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Sea surface temperature (SST) and salinity (SSS) are essential variables at the ocean

and atmosphere interface when considering risk factors for disease in farmed and wild

fish stocks. Ecological research has witnessed a recent trend in use of digital and

satellite technologies, including remote-sensing tools. We explored spatial coverage of

remotely-sensed SST and SSS data and compared them with in situ measurements

of water temperatures and salinity, which led to suggested adjustments to the

remotely-sensed data for its use in aquaculture research. The in situ data were from

farms and wild surveillance sites in coastal British Columbia, Canada, from 2003 to 2016.

Concurrent SST and SSS values were extracted from remotely-sensed products and

compared with 20,513 and 20,038 in situ records for water temperature and salinity,

respectively, from 232 different sites. Among nine SST products evaluated, the UKMO

OSTIA SST (UKMeteorological Office) had the highest retrieval, and highest concordance

correlation coefficient (0.86), highest index of agreement (0.93), fewest missing values,

and smallest mean and SD values for bias, when compared to in situ measurements.

A mixed linear regression model with UKMO OSTIA SST as the predictor for in situ

measurements estimated an adjustment coefficient of 0.89◦C for UKMO OSTIA SST.

None of the three SSS products evaluated provided appropriate corresponding values

for in situ sites, suggesting that spatial coverage for the study area is currently lacking.

This study demonstrates that, among SST products, UKMO OSTIA SST is currently best

suited for aquaculture studies in coastal BC. The near real-time availability of these data

with the estimated adjustment would allow their use in forecast models, surveillance of

pathogens, and the creation of risk maps.
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INTRODUCTION

Maritime aquaculture activities are affected by oceanographic properties that regulate physical
and biogeochemical processes throughout the ecosystem. Critical environmental variables such
as water temperature, salinity, and oxygen influence fish bioenergetics, health, and reproduction,
and can affect interactions between farmed and wild fish, as well as other ecosystem functions
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(Bowden, 2008; Maynard et al., 2016). There is a need for
broad-scale oceanographic data to support assessment and
management of stocking density, farm-fallow cycles, and fish
health. These data are also critical for establishing the initial and
boundary conditions of ecosystem models used for ecosystem-
based management, allowing assessment of ecological carrying
capacity and environmental effects (Filgueira et al., 2013).
Environmental data (e.g., water temperature and salinity) are
often recorded at farm sites, but often in situ data have missing
values, while corresponding in situ data for wild salmon habitat
rarely exist. Remotely-sensed (RS) data, captured via satellites,
may be used as a substitute to fill data gaps at lower costs
than in situ or ship-based sampling. In addition, RS tools may
contribute to sustainable blue growth in the aquaculture sector by
providing observation-based evidence in support of decisions for
monitoring and mitigating diseases, and in adapting to changes
associated with warming oceans (Santos, 2000; Zagaglia et al.,
2004; Williams et al., 2010; Bojinski et al., 2014).

Ecological, oceanographic, and biogeographical research have
seen increased use of digital and satellite technologies (Ferreira
et al., 2012), which can provide synoptic data at high spatial and
temporal resolutions for studying the Earth’s surface, atmosphere,
and oceans (Horning et al., 2010). Satellite sensors provide data
for oceanographic and climate models that promote forecasting
and prediction for fisheries and aquaculture management.

Active and passive satellite RS can be used tomeasure variables
at the ocean surface, including surface roughness, wave height,
suspended particulate matter, sea surface temperature (SST),
sea surface salinity (SSS), and ocean color (Le Traon et al.,
2015). The World Meteorological Organization has designated
SST and SSS as essential climate variables at the interface of
the ocean and atmosphere (Ishii et al., 2005; Hollmann et al.,
2013; GCOS, 2015). While RS measurement of SST is well-
established (Casey et al., 2010), salinity has not yet achieved
comparable spatial resolution (Lagerloef et al., 1995, 2008).
These data are available for several combinations of spatial and
temporal resolutions (Savtchenko et al., 2004), and at multiple
processing levels, ranging from uncalibrated raw data to fully
integrated modeled products. However, attempts to incorporate
this wealth of data into practical research in areas such as
aquaculture are often hindered by a lack of understanding of
the products’ uncertainties, spatial and temporal heterogeneity
in oceanographic properties (particularly in coastal areas where
aquaculture occurs), and the lack of consistency and continuity
among the satellite-derived products (Hollmann et al., 2013).

Sea surface temperature and salinity are important variables,
from the perspective of disease and the productivity of farmed
and wild fish stocks (Mueter et al., 2002; Malick and Cox,
2016; Maynard et al., 2016). Temperature regulates metabolic
processes in finfish, including respiration, growth and feed
conversion ratios (Handeland et al., 2008), and has an impact
on the immune system (Bowden, 2008). Temperature also affects
the ability of the surrounding ecosystem to metabolize waste
products and uneaten feed, influencing oxygenation, and creating
an important link between fish and ecosystem health (Findlay
and Watling, 1997). Connectivity within and among wild and
farmed fish populations is dependent upon abiotic factors such as

temperature, salinity, and ocean circulation, which affect survival
and dispersion of parasites and pathogens (Stien et al., 2005;
Stucchi et al., 2011; Rogers et al., 2013; Rees et al., 2015). The
spatial dynamics of parasites and pathogens of fish are likely to
be affected by weather events, seasonality, and climate change,
which may influence dispersal and population structures with
implications for fish health (Harvell et al., 1999; Marcogliese,
2001; Altizer et al., 2006). As such, accurate measurements of
temperature and salinity are prerequisites for the creation of
oceanographic circulation models used in various aspects of
aquaculture planning and regulation (Brewer-Dalton et al., 2015;
Foreman et al., 2015).

Since most marine finfish aquaculture occurs within the
coastal zone, salinity and temperature regimens can be dynamic
(Groner et al., 2016). Salinity near salmon farms is influenced
by fresh water inflow from rivers and precipitation, coastal and
oceanic water exchange, mixing of the water column (due to wind
and tides), estuarine circulation, and inlet bathymetry. Water
temperature is influenced by many of these same factors, as
well as by atmospheric and oceanic heat exchange (Jones and
Beamish, 2011; Jones and Johnson, 2015).

Gridded oceanic RS data are usually satisfactory for offshore
areas and larger spatial or temporal scales, such as regional
phenomena or weekly/ monthly aggregates (Castillo and Lima,
2010; Smit et al., 2013). However, the same data may not be
equally suitable in coastal waters, where the spatial resolution of
SST and SSS satellite products, with pixel edge lengths of 1 km
or larger, are generally too coarse to adequately capture coastline
features (Urquhart et al., 2012). Satellite remote sensing in coastal
zones can be complicated by weather patterns and dissolved
organic compounds of terrestrial origin, such as tannins, that
may attenuate signals and yield unreliable results. As a result,
many processed RS products apply a land mask that excludes
mixed pixels in nearshore areas and use temporal averaging to
account for missing observations. Previously published studies
comparing in situ water temperature measurement in coastal
waters suggest significant differences in agreement among RS SST
products across geographical regions (Castillo and Lima, 2010;
Smit et al., 2013; Williams et al., 2013; Stobart et al., 2015; Wu
et al., 2016).

Given the large spatial extent of aquaculture in British
Columbia (BC) and the spatio-temporal variability of influential
factors on environmental determinants, investigation of
corresponding RS-data for use in aquaculture research in BC
is prudent to assess their reliability as surrogates for in situ
measurements. The objectives of this study were to explore the
spatial coverage of remotely-sensed SST and SSS data for coastal
areas of BC, to compare RS data with in situ measurements of
water temperatures and salinity, and to suggest adjustments for
the use of such data in aquaculture research.

MATERIALS AND METHODS

Sources of Data
In Situ Data
In situ water temperature and salinity data were collected
by salmon farm operators and the Broughton Archipelago
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Management Plan research project (BAMP, 2010) during wild
fish surveillance for sea lice. Most farms (n = 19) and
wild fish surveillance sites (n = 192) were in the Broughton
Archipelago, while a smaller number of sites (5 farm and
16 wild sites) were located in Muchalat Inlet on the west
coast of Vancouver Island, British Columbia (Figure 1). Salinity
and temperature measurements were taken at wild sites using
either YSI R© 85 or YSI R© 6-series multi-parametric sondes (YSI
Incorporated, www.ysi.com). At farm sites, these were measured
using an RHS-10ATC refractometer (Huake Instrument Co,
Guangdong, China), and an OxyGuard Handy Polaris portable
meter (Arriagada et al., 2016). Farm measurements were taken at
the surface (<20 cm) and at depths of 1, 5, 10, and 15m, while
wild site measurements were taken at the surface (<20 cm) and
at depths of 1 and 5m. Water temperature and salinity were
recorded up to two decimal points in degrees Celsius and parts
per thousand (ppt) respectively, daily, for the whole year, for each
salmon farm site (when sites were active), at the same location
and at approximately the same time each morning. Wild fish
surveillance measurements were collected weekly betweenMarch
and July of each year at different times during the day. We had
access to in situ data from 2003 to 2016. In situ data were checked
for consistency, and likely data entry errors were replaced with
missing values.

Remote Sensing Data
We used level 3 and 4 gridded RS data products in this study. The
level 3 “composite” products provide data for variables mapped
on uniform space-time grids, usually with some averaging, but
do not perform any gap-filling or interpolation. The level 4
“analysis” products are generated by combining several sources of
SST data (e.g., satellites, moorings, and ship-based observations)
through statistical interpolation and temporal averaging (Martin
et al., 2012). These products provide gap-free gridded outputs
(Parkinson et al., 2006), and are thought to provide the best
available estimates of SST/SSS through data assimilation of
available datasets. They provide global coverage and foundational
estimates free of diurnal variation (Piolle et al., 2010; Donlon
et al., 2012), which are representative of bulk ocean properties;
in contrast to the skin or sub-skin estimates provided by the
infrared (IR) or microwave satellite sensors (Beggs, 2010; Donlon
et al., 2012). Hereafter, the terms “level 3 composite products”
and “level 4 analysis products” refer to direct satellite-derived
level 3 data, or estimates based on analysis and interpolation of
SST/SSS products, respectively. We assessed products that were
freely available, widely used, active at the time of study, and
effective for coastal data retrieval (Yuan, 2009).

The daily SST level 3 composite product, with 4.6 and 9 km
spatial resolution captured via the MODIS (Moderate Resolution
Imaging Spectroradiometer)1 sensor on board the Aqua and
Terra satellites, and the daily SSS level 3 composite product with
1 degree spatial resolution, captured via SSS sensors on board the

1NASA. Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology

Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua

Sea Surface Temperature Data; 2014 Reprocessing. Greenbelt, MD: NASA

OB.DAAC. (Accessed July 3, 2016).

Aquarius satellite, were obtained from the Ocean Color website
(https://oceancolor.gsfc.nasa.gov/). These daily SST and SSS level
3 composite products are processed andmaintained by the NASA
Ocean Biology Processing Group. A second daily SSS level 3
composite product from the Soil Moisture and Ocean Salinity
(SMOS) satellite of the European Space Agency was acquired,
along with daily SST and SSS level 4 analysis products from
the Copernicus Marine Environment Monitoring Service of the
European Union (CMEMS)2. Table 1 presents the details on the
SST and SSS products evaluated, indicating source availability
and spatial-temporal resolution.

Remotely-sensed data for the corresponding in situ sites (wild
and farm) were retrieved from each of the selected SST and SSS
products for the study duration (2003–2016), using the raster
(Hijmans and van Etten, 2014) and ncdf4 (Pierce, 2012) packages
for the R software environment (R Core Team, 2015).

Statistical Comparison
The statistical analyses were performed using Stata (Release 14.1;
StataCorp, College Station, TX, USA, 2015) and R version 3.4.1
(R Core Team, 2015) using packages hydroGOF (Zambrano-
Bigiarini, 2011) and nlme (Pinheiro et al., 2017). The in situ
measurements at 1m depth were deemed to be the best/most
reasonable depth to compare with RS measurements. A number
of metrics were used to assess the relationship between products
and in situ measurements. First, the difference between the
two measurements (value from the overlapping pixel of the RS
product minus the in situmeasurement, referred to as “bias”) was
computed. The mean, standard deviation (SD), and root mean
square error (RMSE) of these biases were estimated. Pearson
correlation coefficients and concordance correlation coefficients
(CCC) between pairs of measurements were also computed. The
CCC (Lin, 1989) provides an indication of agreement between
two measurements (see Appendix for formula), with values close
to 1 indicating very good agreement and values approaching
zero reflecting very poor agreement. As in the case of Pearson’s
correlation, this coefficient is dimensionless; however, CCCs are
penalized (adjusted downward) to account for both location-
and scale-shifts between measurements, as opposed to simply
describing their linear dependence (Pearson correlation).

The spatial footprint of the in situ measurements was point-
based, while that of the composite and analysis products was
a 2-dimensional pixel that occasionally encompassed multiple
in situ points. To evaluate the impact multiple sites within a pixel
could have on our metrics we averaged all in situ measurements
for a given day, within a pixel, and compared this value to the
measurements from the RS products.

We also compared larger temporal windows (weekly and
monthly averages), as these better reflect the temporal scales
likely to be encountered in aquaculture research. We used index
of agreement (d-index) to compare in situ measurements with
RS products; this approach has been widely used to assess
the performance of hydrologic models (Zambrano-Bigiarini,
2011). The d-index (see Appendix for formula) represents the

2CMEMS. Copernicus Marine Environment Monitoring Service (European Union).

Available online at: http://marine.copernicus.eu
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FIGURE 1 | Locations where in situ water temperature measurements and corresponding satellite-derived SST values were obtained for each of the study regions (A)

Muchalat Inlet and (B) Broughton Archipelago, with (C) inset map showing administrative boundaries of British Columbia.

ratio between RMSE and the potential error between the two
measurements (Willmott, 1984; Swierczynska et al., 2016). It is
also dimensionless, with a value that ranges from 0 (no agreement
at all) to 1 (perfect agreement), and is sensitive to differences
between two measurements.

Finally, in order to adjust for differences, a mixed linear
regression model was fitted to predict the in situ measurement,
using the best performing RS product as the predictor,
with sampling site as a random effect (allowing capture
of the variability in both the intercept and the coefficient
of the predictor), and accounting for autocorrelation
between residuals of daily measurements within each site
with a first-order autoregressive (AR1) or exponential
autocorrelation structure. In order to meet the assumption
of linearity, the fitted model also tested functional forms
of the predictor using quadratic terms (both as fixed and
random effects) and evaluated the fit of the model using both
the significance of the additional terms and likelihood ratio
test for the nested models. For this analysis, pixels were not
included as a random effect due to limited replication at that
level.

RESULTS

The total numbers of available daily in situ measurements,
from the years 2003–2016, for water temperature and salinity
at 1m depth, were 20,513 (18,093 from farm sites) and 20,038
(18,563 from farm sites), respectively. The mean in situ water
temperature and salinity was 10.07◦C (range 2.60–21.80) and

23.44 ppt (range 0–33), and varied between the two study areas.

The seasonal means for water temperature and salinity were
7.27, 10.44, 13.16, and 8.87◦C, and 24.94, 22.43, 22.88, and 23.70
ppt, respectively. Due to many days of cloud cover and the fact
that some sites (32, mostly wild surveillance sites) were beyond
the satellite coverage area (see Figure 2), a smaller number of
matched observations was available for comparison for the SST
products. The groups of spatio-temporally (by site and date)
matched in situ and SST measurements varied for each of the
products (see Table 2).

The mean bias (◦C), its SD, and the RMSE for each RS
SST product, along with the corresponding Pearson correlation
coefficient, CCC, index of agreement (d-index), and proportions
of missing data are summarized in Table 2. Of the SST products
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TABLE 1 | Summary of the level 3 composite and level 4 analysis and modeled SST/SSS products evaluated in the present study.

Name of products Source Type Resolution Comments Availabilityg

Spatial Temporal

A. SST PRODUCTS

Aqua SST 11µ MODISa/NASAb Level 3 composite ∼4 km Daily Day July 2002-present

Aqua NSST 11µ Night

Aqua SST4 4µ Night

Aqua SST9 4µ ∼9 km Night

Terra SST 11µ ∼4 km Day February 2000-present

Terra NSST 11µ Night

UKMO OSTIA SST* UKMOc Level 4 analysis 1/20 degree (∼6 km) Day+Night April 2006-present

ODYSSEA SST* CERSATd 0.1 degree (∼11 km) Night August 2007-present

G1SST (Global 1 km SST)* JPLe 1 km Day+Night August 2010-present

B. SSS PRODUCTS

Aquarius SSS NASAb Level 3 Composite 1 degree (∼110 km) Daily – August 2011-present

SMOS SSS* European Space Agency 1 degree (∼110 km) – January 2010-present

Global Ocean Physics SSS* Mercator Oceanf Modeledh 1/12 degree – December 2006-present

aModerate Resolution Imaging Spectroradiometer on board Aqua and Terra satellites respectively (Minnett et al., 2004).
bhttps://oceancolor.gsfc.nasa.gov/cgi/l3; 4 and 11µ define short- and long-wavelength SSTs.; SST4 and SST9 designate spatial resolution of 4 and 9 km.
cMeterological Office UK; data sources include remote-sensing devices with IR and microwave sensors, and in situ data from ships, drifting, and moored buoys (Donlon et al., 2012).
dFrench ERS Processing and Archiving Facility (Autret and Piollé, 2007; Piolle et al., 2010).
eJet Propulsion Laboratory; data sources include IR and microwave satellite sensors and in-situ SSTs (Chao et al., 2009).
fhttp://www.mercator-ocean.fr/en
gUpdated near real-time.

*Obtained via the Copernicus Marine Environment Monitoring Service of European Union (http://marine.copernicus.eu).
hThe modeled product employ knowledge of ocean dynamics and assimilate other SSS products.

evaluated, UKMO OSTIA SST (UK Meteorological Office), a
level 4 analysis product, had by far the highest retrieval (fewest
missing data), the largest correlation coefficient (0.88), CCC
(0.86), and d-index (0.93), and the smallest mean and SD for the
bias (−0.14 and 1.40, respectively). The plots of the in situ water
temperature measurements for the SST products are presented in
Figure 3, which indicates a noticeably strong linear relationship,
with some dispersion, between in situ water temperature and
UKMO OSTIA SST.

Of the 14,506 spatio-temporally matched in situ
measurements with UKMO OSTIA SST, 61% were single
measurements within a pixel and day, while 36% of the
measurements included two sites within the same pixel and day.
The maximum number of sites within a pixel and day was four.
After accounting for multiple in situ sites within a pixel/day
(n= 11,595), the mean bias and the SD of the mean bias was 0.06
and 1.4◦C, respectively, while the correlation coefficient and the
CCC were 0.87 and 0.85, respectively.

The correlation coefficients (0.89 and 0.90) and the CCCs
(0.87 and 0.88) increased marginally when weekly and monthly
averages of UKMO OSTIA SST were compared with in situ
measurements, suggesting a marginal increase in similarity when
measurements were averaged over a longer period. However,
the magnitude of the bias remained unchanged (−0.14), with
a slight decrease in variability (SD: 1.30 and 1.22, respectively).
Similarly, the correlation coefficients were higher for the subset
of the data that included only farm sites, than for those from
wild surveillance sites (0.90 compared to 0.83, respectively), as

was the case for the CCCs (0.88 and 0.64). This suggests higher
variability in the in situ measurements from wild surveillance
sites.

The retrieval rates of level 3 composite SST values and
their respective statistical comparison with in situ data, using
Terra and Aqua satellites with 9 km spatial resolution, were not
different from SST values retrieved from Aqua satellites with
4 km spatial resolution (Table 2); thus, summary statistics for
those SST products are not presented. Among other level 4
analysis SST products, G1SST (Global 1 km SST) had very limited
coverage for our study sites, with many missing values, and
the ODYSSEA SST had poor correlation (<0.30) with in situ
measurements, so detailed statistics for these products are not
presented.

Due to the higher variability of in situ measurements from
the wild surveillance sites, the regression model included only
measurements from farm sites. A mixed linear regression model
with UKMOOSTIA SST as the predictor for in situmeasurement
estimated an average coefficient of 0.89◦C (p< 0.001) for UKMO
OSTIA SST across sites that varied between 0.22 and 1.56◦C, 95%
of the time (Table 3).

None of the level 3 composite SSS products (Aquarius
and SMOS) evaluated provided corresponding values for in
situ records, mostly due to their lack of spatial coverage (see
Figure 2D) for the study area. The modeled SSS product did have
partial coverage for our study area, but the retrieved values had
poor correlation (<0.20) with in situ salinity measurements, and
detailed statistics for these products are not presented.
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FIGURE 2 | Representation of coverage (for randomly picked dates) of some of the level 3 composite and level 4 analysis SST and SSS product/s for the study sites.

(A) Aqua NSST 11µ, (B) Aqua SST 4µ, (C) UKMO OSTIA, SST, and (D) Aquarius SSS (right). Maps on the top panel and bottom left are on the same scale.

DISCUSSION

The main objective of this study was to evaluate whether
satellite-derived SST and SSS products provide representations
of temperature and salinity in marine ecosystems that would
make them suitable as surrogates for environmental variables in
aquaculture research. To the best of our knowledge, this is the
first study to utilize existing in situ data from fish farms and wild
surveillance programs to assess the suitability of RS SST and SSS
products.

Our study demonstrated that of the SST products considered,
the UKMO OSTIA SST was the most representative of the water
temperature profile in coastal BC, Canada. A linear mixedmodel,
after adjusting for autocorrelation, suggested that between-site
variation was significant. The UKMO OSTIA SST (a level 4
analysis product) uses satellite SST data provided by international
agencies via the Group for High Resolution SST (http://www.
ghrsst.org), which include data from both microwave and IR
satellite instruments, as well as in situ SST data (Donlon et al.,
2012). The SST level 3 composite products we evaluated were
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TABLE 2 | Mean bias and correlations between remotely-sensed (level 3 composite and level 4 analysis) SST products and in situ water temperature (at 1m depth) from

2003 to 2013!.

SST Products Na Missing data (%)b Mean bias (◦C) SDc of the bias RMSEd Correlatione CCCf d-indexg

Aqua SST 11µ 747 95.4 −0.83 4.156 2.214 0.642 0.525 0.72

Aqua NSST 11µ 737 94.6 −1.13 3.193 1.923 0.771 0.665 0.81

Aqua SST4 4µ 3,533 82.2 −1.40 2.377 1.712 0.834 0.743 0.86

UKMO OSTIA SST 14,506 1.61 −0.14 1.40 1.384 0.880 0.860 0.93

!UKMO OSTIA SST data availability started in April 2006.
aNumber of spatially and temporally (by site and date) matched in situ and SST records.
bMissing values calculated after removing all the sites that were consistently beyond the coverage area for all of the above products.
cStandard deviation.
dRoot mean square error.
ePearson correlation coefficient.
fConcordance correlation coefficient.
g Index of agreement.

FIGURE 3 | Scatter plots of in situ water temperature (at 1m depth) to that of each of the satellite-derived SST products (level 3 and level 4) for several sites in the

Broughton Archipelago and Muchalet Inlet in coastal British Columbia.

often missing information for the study sites, likely due to
poor satellite coverage, application of a land mask, or cloud
cover (Webster et al., 1996; Guan and Kawamura, 2003). Similar
observations for coastal areas have been noted by other studies

(Castillo and Lima, 2010; Smit et al., 2013), but the proportion
of missing values (80–90%) for some products in our study area
was strikingly high, something not reported in previous studies.
Nevertheless, the magnitude of bias and correlation between the
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TABLE 3 | Estimates from the linear mixed model, with UKMO OSTIA SST as the

predictor, to adjust for in situ measurements (outcome) from coastal British

Columbia, with sites as the random intercept and UKMO OSTIA SST as random

slope (n = 12,759).

Parameter Coefficient SEa p-value [95% Confidence

interval]

Intercept 0.931 0.634 0.142 −0.312 2.174

UKMO SST 0.890 0.081 <0.001 0.731 1.050

RANDOM-EFFECTS PARAMETERS

SiteID: Identity

SDb (Intercept) 2.665

SDb (UKMO OSTIA

SST)

0.344

Correlation (Intercept,

UKMO OSTIA SST)

−0.995

Residual: AR(1)

Rho 0.792 . . .

SDb (Residual) 0.978

aStandard Error.
bStandard Deviation.

in situ and RS level 3 composite SST products were comparable
to those of other published studies (Castillo and Lima, 2010;
Williams et al., 2013).

Our analysis also suggested that the UKMO OSTIA SST
measurements were in closer agreement to in situmeasurements
from farm sites than for wild surveillance sites. The wild
surveillance site measurements were captured from shallower
waters close to coastlines, and this may have resulted in lower
correlation coefficient and CCC values. None of the SSS products
evaluated appeared promising for use in aquaculture studies,
either due to lack of coverage or very poor correlation with
in situ measurements. One of the underlying reasons for this is
that, to date, all level 3 composite and modeled SSS products
have focused on open ocean rather than coastal applications. The
spatial resolution of data from the ESA’s Soil Moisture and Ocean
Salinity as well as NASA’s Aquarius missions are too coarse for
coastal and estuarine environments (Figure 2D; Urquhart et al.,
2012). In time, finer resolutions, such as that offered by NASA’s
Soil Moisture Active Passive mission, or novel methods based
on selected wavelengths of RS reflectance may provide improved
estimates of SSS (Urquhart et al., 2012; Qing et al., 2013).

It should also be noted that certain inherent characteristics of
the SST products affect both the retrieval rate and the correlation
with in situ measurements. For example, SST products from IR
sensors, such as those on MODIS, are sensitive to cloud cover
(a primary cause of missing data), while those from microwave
sensors are sensitive to precipitation, land contamination, and
surface roughness (Donlon et al., 2012). Microwave sensors
are limited to much coarser spatial resolution than products
derived from IR bands. As a result, IR sensors can retrieve
SSTs to within around 1 km of land (dependent on the land
mask used), whereas microwave sensors cannot likely retrieve
useable SST data within around 75 km of land, far from most
aquaculture production areas. Further, IR light is fully attenuated

within the top 1mm of the water column while microwave
penetrates only a little deeper (a few mm). In contrast the in
situ measurements that we used were typically from a depth of
1m, so it is possible that we were effectively comparing different
segments of the water column when using the level 3 composite
SST products.

Similarly, the smaller disagreement between the level 4
analysis product, UKMO OSTIA SST, and in situ measurements
may be explained by the fact that the modeled product
estimates water temperature through data assimilation from
many sources over an integrated surface layer of ∼1m, more
closely matching the methods for in situmeasurements. Another
likely explanation is that in situ measurements at 1m depth,
despite time differences, correlated more strongly because there
is less variability (due to diurnal variability, wind, weather, and
currents) than at the surface (Donlon et al., 2012). The results
may also have been influenced by a temporal mismatch, as
instantaneous in situ measurements do not necessarily coincide
with the RS data representing either day-time or night-timemean
values, introducing a potential source of error and the possibility
of aliasing. Additionally, there will inevitably be some mismatch
in spatial scale, as the RS and modeled products integrate data
over a larger area (1–100 km pixel size) when compared to the
point-based in situ observations.

Lastly, in some areas within the study region there were
multiple in situ observations recorded within single spatial
extents (grid pixels) of the RS composite and analysis products.
The aggregation of sites within pixels inevitably led to an
overall reduction in the between-site variability and the complete
removal of variability among sites within grid pixels when
extracting RS data for use at individual sites. This issue may
create limitations for researchers when using RS data rather than
in situ observations. The extent of the limitation will depend on
the application and objectives of the aquatic research, being most
significant when capturing among-site variability is important.

The present study reinforces the findings of previous
research (Castillo and Lima, 2010; Smit et al., 2013; Williams
et al., 2013; Stobart et al., 2015; Wu et al., 2016). The type
of SST product used (i.e., composite vs. analysis, satellite,
and sensor types), the methods used for capturing in situ
measurements, the location of the study area, and the temporal
and spatial resolution used for aggregating the RS data are
among the key factors associated with a true representation
of water temperature profiles in the study area. The evidence
suggests significant differences in agreement between satellite
products across different regions (Castillo and Lima, 2010; Smit
et al., 2013; Williams et al., 2013; Stobart et al., 2015; Wu
et al., 2016), which highlights the need for similar studies
in other aquaculture areas to assess the suitability of SST
products.

Since available in situ water temperature data sources (in
our case salmon farms and wild surveillance data) may have
substantial numbers of missing values and temporal gaps,
the present study provides evidence that satellite data can
complement, if not be a substitute for, existing temperature
data, though satellite estimates of SSS are not currently suitable
for aquaculture applications. This could significantly improve
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monitoring capabilities relative to in situ observations (Urquhart
et al., 2012), as in situ data are not always openly available and
often have a lag time (depending on the field collection regimen).
The near real-time and free availability of these satellite-based
datamake them suitable for use in forecast models, inmonitoring
and surveillance of pathogens, and in creating risk maps for fish
health.
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APPENDIX

1. Concordance correlation coefficient: The concordance
correlation coefficient (Lin, 1989), ρ̂c , between two vectors (x
and y) of length N is computed as

ρ̂c =
2sxy

s2x + s2y + ( x− y )2

where the means, the variances and the covariance is respectively
computed as:

(a) the means

x =
1

N

N∑

n=1

xn

y =
1

N

N∑

n=1

yn

(b) the variances

s2x =
1

N

N∑

n=1

(xn − x )2

s2y =
1

N

N∑

n=1

(yn − y )2

(c) and the covariance

sxy =
1

N

N∑

n=1

(xn − x ) (yn − y )

2. Index of agreement: The index of agreement (Willmott,
1984), d-index, between two vectors (x and y) of length N is
computed as

d − index = 1−

∑N
n=1 (xn − yn )

2

∑N
n=1 (|xn − x | + |yn − x |)2
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