Populations in backarc basins are occasionally connected
to methane seep populations. For example, Calyptogena clams
and Shinkaia squat lobsters show significant genetic structuring
between methane seep and hydrothermal vent field populations,
whereas no structuring has been observed in Lamellibrachia
tubeworm and Bathymodiolus mussel populations (Watanabe
et al., 2010; Shen et al., 2016; Yang et al., 2016). Recent
genome-wide analyses of B. platifrons revealed differentiation
between methane seep populations the in South China Sea and
hydrothermal vent populations in the Okinawa Trough (Xu et al.,
2017). Population differentiation among barckarc basins has been
also discovered in three basins, Manus, North Fiji, and Lau in
species of the family Provannidae (Thaler et al., 2011).

Population genetics also provide powerful tools to estimate
parameters relevant to hydrothermal vent metapopulations
dynamics on ecological timescales. These parameters include
the rate and directionality of migration among populations
and effective population sizes. Estimating directionality and
rate of migration is important for revealing the magnitude of
connectivity and potential source-sink relationships within
metapopulations. Greater migration rates and symmetrical
directionality would render a metapopulation more resilient
to localized disturbances. Estimating effective population
sizes is also important for understanding the resilience of
metapopulations because genetic diversity is proportional to
effective population size. A sufficiently large and well-connected
metapopulation would have great genetic diversity, which would
translate into a greater capacity of adapting to environmental
changes, thus enhancing resilience.

Traditional estimates of genetic connectivity relied on the
estimation of the number of migrants between populations
(Nem) using the relationship described by Wright’s island
population model equation FST = 1/(4Nem + 1), where FST is
an index of genetic differentiation, N the effective population
size, a number of individuals contributing to reproduction,
and m the migration rate (Wright, 1951). The island model
is similar to a metapopulation model in that it assumes a
set of spatially distinct populations connected via dispersal. In
the island model, populations are assumed to have reached
an equilibrium between genetic drift (diverging force) and
non-directional migration (unifying force), while their sizes
remain equal and constant. Because FST can be calculated
from differences in allelic frequencies at individual loci, it has
been widely used to make estimates of gene flow (as Nem)
in vent metapopulations (see Vrijenhoek, 2010). However, this
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approach has been heavily criticized due to: (1) the many
unrealistic underlying assumptions of the island model; (2) the
non-equivalence between molecular markers of species with
different histories; (3) the difficulty in interpreting Nem values
due to the non-linear relationship with FST; and (4) the long
times needed for populations to reach equilibrium conditions
(hundreds to thousands of generations depending on Ne andm),
whichmake it difficult to interpret gene flow (Nem) in the context
of connectivity at ecological time scales of a few generations
(Broquet and Petit, 2009; Hellberg, 2009; Lowe and Allendorf,
2010, and references therein).

Modern approaches integrating coalescent theory (Kingman,
1982) and Bayesian statistics overcome many of the issues
related to the use of F-statistics to infer connectivity. Coalescent
approaches, which exploit information from gene-genealogies,
allow for testing more realistic models of metapopulation
connectivity through the simultaneous estimation of directional
migration rates, effective population sizes, and temporal
population size changes (Beerli and Felsenstein, 2001; Beerli
and Palczewski, 2010). For example, Young et al. (2008) found
a general southward pattern of migration along the northeast
Pacific system, and larger effective population sizes of the
siboglinid tubeworm Ridgeia piscesae in the southern populations
compared to those in the north. Coalescent approaches have
also been implemented to measure long-term migration rates
in mollusk and polychaete species along the EPR (Plouviez
et al., 2009, 2010, 2013), crustacean and mollusk species in
the Indian Ocean ridges (Thaler et al., 2011; Beedessee et al.,
2013; Chen et al., 2015), alvinocaridid shrimp from the Mid-
Cayman Spreading Center (Plouviez et al., 2015) and the
Mid-Atlantic Ridge (Teixeira et al., 2012, 2013). Despite the
evident advantages of coalescent approaches over traditional F-
statistics, the migration estimates obtained through many of
these approaches are considered long-term because of necessary
equilibrium assumptions over the last ∼4Ne generations (i.e.,
average time to coalescence).

Bayesian assignment approaches (Wilson and Rannala, 2003;
Piry et al., 2004; Faubet and Gaggiotti, 2008) allow the estimation
of contemporary directional migration rates (within the last
one or two generations), and thus have gained popularity
in understanding population and community connectivity at
ecological time-scales. These approaches exploit the power
of multilocus genotypes to estimate migration rates among
populations without the need for equilibrium assumptions. For
example, Zhang et al. (2015) found that the Southern East
Pacific Rise (SEPR) populations of the siboglinid tubeworm
Tevnia jerichonana appear to be a mix of first and second
generation immigrants from the Pacific Antarctic Ridge (PAR)
and SEPR non-migrants, whereas the Northern EPR and the
PAR populations seem to be mainly composed of non-migrant
individuals.

Bayesian assignment approaches have also recently been
utilized to infer population migration rates in alvinocaridid
shrimp along the MAR (Teixeira et al., 2012) and western Pacific
backarc basins (Thaler et al., 2014), alvinellid polychaetes from
the eastern Pacific ridges (Jang et al., 2016), bathymodiolin
mussels from the Indo-Pacific (Breusing et al., 2015) and the

MAR (Breusing et al., 2016), and lepetodrilid limpets from the
Scotia Sea (Roterman et al., 2016). Migration rate estimates are
most accurate and precise when true migration rates among
populations are moderate (m < 0.333), population structuring
is significant, and sampling of individuals and loci is substantial
(Faubet et al., 2007; Meirmans, 2014).

The use of next-generation sequencing approaches (e.g.,
Herrera et al., 2015a) to generate multilocus datasets in vent
taxa (e.g., Reitzel et al., 2013; Herrera et al., 2015b) promises
to drastically improve the statistical power to estimate rates of
directional migration and other parameters contributing to vent
metacommunity dynamics. Estimation of effective population
size is also improved by next-generation sequencing, as single-
sample genomic methods based on linkage disequilibrium are
being actively developed and implemented to this end (Wang,
2016). Interestingly, this parameter of effective population size
has shown strong correlation with that age at maturity and adult
lifespan (Waples et al., 2013), thus offering an opportunity to
increase our understanding of biological traits that are relevant
to population dynamics.

Dispersal Effects on Regional Species
Diversity
The distinctive nature of hydrothermal vents linked to spreading
ridges and volcanic arcs leads to regionalized faunas with
strong links to plate tectonic history (Tunnicliffe and Fowler,
1996). The expanses of hostile “matrix,” separating potential
vent habitats that are tied to plate boundaries, can be vast
(e.g., the Pacific Plate); thus, analyses of taxonomic distinctness
identify biogeographic regions with very high endemism at
the species level (Moalic et al., 2012). The probability that
pelagic larvae can transcend the distance barrier is low (Mitarai
et al., 2016). However, a few species do span large distances—
perhaps with teleplanic (far-dispersing) feeding larvae. Such
connectivity is particularly important when a species with a
wide range is a key component of the trophic web or is a
habitat forming, foundation species. For example, the range
of the alvinocaridid shrimp Miricaris fortunata, an important
microbial consumer with high biomass, spans from 4◦S to 38◦N
on the mid-Atlantic Ridge, transcending transform faults and
non-venting regions. Species of the mussel Bathymodiolus can
transcend biogeographic provinces (Breusing et al., 2015) and
chemosynthetic habitats (Miyazaki et al., 2013). Vent community
assembly can be driven by these foundation species (Van Dover,
2002), thereby influencing species sorting.

The regional scale can encompass extensive linear features
of mid-ocean ridges or more complex tectonic arrangements
in back-arc spreading centers and associated volcanic arcs.
At this scale, tectonic character and magmatic budgets may
vary, creating distinctly different hydrothermal habitats. While
chemical composition of mid-ocean ridge fluids is usually
controlled by interactions with underlying basalts, in arc-
back systems, the subducting slab has a complex influence
on circulating hydrothermal fluids as it supplies sediments,
water and organic carbon to the subduction zone (Stern et al.,
2013). Fluids can be enriched in ammonia and volatiles (SO2,
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CO2, CH4) especially in volcanic arcs while reduced in iron
and manganese compared to MOR fluids (Gamo et al., 2006;
Butterfield et al., 2011). The availability and nature of reduced
compounds will influence the autotrophic base of the food
chain while fluid character will affect habitat suitability. Regional
community diversity should be affected because of the high
within-region variability in fluids and magma supply (e.g., Mottl
et al., 2011); however, evidence is accumulating slowly due to
limited fieldwork. For example, chronic eruptive activity on NW
Rota (Mariana Arc) results in a very limited vent community
of a few wide-dispersing species (Embley et al., 2006), while
other volcanoes in the arc foster communities that differ from
site to site due to dominant fluid and substratum characteristics
(Tunnicliffe et al., 2009; Stevens et al., 2015). Nearly none of the
species at the Mariana-Izu-Bonin arc vents occur in the adjacent
Mariana back-arc (Kojima and Watanabe, 2015). Depth barriers
to dispersal may be a factor at the extremes (3,900 vs. 180m),
but there is depth overlap around 1,600m. These settings provide
useful tests of the roles of regional flow dynamics and of habitat
suitability to moderate the arrival and recruitment of larvae.

Within a region, connectivity is related to the distance
between suitable vent habitats (Figure 4). Stepping-stone
connections are evident in many species (Vrijenhoek, 2010),
but species turnover along the range may result in functional
substitutions at distal sites. For example, in the Northeast
Pacific, the limpet Lepetodrilus fucensis dominates relative
abundance of most vent communities on the Juan de Fuca
Ridge (Tsurumi and Tunnicliffe, 2003), but its role in a very
similar assemblage is filled by Lepetodrilus gordensis on Gorda
Ridge, separated by the Blanco Transform Fault (Johnson et al.,
2006). Community compositional shift may also be a function
of changes in environmental conditions along a tectonic feature
(e.g., variable volcanicity or a cline in sulfur speciation). Teasing
out components of species sorting from those of dispersal is a
challenge (Legendre et al., 2005).

The realized dispersal of individual species will affect beta
(across-site) diversity in the region. Distance and lack of habitat
may restrict shorter-range species to vent sites within a segment
and possibly between adjacent segments, whereas other species
can transcend barriers such as depth changes and non-venting
segments (Figure 4). Frequency of suitable habitat will also drive
diversity both between and within sites because both number
of sites and overall habitat area is affected (as in an island
archipelago, Cabral et al., 2014). Baker et al. (2016) mapped
effluent from low temperature venting and proposed that such
habitat on spreading ridges is notably more prevalent than
currently mapped. Therefore, metacommunities encompassing
species with low dispersal may have greater exchange than
currently assumed. However, vent habitats are not equally
represented along a tectonic feature. Low temperature venting
does not include the complex communities of black smoker
chimneys (Sarrazin and Juniper, 1999; Cuvelier et al., 2011).
Thus, habitat suitability and stability will regulate recruitment
and, ultimately, connectivity. Vent habitat stability is reflected in
the mass accumulation of polymetallic sulfides; large deposits of
ages 1,000–10,000 s years (Jamieson et al., 2014) forming complex
habitat which allows for species accumulation over an extended
period.

FIGURE 4 | Influences on vent fauna over a spectrum of spatial and temporal

scales (decreasing from top to bottom). Globally, vent biogeography is

constrained by plate tectonic history, and associated speciation and extinction

events. Species assemblage of a region is determined mostly by tectonic

behavior and development of inter-region barriers. However, rare dispersal

from afar can affect the regional fauna. Ridge/arc properties, such as

spreading rate and magmatic budget, are manifested at the regional and

sub-regional scales, affecting metacommunity composition through the

distribution and stability of venting. Variation in habitat suitability at the patch

scale (e.g., fluid chemical composition) affects species composition of

individual communities. The example at right of ridge segmentation (double

lines) in the eastern Pacific illustrates potential barriers to dispersal such as

transform faults (single lines) and non-venting segments that lack suitable

habitat (stars are vent fields). The spatial extent of a vent metacommunity will

depend on connectivity as mediated by vent site suitability.

The spatial extent of a vent metacommunity is likely strongly
influenced by dispersal barriers and dispersal potential of
component species. Species ranges do not necessary coincide,
so community composition along a discrete geologic feature
(ridgecrest, arc) is expected to be a cline of overlapping ranges.
Communities in the center of such a feature tend to have higher
alpha (within-site) diversity than those at the ends (Colwell
et al., 2004). However, if dispersal on ecological time scales from
outside the region/feature occurs predominantly at one end of
the range, it may skew the diversity pattern. Habitat suitability
must also play a large role in community assembly and dynamics.
For example, at Axial Volcano on the JFR, although larval supply
of the limpet Lepetodrilus fucensis did not appear to be limiting
across space or time (Metaxas, 2004), the species dominated
the community in a particular sequence of species interactions
(Marcus et al., 2009). As for the regional setting, the spatial
extent of a species’ range is also determined by a combination
of dispersal and suitable habitat distribution.

Seeps as a Contrast to Vents
Methane seeps are chemosynthetic ecosystems bearing
remarkable similarity to hydrothermal vents, while exhibiting
important differences that would be expected to alter
metacommunity dynamics. Like vents, seeps occur where
fluids rich in reduced compounds are expelled into the deep
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ocean from beneath the seafloor, resulting in productive
ecosystems fueled by sulfide, methane, and hydrogen oxidation
(Levin, 2005). A key difference is the relatively lower rate of
delivery of reduced compounds at seeps. Faults, conduits, and
permeable sediments contribute to dendritic conduit systems,
such that fluid flow is focused into discrete locations where
patchy seep habitats are located (Hornbach et al., 2007), often
surrounded by “background” sediments and fauna, typical of
regional non-chemosynthetic habitats.

Ecosystem differences suggest cold seeps may experience less
frequent or impactful environmental disturbances than many
hydrothermal vents, at least those in dynamic geological settings
(e.g., eastern Pacific). Seeps and their communities are thought
to persist for centuries or longer (Cordes et al., 2009), making
sudden extinctions within patches in the metacommunity less
likely. Hydrogen sulfide, produced through anaerobic oxidation
of methane (AOM) (Boetius et al., 2000), may vary among
seep habitats and strongly influences faunal composition. Small-
scale heterogeneity in sediment geochemistry seems to be closely
linked to faunal patterns, and considered a primary factor
regulating seep faunal communities (Sahling et al., 2002; Cordes
et al., 2010). Fine-scale chemical gradients in sediments may
even facilitate evolutionary radiations, such as for co-occurring
dorvilleid polychaete species in the Northeast Pacific, which show
extreme dietary niche differentiation (Levin et al., 2013).

Sulfide is widespread in non-seep organic-rich sediments
on margins, and many background species adapted to these
conditions can occur at weakly seeping sites (Bell et al., 2016).
Consequently, changes to geochemical gradients may be less
disruptive for seep communities than fluid flow alterations
are for vent communities. Unsurprisingly, half or more of
the species in seep infaunal communities may be common to
background habitats, and many background predators forage at
seeps (reviewed in Levin et al., 2016a). The longevity of seepage
at individual sites plus linkages to background megafauna could
increase connectivity among metacommunity patches, including
non-chemosynthetic communities.

Other differences between vent and seep settings may result
in higher dispersal potential and metapopulation connectivity
at seeps, which would impact metacommunity structure.
The geographic distribution of methane seeps largely follows
continental margins, and sites tend to be shallower than vents,
facilitating larval dispersal via along-slope boundary currents,
topographic waves, and proximity to productive surface waters
(in the case of planktotrophic groups). Vertical larval transport
in the buoyant seep bubble plumes may also enhance dispersal.
Worldwide estimates of the number of seeps have been revised
upwards to the tens of thousands, largely due to the ability
to detect seepage with bubble plumes (Skarke et al., 2014)
and oil slicks (MacDonald et al., 2015). Individual seeps are
often clustered at the scale of kms (e.g., Sahling et al., 2008),
likely enhancing the probability of seep detection by settling
larvae. Individual seeps can also be spatially extensive relative
to hydrothermal vent fields (Skarke et al., 2014), possibly
augmenting connectivity and diversity. Species evolving in seep
settings may have long larval lifespans, slower growth/greater
longevity, or ability to settle at sulfidic sediments.

While seeps and vents share many faunal genera that rely on
unique habitat chemistry, including those of symbiont-hosting
mussels, tubeworms, and clams, only a limited number of species
cross between systems (Tunnicliffe et al., 2003). However, the
existence of hybrid habitats sharing seep and vent characteristics
(e.g., Jaco Scar, Costa Rica, Levin et al., 2012; serpentinite vents,
Kelley et al., 2005) could promote connectivity, such as for
Amphysamytha fauchaldi, which is found at Guaymas Basin
sedimented vents in addition to distant cold seeps (Stiller et al.,
2013). Kiel (2016) suggests that sedimented vents represent an
evolutionary link between vents and seeps, and there are more
generic similarities between vents and seeps in the Pacific than
Atlantic Ocean, perhaps because sedimented vents are more
common along active margins in the Pacific Ocean (e.g., Manus
Basin, Gorda Ridge, Middle Valley, Guaymas Basin).

Cold seeps typically occur in soft sediment settings, but
carbonate precipitation associated with AOM eventually
creates hard substrata, which contain their own unique faunal
assemblage (Levin et al., 2015). In short-term (∼1 year)
colonization and transplant experiments, carbonate assemblages
of colonists responded strongly to geochemical heterogeneity
and colonists resembled late successional assemblages on seep
carbonates in Costa Rica and Oregon, suggesting strong niche
processes (Grupe, 2014; Levin et al., 2017). At peripheries of seeps
with lower influence from sulfide and methane, macrofaunal
colonization of carbonates can be slower and more stochastic
than at the center of the seep (Gaudron et al., 2010; Grupe,
2014). Sediment colonization experiments (Levin et al., 2006)
and community surveys (Sahling et al., 2002; Levin et al., 2015)
have also found that species composition of seep faunas tends
to correspond to physicochemical conditions (sulfide, oxygen,
substrate type), highlighting the importance of niche-based
regulation of metacommunities.

Seep environments provide an interesting comparison to
hydrothermal vents in terms of metacommunity dynamics.
Like vents, the presence and composition of the fluid plays
an important role in determining patch quality. The greater
spatial extent of habitats, expanded bathymetric range, and wider
distribution of seeps allow for greater connectivity. However,
relative to many vents, seeps have lower frequency of disturbance
and a greater similarity of some environmental characteristics
to the surrounding deep sea, allowing for species interactions
to play out for decades and possibly for climax communities to
develop. This may result in differences in the relative importance
of regional to local processes in regulating metacommunities
between vents and seeps.

SYNTHESIS OF FIELD OBSERVATIONS
AND KEY QUESTIONS

The field observations described in section Field Observations
and Synthesis illustrate the types of data available to inform
metacommunity analyses at hydrothermal vents. One of our
main goals is to evaluate what analyses are sufficiently supported
by the observations, and what additional data are needed to fill
critical gaps. Although observations exist for all general processes

Frontiers in Marine Science | www.frontiersin.org 16 February 2018 | Volume 5 | Article 49

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Mullineaux et al. Hydrothermal Vent Metacommunities

identified as particularly important for vent systems, the
information onmost individual topics is far from comprehensive,
and is gathered largely from the more easily accessible regions in
the eastern Pacific (EPR and Juan de Fuca Ridge), the northern
Atlantic (Mid-Atlantic Ridge), and, most recently, the western
Pacific (Lau and Mariana regions). One notable exception is
the map of vent locations, which includes sites from across the
globe, including the southern Atlantic, Indian and Southern
Ocean, and Arctic seas. The correspondence between spreading
rate at plate boundaries, which is well constrained by geological
observations and theory, and key features such as vent spacing
and disturbance rates, provides a useful tool for estimating those
values even in locations where direct measurements are lacking.
In terms of modeling requirements, based on those data, we
should be able to constrain rates and magnitude of disturbance
for vent habitats within a certain range and generate reasonable
scenarios of disturbance. We are limited, however, in knowledge
of timescales of hydrothermal circulation particularly at slow
spreading centers.

The influence of local controls, such as habitat quality and
species interactions, are characterized only for a limited suite
of species in vents in the eastern and western Pacific and
the northern Atlantic, where sustained and repeated access to
selected sites has made these measurements possible. Although
some of these observations might be generally applicable to other
sites (e.g., minimum hydrogen sulfide levels needed to support
species that harbor symbionts, maximum temperatures tolerated
by different functional or phylogenetic groups, role of foundation
species in succession), it seems likely that targeted studies of
individual species will be needed to characterize the details
of local controls in less well-studied regions, especially those
with low disturbance rates and high vent longevity. Similarly,
studies of species interactions, which include both direct and
indirect evidence for facilitation, competition, and predation,
are available only from select sites on the EPR, and mostly
during the successional sequence. Competition and predation, in
particular, are not well studied for mature communities where
continuous, low-level disturbances may alter habitat quality
and/or availability. Nevertheless, these observations provide
examples of distinct, repeated, successional sequences following
disturbance, as well as alternative community development paths
triggered by initial colonizers, both of which can be incorporated
directly into metacommunity models.

One gap in observations of local control is the influence of
habitat quality or changes in local environmental conditions
on reproductive output. Fecundity is expected to be high in
populations located in high quality patches, or vary over time
in response to changes in environmental conditions; however,
few reproductive studies at vents have investigated a direct link
to habitat. Additionally, while reproductive strategies will affect
the temporal patterns in the availability of potential colonists,
they are largely unknown (or simply assumed) for most species.
However, the range of potential strategies is known and does
not differ from those in better known systems in shallow
water. Once again, these strategies can be incorporated into
metacommunity models to test general hypotheses about the
relative importance of reproductive strategies and fecundity on

community characteristics, such as resilience, under different
disturbance regimes.

Studies of planktonic larval distribution, larval behaviors, and
larval duration, coupled with observations andmodels of oceanic
flows, provide insights into regional controls of vent systems.
Physical transport processes can be generalized from topographic
setting (e.g., the peaks of spreading centers at ridges and back
arcs, the valleys of spreading centers, or the flanks of seamounts),
each of which has characteristic dynamics. Topographies at
particular settings have been mapped by geologists, and models
of oceanic flows have been used to develop dispersal kernels and
to quantify larval connectivity. While eddy-resolving numerical
models are likely to produce fairly accurate dispersal kernels,
they may not represent the weak mean abyssal currents correctly.
However, on the time scales we are considering (i.e., vent
larval pelagic durations of weeks), only strong mean flows will
substantially affect dispersal, and those are well represented in
models of sufficient resolution.

Larval planktonic durations are known from only a few
vent species; they appear to be in the ranges known from
related shallow species, although in a few cases, estimated or
observed dispersal distances are surprisingly far (implying long
duration), especially given the paucity of particulate food in
deep waters. Observations reveal evidence for local retention in
some species and topographic settings, and long-range dispersal
in others, and there is some support for an influence of local
populations on larval supply. In total, the field observations
of regional controls illustrate that larval connectivity can vary
widely among topographic settings, and provide examples of
interactions between larval biology, topography of spreading
centers, ocean circulation, and vent spacing that are relevant to
metacommunity analyses. These examples are tantalizing, and
despite the gaps in knowledge of the interaction of topography
with ocean circulation at different settings, the use of coupled
bio-physical models shows promise.

Classic population genetics approaches have proven
useful for identifying barriers to dispersal and boundaries
of metapopulations, and new techniques show promise for
estimating effective population sizes and rates of directional
migration, both of which are relevant to ecological connectivity.
Similarly, studies of species distributions on regional and global
scales help identify the spatial scale of metacommunities. The
inclusion of information about seep metacommunities, which
have lower disturbance rates and potentially higher larval
connectivity than vents in geologically active regions, broadens
the range of values for disturbance and regional influences and
offers an opportunity for comparative study.

Field observations not only can inform vent metacommunity
analyses, but also reveal patterns that generate hypotheses about
how these systems function. For instance, species diversity
and distribution patterns vary between the spreading centers
located in the eastern Pacific, western Pacific and northern
mid-Atlantic regions. Because of differences in spreading rate,
and the depths and geological settings of vents, those regions
also appear to differ in disturbance, variability in habitat
quality, and, potentially, larval connectivity. Thus, the species
patterns can be used to motivate specific metacommunity
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analyses, and can be used for comparison with model
results.

Given the underlying geological dynamics, we propose that
the key questions for metacommunity analysis should focus, at
least initially, on how vent ecosystems respond to disturbance
linked to these dynamics. Persistence of a metacommunity is of
particular interest to ecologists and resource managers evaluating
resilience to different magnitudes and frequencies of disturbance.
Persistence is assessed with a suite of metrics including time
to extinction, proportion of occupied patches, and average time
a patch is occupied (Mangel and Tier, 1994; Musick, 1999;
Hartley and Kunin, 2003; Frank, 2005). Rates of external larval
input from afar that would enable long-term persistence of
the metacommunity can be used to evaluate recovery under
catastrophic disturbance (great magnitude), whereas the rates
of local larval input can be used to evaluate resilience to
disturbance of smaller magnitude or smaller spatial extent.
Metacommunity approaches can be used to explore relationships
between biological processes (time to extinction, larval supply,
and successional dynamics) and the magnitude and rate of
disturbance.

Species diversity is another main focus of research at
hydrothermal vents, and can be evaluated across a range of
spatial and temporal scales (e.g., Magurran, 2004). Traditional
metrics include alpha (within-site), beta (across-site), and gamma
(regional) diversity (Whittaker, 1972), used to describe how
richness, evenness, and dominance change over time and space.
In the vent context, questions might include: (1) How quickly
does diversity at a vent site recover after an eruption? (2)
How does spatial heterogeneity of vent dynamics (i.e., where
and when vent fields are active) interact with species dispersal
ability to affect the rate of succession changes and species’
distributions? (3) How do disturbance and connectivity influence
the proportion of the regional species pool represented at
individual vent fields? These types of analyses may reveal rules of
thumb that are consistent across a variety of different geological
settings, or alternatively identify relationships that are specific
to particular geological, community, or connectivity attributes.
Such attributesmight include the variability of habitat quality, the
influence of individual foundation species, or the directionality of
larval transport.

Metacommunity questions can also be specific to an
individual vent field (patch), and focus on identifying hotspots of
diversity and locations of key ecological significance in systems
that are subject to disturbance. The ecological “value” of a
vent site depends on the site qualities and species attributes
(Ovaskainen and Hanski, 2003), and may be quantified by its
contribution to the metacommunity in terms of the capacity
for recovery and persistence, the overall occupancy of sites,
the recolonization of disturbed sites, or the time to eventual
extinction. When ecologists evaluate a site’s value, they do so, in
part, in terms of its influence on maintaining viable population
sizes, minimizing loss of rare species, and maintaining species
diversity.

Some of these questions can be addressed theoretically,
informed by available data, while others will require new field
observations. Given the complexity of the processes and the

remoteness of the locations, these data gaps need to be prioritized
to focus research efforts. Both the question and the geographic
region must be considered when prioritizing. For example, to
answer the relatively circumscribed question of how quickly
a specific vent community can recover from disturbance, we
might focus our field observations on arrival of colonists and the
local processes (habitat quality, species interactions) that control
community assembly in that specific patch. In contrast, if we
wish to address a more synthetic question, such as assigning
an ecological value to a specific patch, we would need wider
spectrum of information on both regional and local controls
(Figure 1). For such an investigation in a well-studied locale (e.g.,
EPR), where regional characteristics of species composition, and
transport processes across themetacommunity, are relatively well
known, a focus on local controls would likely maximize new
insight. If, instead, the investigation were initiated in a poorly
studied region (e.g., a ridge in the Indian Ocean or a largely
unexplored arc or back-arc in the western Pacific), we might
focus first on characterizing variation in species composition and
habitat quality across patches in the region, and in confirming
expected patterns of transport and connectivity. Once the
regional framework was established, subsequent investigations of
local controls could be placed in context. It is important to note
that differences between locales in both the regional and local
controls need to be considered when attempting to generalize
observations from a specific site.

EVALUATING RESILIENCE TO HUMAN
DISTURBANCE

Since their discovery, deep-sea vent communities have been
subject to human disturbance. Initially the disturbance was
limited to harvesting and manipulation by scientific researchers,
but as extraction of vent deposits rich in copper, zinc, silver,
and gold becomes economically feasible, mining efforts are
being initiated and debate over their regulation is intensifying
(Hoagland et al., 2010; Van Dover, 2011; Gobin and da
Fonseca, 2014; Mengerink et al., 2014). Mining can result in
the destruction of vent communities and alteration of vent
habitat, potentially impacting persistence and species diversity by
causing further fragmentation in an already fragmented system
(Boschen et al., 2016). Metacommunity models are ideal for
examining the potential effects of mining because they focus on
disturbance, as well as local controls and connectivity. They are
useful for informing management decisions because they can be
used to explore the effects of mining disturbance at different
sites and in different spatial configurations. Characterizing
the metacommunity attributes of these deep-sea habitats that
contribute to persistence and high regional diversity will also
assist with ongoing efforts to identify potential “Ecological or
Biologically Significant Marine Areas” that are important for
prioritizing management and conservation actions (Convention
on Biological Diversity, 2009; Clark et al., 2014).

Discussions of the ecological effects of vent mining often refer
to community resilience, which we have defined as the ability
of a system to maintain its overall function and structure in
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the face of disturbance (as in Holling, 1973). Resilience is often
quantified as the return time for aspects of the system (e.g.,
species composition, species diversity, functional diversity) to
recover to some specific fraction of their initial values. In some
cases, an ecosystem may be so drastically disturbed that it passes
a critical threshold or tipping point and becomes unlikely to
recover to the original state (e.g., Lotze et al., 2011).

The reported return times for vent communities destroyed
by eruptions on the EPR and Juan de Fuca to approach pre-
eruption diversity levels are on the order of a decade or less
(Tunnicliffe et al., 1997; Shank et al., 1998; Marcus et al., 2009).
In the absence of field observations elsewhere, it is tempting to
assign these values to regions where mining is expected to occur;
however, this would be inappropriate for several reasons. One
is that the high disturbance rates at these eastern Pacific sites
likely result in species assemblages at individual fields that do
not reach equilibrium. In contrast, sites of particular interest for
exploitation include large sulfide deposits that may have been
active for thousands of years (Tao et al., 2014; German et al., 2016;
Cherkashov et al., 2017), thus accumulating species diversities
that are at or near equilibrium. Additionally, the close proximity
of source communities in the studies on eastern and northeastern
Pacific explain, in part, the relative rapid recovery. In most other
locations, including areas targeted for mining, the potential for
regional larval supply to facilitate recovery may be lower because
source populations are farther away. An added complication
is that some fauna on active vents are shared with those on
inactive vents (Gollner et al., 2013; Boschen et al., 2015), so the
latter can, under some circumstances, act as source populations
after disturbance events. Consequently, the manner in which
community dynamics will change in the event of connectivity
disruption in the region is difficult to assess (Boschen et al.,
2016). Furthermore, the disturbances from mining activities
differs from natural disturbance in that they leave behind
sediment and rubble (Steiner, 2009), rather than pillow lavas
or sheet flows (Chadwick et al., 2001). Mining activities are
expected to result in significant changes in the quality and
availability of patches, which in turn will affect community
recovery by altering settlement cues, rates of colonization, and
post-settlement survival, andmay impede recovery by forcing the
ecosystem beyond its tipping point. At the very least, biodiversity
loss is inevitable at a vent field that is the focus of a mining
operation (Van Dover et al., 2017).

Under the UN Law of the Sea (UNCLOS), it is the
International Seabed Authority (ISA) that authorizes exploration
and exploitation claims for mineral resources in international
waters and has the general obligation to protect the marine
environment from harmful effects of mining. The first
international seabed massive sulfide (SMS) exploration claims
were granted in 2011 and current claims in international waters
are located on the Mid-Atlantic Ridge and both Southwest
and Central Indian Ridges. Additionally, there are many west
Pacific island nations with SMS resources within their exclusive
economic zones (EEZs) that have issued exploration claims to
independent companies. Countries that are party to UNCLOS
also must develop mining regulations for their EEZs at least as
stringent as those that developed by the ISA.

Several principles have guided the development of these
regulations including the common heritage of mankind, the
precautionary approach, best environmental practices, and
ecosystem-based management (International Seabed Authority.,
2016). Application of ecosystem-based approaches can occur
through overarching environmental objectives that are addressed
by (i) strategic and regional environmental planning at a broad
scale, and (ii) at the claim level with environmental management
plans including environmental impact assessments that address
baseline data generation, the mitigation hierarchy, and pre-
and post-impact monitoring. Data on both metapopulation
connectivity and metacommunity interactions can inform
many aspects of this process and can provide an important
framework for planning and assessment. In particular, the
regional designations of Areas of Particular Environmental
Interest (APEIs) and the designation of no-impact Protected
Reference Zones (PRZs) within SMS claims, should be based
on an understanding of uniqueness, endemicity and isolation,
as well as recovery potential and resilience for different vent
communities and taxa. EIA templates need to incorporate the
requisite metacommunity information to allow decision making
and no-mining designations.

Assessment of cumulative impacts and recovery frommultiple
types of mining impacts, multiple mining actions and multiple
sectors such as fishing and marine transportation is another area
where metacommunity attributes are critical to decision making.
In addition, the legal thresholds imposed within UNCLOS by
the concepts of harmful effects (to be avoided) and serious harm
(to stop mining or not mine; Levin et al., 2016b) are now being
defined: one proposal is that they be informed by biogeographic
evaluations of (vent) assemblages as metacommunities, where
serious harm becomes a level of destruction that results in
functional extinction of taxa or effective loss of habitat type
within a metacommunity framework.

To manage deep-sea mining in a way that preserves
the ecological value of hydrothermal vent communities, a
method is needed to assess how mining can influence
species persistence, community resilience, and regional diversity.
This is a challenging task, given the limited availability
of observations on local controls and larval connectivity,
particularly from the less studied regions of the seafloor.
Nevertheless, metacommunity models offer a critical first step
toward this goal, and represent the best available approach to
understanding regional effects.

CONCLUSIONS

Two of the main objectives of this paper are to inform deep-
sea ecologists about the value of studying vent communities in
a metacommunity framework, and to inform metacommunity
modelers about the unique attributes of vent systems. We show
that a full understanding of diversity and dynamics of vent
ecosystems can be obtained only through combined investigation
of both local and regional processes. Vent metacommunities
are particularly intriguing from a modeling perspective because
the distribution and dynamics of patches are controlled by

Frontiers in Marine Science | www.frontiersin.org 19 February 2018 | Volume 5 | Article 49

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Mullineaux et al. Hydrothermal Vent Metacommunities

fundamental earth systems processes of plate tectonics and
magma supply.

Another goal is to identify gaps in field observations
that presently impede metacommunity investigation. Notable
gaps include information on reproductive output and larval
planktonic duration, which is limited to only a few species,
and often inferred from morphology or by analogy with
related shallow species. In addition, although data on local
controls (e.g., habitat requirements and species interactions)
are available from well-studied locations in the Pacific and
Atlantic, they are missing from less-accessible areas such as
the Indian Ocean or high latitude seas where exploration is
limited. In contrast, observations of some other key processes
are well characterized. In particular, the global distribution of
vents is increasingly well characterized, and aspects of their
dynamics are predictable from their tectonic and magmatic
setting. Furthermore, physical transport in each of three typical
topographic settings (axial valley, ridge, and seamount) is well
described with a combination of observations and models. The
spatial extent of metapopulations in several regions is well
constrained by population genetic studies.

These field observations inform investigations of several
key questions in vent ecology that can be solved with
metacommunity models: (1) What is the influence of the
magnitude and rate of disturbance on ecological attributes
such as time to extinction or resilience in a metacommunity?
(2) What interactions between local and regional processes
control species diversity? And (3) Which communities are
’hot spots’ of key ecological significance? There is value in
addressing these questions in general terms, independent of
specific geographic region, as they increase our understanding
of the underlying processes controlling vent metacommunities.
An ability, however, to address problems specific to a region
is needed to investigate the resilience of individual vent fields
to disturbance. We suggest that evaluating resilience is possible
in accessible regions, where local controls on species’ habitat
requirements and interactions are known, but not yet feasible

in remote locales where that information is missing. Most of

the vent sites under exploration for mining do not yet have
the requisite species-level observations to support estimates of
resilience.
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