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Blue whales are little studied, face significant anthropogenic threats and within the

Northern Indian Ocean, have a restricted range, making them an archetype for

conservation needs of megafauna around the world. We studied feeding behavior of

blue whales using dietary DNA metabarcoding of fecal samples. While globally blue

whale populations feed predominantly on Euphausiidae, 87% of prey DNA amplicons

extracted from fecal samples from this population were sergestid shrimp, demonstrating

that blue whales can locate and feed on dense swarms of other types of prey when

they occur. Within the Indian Ocean sergestids are present within the top 300m, which

correlates with the deep scattering layer observed by hydroacoustics. Studies suggest

that this requirement to dive deeper in search of prey likely explains the prevalence of

fluke up diving within this population of blue whales relative to other parts of the globe.

Furthermore, this study revealed the presence of acanthocephalan endoparasites within

the stomach and intestines of the Northern Indian Ocean blue whales. This represents the

first record of Acanthocephala in blue whales in the Northern Indian Ocean and highlights

the need for further studies on both the ecto- and endoparasitic flora and monitoring of

health of these cetaceans for their management and conservation.

Keywords: DNA metabarcoding, Sri Lanka, Northern Indian Ocean, feces, Sergestidae, Euphausiidae,

acanthocephala, krill

INTRODUCTION

Baleen whales feed on small animals that can be filtered from the ocean using their baleen plates,
which act like nets to separate their food from seawater (Pivorunas, 1979). They regularly feed on
euphausiids, copepods, mysids, small fish, and amphipods. Blue whales (Balaenoptera musculus)
are the archetypal euphausiid-feeding great whales. They are thought to fulfill their energetic
needs by feeding on dense schools of their preferred prey, euphausiids, worldwide (Yochem and
Leatherwood, 1985; Schoenherr, 1991; Croll et al., 1998; Gill, 2002).

Large marine predators forage on prey that are spatially and temporally patchy (Haury et al.,
1978; Denman and Powell, 1984). To support their energy requirements, it is assumed that animals
target areas that are resource abundant (Fauchald and Tveraa, 2003). Euphausiids have extremely
patchy distributions in comparison to other animals of similar size and in some areas they form
aggregations where density is as high as 1,500 individuals per m3 (Higginbottom and Hosie, 1989),
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making them an ideal target for lunge filter-feeding of blue
whales. Blue whale movements within and between feeding
areas are thought to be driven by the availability of dense
patches of such prey (Fiedler et al., 1998). Most baleen
whale species undertake long-range seasonal migrations between
productive high latitude feeding grounds and unproductive, low
latitude breeding grounds (Brodie, 1975; Corkeron and Connor,
1999). However, because blue whales need to seek regions of
exceptionally high productivity (Croll et al., 2005), there is
evidence that they feed at high, mid and low latitudes (Reilly and
Thayer, 1990; Silva et al., 2013).

Northern Indian Ocean (NIO) blue whales (Balenoptera
musculus indica) however, usually remain in low latitude waters
throughout the year (Alling et al., 1991; de Vos et al., 2012).
A number of their areas of aggregation have been identified,
including waters near Somalia (Small and Small, 1991), the
Seychelles (Mikhalev, 2000), the Maldives (Ballance et al., 2001;
Anderson, 2005), and Sri Lanka (de Vos et al., 2014a). Sighting,
stranding and acoustic data (Alling et al., 1991; Ilangakoon,
2006; Branch et al., 2007; Afsal et al., 2008; de Vos et al., 2012)
indicate that this population occupies Sri Lankan waters almost
year round. Off southern Sri Lanka, groups of NIO blue whales
have been observed engaging in breeding activity (specifically
“ménage à trois” behaviors as described by Sears et al., 2009).
More significantly, they have been observed feeding (de Vos et al.,
2014a) and defecating during the Northeast monsoon (December
toMarch) (de Vos et al., 2012) indicating that this is an important
foraging area.

Many wild animals are elusive or inhabit hostile environments
making it nearly impossible to observe them as they undertake
critical activities such as feeding, breeding, or escaping predators.
The diet of whales while an important aspect of their
ecology, is a particularly difficult one to study because of the
challenges in linking observed surface behaviors to subsurface
foraging activities and ultimately to the food that is consumed.
Furthermore, whales often have vast ranges, are difficult to
observe closely at sea, and are available for observation over
limited spatial and temporal scales (Samuels and Tyack, 1999; Au
et al., 2000).

In this study of blue whale diet, we used DNA metabarcoding
of fecal samples. Feces have previously been extensively used
to study diet composition in blue whales and a variety of
other species across the world (Jarman et al., 2002; Jarman
and Wilson, 2004; Meekan et al., 2009; Pompanon et al.,
2012). More recently fecal samples have also been used for
the assessment of parasites in baleen whale species (Hunt
et al., 2013). Protozoan parasites have been detected in both
North Atlantic right whales (Eubalaena glacialis) and bowhead
whale feces (Balaena mysticetus) (Hughes-Hanks et al., 2005).
Therefore the main purpose of this work was to ascertain if the
Northern Indian Ocean blue whale also preferentially preyed on
euphausiids, as visual observations of diving behavior suggest
they may be targeting deeper water species around Sri Lanka
(de Vos et al., 2013). Secondarily, these samples were used
to identify other species such as parasites that exist within
the gut flora of the blue whales within the Northern Indian
Ocean.

MATERIALS AND METHODS

Sampling Protocol
A total of 34 blue whale fecal samples were collected from 16
different encounters during the months of January, February
and March 2013 off the southern coast of Sri Lanka. The samples
were collected opportunistically from the sea surface using a
strainer with mesh size 0.5mm when a blue whale was at least
50m away to minimize disturbance caused by the research
boat. Each sample was placed into a sterile sample collection
bottle sufficient to fill half the bottle. The sample was then
preserved in 80% ethanol, labeled and placed in an ice box until
we reached shore when the sample was placed in a freezer that
was maintained at −20◦C. The sampled material was a coarse
paste of animal particles (see Supplementary Material). It was
not possible to sample the water where the whale was about to
defecate with the same sampling procedure because a coarse
mesh sieve cannot be used to sample water and it is not possible
to predict when a whale will defecate. Differences among the
samples in the DNA sequences produced were used as a proxy
for negative water controls.

Amplification of DNA Metabarcode
Regions and HTS
DNA was purified from 34 blue whale fecal samples with the
QIAampDNA stool kit following the manufacturer’s instructions
(Qiagen, Hilden, Germany). Only 16 of these samples had PCR
amplifiable DNA, which was used for the subsequent analysis.
A small fragment (∼120–160 bp) of the nuclear small subunit
rRNA gene of eukaryotes was amplified by PCR from the
fecal DNA as previously described (Jarman et al., 2013).
Amplifications were performed in triplicate with each 10 uL
reaction contained 1 x Phusion PCR mastermix (NEB), 10 x BSA
(NEB), 1 x EvaGreen dye (Biotium) and 1 uL of template DNA.
Primers included were 1 uM of each primer 18Sf-msq (5′-TCG
TCGGCAGCGTCAGATGTGTATAAGAGACAGCACCGCC
CGTCGCTACTACCG-3′), 18Sr-msq (5′-GTCTCGTGGGCTC
GGAGATGTGTATAAGAGACAGGGTTCACCTACGGAAAC
CTTGTTACG-3′) and 10 uM of TetrapodBlockc3 (5′-CCT
TGTTACGACTTTTACTTCCTCTAGATAG-c_3-3′) where c_3
refers to a C3 “spacer” modification (McInnes et al., 2016).
Thermal cycling conditions were 98◦C, 120 s; followed by 35
cycles of 98◦C for 5 s, 67◦C for 20 s, 72◦C for 20 s. The first-round
PCRs were performed in triplicate and a template-free control
reaction was run. Reactions were run on an LC480 real time
quantitative thermal cycler. Amplification of the template was
monitored by EvaGreen fluorescence. Samples that produced
three positive amplifications with a “crossing threshold” (Ct) of
less than 30 were pooled and used for second round PCR. These
low Ct-values indicate exponential amplification of reasonably
concentrated DNA template.

A second round of PCRwas used to add a unique combination
of 10 bp index sequences to the pool of PCR products amplified
from each sample (McInnes et al., 2016). Reaction conditions
were as for the first round PCR, but without the EvaGreen dye
or BSA and the template was 2 uL of a 1:10 dilution of the three
first round PCR products. Thermal cycling conditions were 98◦C,
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120 s; followed by 35 cycles of 98◦C for 5 s, 55◦C for 20 s, 72◦C
for 20 s. No combinations of forward and reverse indexes are re-
used in the laboratory as a measure to control contamination. A
negative DNA purification control and two no template controls
where water was added instead of DNA were also PCR amplified
with unique index combinations. Fragments were sequenced on
an Illumina MiSeq Sequencer (Ilumina) using a 300 cycle v2
Nano kit and 150 bp paired-end reads.

Data Processing and Sequence
Identification
The reads were assigned to a sample based on the combination
of their forward and reverse indices using the Illumina MiSeq
Reporter software. Subsequent sequence processing steps were
performed with Usearch7 (Edgar, 2010) and custom Python
scripts to apply the process to the sequences from each of
the 16 samples. The processing started with quality filtering,
where reads less than 100 bp long or having a Q < 10 base
were removed. Paired reads were then merged with staggered
overlaps allowed and the truncqual parameter set to 2. Sequences
that occurred only once were removed and clusters created
with the clusterfast algorithm with an identity threshold of 0.9
set for cluster formation as used previously for this fragment
(Jarman et al., 2013). Centroids for each cluster were identified
to group level by BLASTn searches (Altschul et al., 1990) of the
complete nucleotide database of GenBank. Centroid sequences
were assigned to taxa that they matchedmost closely as in Jarman
et al. (2013). No anonymous MOTUs were identified. Singleton
sequences were removed during processing, which is likely to
have been effective for removing chimaeric PCR products. There
is not a validated, high-quality database available for chimera
detection for the 3′ end of the SSU rDNA, but the lack of orphan
sequences indicates that chimera formation was not significant.
The DNA sequence data produced in this study was archived at
www.datadryad.org and its DOI is doi: 10.5061/dryad.qt352sg.

RESULTS

The DNA metabarcoding methodology that we employed has
the advantages of being present in most eukaryotes and being
PCR-amplifiable from degradedDNA. This provides a reasonable
basis for metazoan diversity analysis. Our results indicate that
overall, 87% of DNA detected in the blue whale fecal samples
collected off Sri Lanka comprised Dendrobranchiata, with
Euphausiacea representing the second most ingested prey group
(8%). The results also indicate that blue whales ingested small
proportions of other species groups ranging from Amphipoda
to Cephalopoda. It is also notable that 94% of the blue whale
feces sampled had evidence of Dendrobranchiata, specifically
Sergestid shrimp DNA, followed by 56% having Euphausiacea.
Thirty seven percent also indicated consumption of Amphipoda,
but generally in lower quantities (Figure 1). The short DNA
metabarcode that we used only allowed identification to groups
of thes taxonomic levels (Jarman et al., 2013). No metazoan
sequences were identified in the template-free negative control
reactions.

Based on the samples collected during this study it is also
evident that feeding varied through the study period which
ranged from January to March 2013. While diet in January
comprised predominantly of Dendrobranchiata, the samples
from March comprised a wider range of prey species with no
species being particularly predominant (Figure 1).

DISCUSSION

The discovery that blue whales in warm tropical waters off
Sri Lanka feed predominantly on Dendrobranchiata rather
than Euphausiids, their typical primary prey in other areas,
demonstrates that blue whales are able to locate and feed on
dense swarms of other types of prey when they occur. This
parallels observations by Fiedler et al. (1998) that blue whales
in the Channel Islands of California were taking advantage of
the seasonal swarming behavior of Thyasanoessa spinifera, at
shallower depths and higher density than their more typical
prey Euphausia pacifica, during the relatively short periods when
seasonal swarming of T. spinifera and blue whales movements
into that area overlap (Fiedler et al., 1998). Previously, Alling et al.
(1991) proposed that Northern Indian Ocean blue whales fed
on mysids, however no systematic examination of prey samples
is available to verify this statement. Further, the molecular
assay that we applied in this study can detect Mysida in
mixed samples (Jarman et al., 2013) but none were detected
here. We have presented our DNA metabarcoding results as
proportions of reads in each sample because the whale fecal
samples are inevitably contaminated with small amounts of trace
environmental DNA in seawater. However, the PCR primer
binding sites for the amplicon we sequenced are highly conserved
(Jarman et al., 2013), which provides a good basis for the results
being semi-quantitative (Willerslev et al., 2014; Evans et al.,
2016). If environmental DNA contamination was contributing
significantly to the overall result, there would be a more
consistent influence on the DNA signal found during each time
period. The large differences in read composition among samples
suggest that the environmental DNA contribution to the DNA
pool is small compared to that from the fresh fecal material.

Large baleen whales require considerable concentrations of
food to make their energetically demanding lunge feeding
strategy viable (Brodie et al., 1978; Macaulay et al., 1995). The
range of species documented in the diet of blue whales during
this study is unsurprising given that their feeding behavior
involves lunging into prey patches and filtering prey (Pivorunas,
1979; Goldbogen et al., 2011). This feeding adaptation makes
it impossible to feed selectively on small prey and the results
support a non-selective feeding strategy. The presence of
Cephalapoda in one sample reflects this non-selectivity in feeding
(Clarke, 1996).

Sergestidae, the predominant prey of NIO blue whales
as suggested by this study, primarily ingest euphausiids
and copepods, while the rest of their diet comprises
chaetognaths, ostracods, and radiolarians with some evidence
of phytoplankton, protists and cnidarian nematocysts (Tavares
and Martin, 2010). Given that sergestids, like other small
zooplankton species are movement limited and restricted to
diel vertical migrations (Steele, 1978), they are likely densest in
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FIGURE 1 | Prey species detected in Northern Indian Ocean blue whale fecal samples. Each column represents a single sample. Percentage of amplicons belonging

to each prey group extracted from samples is indicated. The lack of a consistent, diverse background of amplicons suggests that the primary source of the amplicons

amplified from the fecal samples is dietary rather than derived from seawater.

areas where they can encounter their favored prey items. This
further explains the small quantities of chaetognaths, copepods
and euphausiids in the diet of the blue whales in this study
(Figure 1). The variation in prey availability during the months
of January, February and March indicate that seasonal variation
occurs within the water column and is likely driven by changes
in circulation resulting from Sri Lanka’s monsoonal climate (de
Vos et al., 2014b).

Sergestidae predominantly comprise species that are deep
benthic dwellers or members of the meso- and bathypelagic
fauna (Pérez-Farfante and Kensley, 1997). They are primarily
mesopelagic during the day with much of the assemblage
exhibiting diel vertical migration into the epipelagic zone at
night (Donaldson, 1975; Walters, 1976). Sergestids are an
abundant component of oceanic micronekton and because of
their zooplanktivorous habits are an important link between
zooplankton and higher trophic levels in pelagic ecosystems
(Yousuf, 2006). The Indian Ocean has upwards of 38 species of
Sergestidae (Palomares and Pauly, 2016). Research in the Arabian
and Northern Arabian seas showed an increase in sergestids in
net trawls northwards between 13 and 17◦ and in day time trawls
individuals of the species Sergestes seminudus were collected at
depths between 0 and 300m (Karuppasamy et al., 2010). Other
species of the Genus Sergia have been recorded in day time
trawls at varying depths up to 2,000m (Vereshchaka, 2009).
The deep scattering layer that has been previously recorded
at approximately 300m within the study area may therefore
comprise this prey species (see Supplementary Material).

Feeding on these epibenthic animals necessitates deeper
foraging dives. Within the NIO, blue whales have been frequently
documented “fluking up,” or lifting their tail flukes before a deep
dive (de Vos et al., 2013). These whales have been observed
accelerating in to the terminal surfacing as they present the high
arch and then the fluke (de Vos et al., 2013), enabling them to flip
vertically and sink to depth likely because the high descent angles

enable faster acceleration when the body is vertically oriented,
due to lowered pressure drag as the projected area is significantly
decreased compared to when the body is broadside to vertically
acting buoyant forces (Goldbogen et al., 2006).

Blue whale dive depths are known to closely track the
depth distributions of euphausiids, as indicated by a correlation
in vertical space off the coast of California (Croll et al.,
1998). Research from Monterey Bay indicates that blue
whales concentrated their foraging activity on deeper layers of
euphausiids located between 150 and 200m on the canyon edge
(Croll et al., 2005) with mean maximum foraging dive depth
of two tagged whales reaching 155 and 172m (Croll et al.,
2005) compared to non-foraging dives that reached only 67m
on average (Croll et al., 2001). Research off the Channel Islands,
California indicated that blue whales foraged at similar dive
depths (Croll et al., 1998; Fiedler et al., 1998; Calambokidis et al.,
2001). More recently, Goldbogen et al. (2011) recorded average
dive depths and durations of 201m and 9.8min respectively
over 200 blue whale foraging dives off the eastern North Pacific.
In Sri Lanka, blue whale dive duration averaged 10.7min (de
Vos et al., 2013) which is longer than the deepest recorded
dive for this species of 293m that lasted 9.8min within the
Southern California Bight (Calambokidis et al., 2007). Based on
this available data, we hypothesize that NIO blue whales are
deep divers with the potential to reach depths of approximately
300m. This coincides with the depths at which some species
of Sergestidae have been recorded within the Indian Ocean
(Karuppasamy et al., 2010). Further, this coincides with the
depth of the deep scattering layer documented within this area
during pilot hydroacoustic surveys conducted inMarch 2012 (see
Supplementary Material).

In comparison, spinner dolphins caught in the tuna driftnet
fishery in the Sulu Sea dove to 200–300m to feed on sergestids
(Dolar et al., 2003). In Hawaii, spinner dolphins are known
to closely track the mesopelagic boundary community as they
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migrate vertically through the water column diurnally. This
community reaches a depth of 400–700m during the day and is
spread between 0 and 400m at night (Benoit-Bird and Au, 2003).

Baleen whales have an estimated trophic level of 3.2–3.4, with
blue whales ranked at the lowest level within that group (Pauly
et al., 1998) because of the assumption that they feed on a limited
variety of prey like euphausiids that themselves feed on primary
producers (Trites, 2001). In the southern ocean, blue whales
like other baleen whale species feed on the abundantly available
Euphausia superba (Wiedenmann et al., 2011), while within the
Bonney upwelling off South Australia, the pygmy blue whale (B.
m. brevicauda) feeds predominantly on the indigenous coastal
euphausiid, Nyctiphanes australis (Gill, 2002). In Sri Lanka, this
species has adapted to feed on the locally abundant Sergestidae,
which along with other Dendrobranchiata are generally restricted
to warm waters between 40◦N and 40◦S (Tavares and Martin,
2010). Dendrobranchiata are voracious omnivores that feed on
euphausiids andmysids (Tavares andMartin, 2010), changing the
trophic position of blue whales in the food chain of the NIO.

The finding that NIO blue whales prey on Sergestidae, a
predator of euphausiids, introduces an additional trophic level
to the blue whale food web in Sri Lankan waters. This may
result in increased bioaccumulation of toxins, the potential for
trophic cascades and reduced energy transfer to higher trophic
levels. While studies on female blue whales and their offspring in
the Gulf of St. Lawrence indicated that bioaccumulation occurs
through transplacental and lactational transfer (Metcalfe et al.,
2004), a comprehensive review on the impacts of organochlorine
contaminants showed no conclusive evidence for any impact on
blue whales (O’Shea and Brownell, 1994). Despite the addition
of a trophic level in Sri Lankan waters, blue whales remain near
the bottom of the food chain and therefore biomagnification
would not be expected to have a strong effect on these individuals
(O’Shea and Brownell, 1994). The addition of a third trophic
level in this system is theoretically predicted to lead to a trophic
cascade whereby a decrease in the density of the second trophic
level results in an increase in biomass at the first trophic
level. However, trophic cascades are rarer in complicated food
webs and the addition of an extra species on the density of
those at lower trophic levels may be less pronounced (Strong,
1992). Reduced energy transfer could potentially contribute
to the shorter length of these blue whales (Mikhalev, 2000),
however based on measurements made during Soviet whaling
operations, blubber thickness in NIO blue whales during the
months of November-December (coinciding with our sample
collection period) were comparable to those for blue whales
within Antarctic feeding regions (Mikhalev, 1996).

The large size of blue whales, much like that of other low
trophic level feeders such as whale sharks confers numerous
advantages including increased swimming efficiency, reduced
risk of predation, reduced metabolic rate, increased energy
storage capacity, and increased foraging range (Kozlowski, 2000),
enabling long distance travel between food patches of worthwhile
richness (Martin, 2007). However, unlike higher trophic level
feeders, the reliance of these wide-ranging, low trophic level
feeders on zooplankton (Stevens, 2007; Couturier et al., 2012)
strongly links their sightings to environmental variables, as the

distribution and abundance of their prey respond rapidly to
changes in the environment (Boucher et al., 1987; Richardson,
2008; de Vos et al., 2014a). Further, as this population has
adapted to feed on locally available prey the need for long-range
movement is reduced, possibly explaining their limited range
(Zemsky and Sazhinov, 1994). We hypothesize therefore that
while most other baleen whale species feed almost exclusively
in high productivity areas of the high latitudes after which they
rarely if ever feed during their migration until they return to
their feeding grounds (Mackintosh, 1942, 1965) using a “gorger”
strategy, blue whales in the NIO have adapted a “grazer” strategy
where they feed continuously throughout the year on smaller
patches of shrimp over a restricted range in tropical waters that
are unusually productive (de Vos et al., 2014b).

A further finding of significance was the detection of
acanthocephalans in three of the 16 fecal samples. In particular,
the sample from March was dominated by this obligate parasite
and likely represented a significant infestation in the individual
concerned. This represents the first record of acanthocephalan
parasitic worms from the gut flora of blue whales in the Northern
Indian Ocean (Measures, 1993). Only two species of two genera
have been found to reproduce in the intestines and stomach
of marine mammals. These species are similar to those found
in aquatic birds (Raga et al., 2009). Bolbosoma spp. are the
main genus of acanthocephalan found in the small intestine
of large baleen whales (Baylis, 1932). They are not thought to
be host specific, however, acanthocephalans with aquatic life
cycles use arthropod intermediate hosts such as amphipods,
ostracods, or other crustaceans (Measures, 1992). The life cycle of
marine acanthocephalans is heteroxenous, involving one or two
intermediate hosts, being represented by crustaceans and fishes.
It has been suggested that large whales become infected either by
the oral uptake of Bolbosoma-infected euphausiid species, or by
feeding on a second intermediate host (fishes) (Hermosilla et al.,
2015).

Parasitic diseases may have profound influences on individual,
population, and ecosystem health. Acanthocephala infections
have been shown to cause changes in host phenotype, impacting
host behavior and immunity (Gunalan et al., 2013). High
parasitic burdens have been associated with intestinal wall
performation and mucosal ulceration (Morejohn et al., 1975;
Hermosilla et al., 2016). A detailed post mortem of a male
Bryde’s whale off the east coast of the Malaysian peninsula
suggested that Acanthocephala may have resulted in lung, liver,
kidney, and heart complications in the individual (Gunalan
et al., 2013). Further, Acanthocephala of the species Bolbosoma
balanae caused multifocal transmutal abscesses and ultimately
contributed to the death of a juvenile gray whale, Eschrichtius
robustus, stranded along the northern California coast (Dailey
et al., 2000).

DNA metabarcoding analyses revealed the first incidence
of blue whales feeding on prey other than euphausiids, which
highlights an interesting local adaptation of this species within
the NIO. Further, the analysis also revealed the presence of
parasitic infections within this population. This adaptation
and high specialization within a restricted range coupled
with the presence of a range of anthropogenic and natural

Frontiers in Marine Science | www.frontiersin.org 5 April 2018 | Volume 5 | Article 104

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


de Vos et al. Blue Whale Fecal DNA Analysis

threats such as ship-strike (de Vos et al., 2016) and parasitic
infections, highlights the urgent need for the implementation
of conservation measures to protect this population, which is
considered a subspecies of the blue whale complex, B. m. indica
(SMM Committee on Taxonomy, 2014).
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