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Coral bleaching events are increasing in frequency, demanding examination of the

physiological and molecular responses of scleractinian corals and their algal symbionts

(Symbiodinium sp.) to stressors associated with bleaching. Here, we quantify the

effects of long-term (95-day) thermal and CO2-acidification stress on photochemical

efficiency of in hospite Symbiodinium within the coral Siderastrea siderea, along with

corresponding coral color intensity, for corals from two reef zones (forereef, nearshore)

on the Mesoamerican Barrier Reef System. We then explore the molecular responses

of in hospite Symbiodinium to these stressors via genome-wide gene expression

profiling. Elevated temperatures reduced symbiont photochemical efficiencies and were

highly correlated with coral color loss. However, photochemical efficiencies of forereef

symbionts were more negatively affected by thermal stress than nearshore symbionts,

suggesting greater thermal tolerance and/or reduced photodamage in nearshore corals.

At control temperatures, CO2-acidification had little effect on symbiont physiology,

although forereef symbionts exhibited constitutively higher photochemical efficiencies

than nearshore symbionts. Gene expression profiling revealed that S. siderea were

dominated by Symbiodinium goreaui (C1), except under thermal stress, which caused

shifts to thermotolerant Symbiodinium trenchii (D1a). Comparative transcriptomics of

conserved genes across the host and symbiont revealed few differentially expressed

S. goreaui genes when compared to S. siderea, highlighting the host’s role in the

coral’s response to environmental stress. Although S. goreaui transcriptomes did not

vary in response to acidification stress, their gene expression was strongly dependent

on reef zone, with forereef S. goreaui exhibiting enrichment of genes associated with

photosynthesis. This finding, coupled with constitutively higher forereef S. goreaui

photochemical efficiencies, suggests that functional differences in genes associated with

primary production exist between reef zones.
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INTRODUCTION

Dinoflagellates are ubiquitous unicellular algae that can occur
as free-living cells, endosymbionts, or parasites across a
wide variety of marine organisms. The most recognized
among endosymbionts is the genus Symbiodinium, which
establish obligate relationships with many reef-building corals
(Trench and Blank, 1987). Photosynthetically-derived nutrients
translocated from Symbiodinium to the host can yield up to
100% of the coral energy budget (Muscatine and Cernichiari,
1969; Muscatine, 1990), allowing for prolific coral growth in
shallow oligotrophic tropical waters. In turn, Symbiodinium gain
a protected microenvironment with access to light, inorganic
nutrients, and dissolved inorganic carbon provided by the
host (Muscatine and Cernichiari, 1969; Yellowlees et al., 2008;
Wangpraseurt et al., 2014; Barott et al., 2015; Enríquez et al.,
2017; Scheufen et al., 2017). Although initially considered a
single species, advancements in genetics have uncovered nine
divergent clades within Symbiodinium, designated A–I (Coffroth
and Santos, 2005; Pochon and Gates, 2010; Thornhill et al., 2014),
with additional evidence for significant within-clade genetic
diversity (Howells et al., 2012; Pettay and Lajeunesse, 2013;
Thornhill et al., 2017).

Increasing atmospheric pCO2 has reduced seawater pH,
which impairs reef accretion (Hoegh-Guldberg et al., 2007),
and has increased sea surface temperatures, which can cause a
breakdown of the coral-algal symbiosis—a process termed “coral
bleaching” (Hoegh-Guldberg, 1999; Baker, 2003; Weis, 2008;
Hoegh-Guldberg and Bruno, 2010). During bleaching, the coral
is deprived of symbiont-derived organic carbon, which can lead
to reduced growth, infection, and mortality. Bleaching events
have been recognized as the primary driver of recent global
coral reef degradation and have been increasing in frequency
and severity over the past century (Pandolfi et al., 2011; Hughes
et al., 2017). However, the rich genetic diversity of Symbiodinium
often yields functional diversity, which may confer resilience
to environmental change. For example, the composition of in
hospite Symbiodinium communities can shift after bleaching
disturbances (Baker, 2001; Thornhill et al., 2006; Jones et al.,
2008; Kemp et al., 2014; Silverstein et al., 2015), which can
strongly influence coral gene expression and future bleaching
susceptibility (Desalvo et al., 2010a; Jones and Berkelmans, 2010;
Howells et al., 2012). A more comprehensive understanding of
how coral-Symbiodinium associations respond to ocean warming
and acidification is needed to predict coral reef responses to
global change.

Studies of Symbiodinium physiology document a wide
array of stress responses to environmental change, including
impairment/inactivation of photosynthesis at high temperatures
(Iglesias-Prieto et al., 1992; Iglesias-Prieto and Trench, 1994),
increased production of reactive oxygen species (ROS) and
antioxidant activity in response to thermal and UV exposure
(Lesser, 1996; Suggett et al., 2008; Gardner et al., 2017), and
reduced symbiont pigment concentrations at low pH (Tremblay
et al., 2013). In contrast to these strong physiological responses,
there is mounting evidence that Symbiodinium lack strong
transcriptional responses to global change stressors, which

starkly contrasts their host’s transcriptional response (Leggat
et al., 2011; Barshis et al., 2014; Davies et al., 2016). Leggat
et al. (2011) found that Symbiodinium exhibit few changes in
expression of stress response genes under thermal stress when
compared to these same genes in their coral host. Minimal
transcriptomic responses have also been observed in both
Symbiodinium types (ITS1, ITS2, and cp23-determined) D2
and C3K following heat exposure (Barshis et al., 2014), which
contrasts widespread transcriptomic shifts observed in the coral
host exposed to the same heat stress (Barshis et al., 2013).

Despite the unresponsiveness of Symbiodinium gene
expression to stressors, transcriptome profiles were found
to be highly divergent among Symbiodinium clades D2 and
C3K, regardless of experimental treatment, providing evidence
for functional differences amongst Symbiodinium lineages
(Barshis et al., 2014). Functional differences inferred from
transcriptomics have also been observed within Symbiodinium
lineages. For example, comparative transcriptomics of a variety of
clade B strains revealed strain-specific differences in expression
(Parkinson et al., 2016), providing additional evidence that
substantial transcriptomic functional variation exists within and
across Symbiodinium lineages.

Clade C strains are the most derived Symbiodinium lineage
and exhibit higher within-clade diversity when compared to
other, more basal clades (Pochon et al., 2006; Pochon and Gates,
2010; Lesser et al., 2013; Thornhill et al., 2014, 2017). There
is therefore great interest in understanding how this diversity
within clade C Symbiodinium influences the coral’s response
to global change stressors. Transcriptomes of two divergent
C1 lineages previously shown to exhibit distinct responses to
thermal stress, both in hospite and in culture (Howells et al.,
2012), revealed divergent expression patterns in response to heat
stress, providing insights into how symbiont functional variation
could lead to variation in coral thermal tolerance (Levin et al.,
2016). Given the important role that coral host-Symbiodinium
interactions play in a corals’ response to environmental stress
(Parkinson et al., 2015), it is critical to determine how each
symbiotic partner responds to multiple stressors. However, few
studies have explored whole transcriptome responses of different
in hospite Symbiodinium populations to ocean warming and
acidification, and even fewer have compared the responses of
both symbiotic partners in parallel.

Here, we exposed the resilient and ubiquitous Caribbean reef-
building coral Siderastrea siderea and its in hospite Symbiodinium
from two different reef zones (nearshore and forereef) to thermal
stress (Temperature = 25, 28, 32◦C) and CO2-acidification
stress (pCO2 = 324, 477, 604, 2553µatm) for 95 days. Our
previous work has shown that both elevated temperature and
pCO2 elicited strong but divergent responses of the host’s
transcriptome (Davies et al., 2016), with increased temperatures
substantially reducing calcification rates, with smaller declines
observed in response to elevated pCO2 (Castillo et al., 2014).
Here, we build on these studies by quantifying changes in
coral color intensity, Symbiodinium photochemical efficiencies
of photosystem II (Fv/Fm), and transcriptomic responses of
Symbiodinium in hospite. We combine these physiological and
transcriptomic observations of the symbiont with previously
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published observations of the host to advance our understanding
of their combined response to thermal and acidification stress,
thereby improving our ability to predict a corals’ ecological
trajectory in response to these global change stressors.

MATERIALS AND METHODS

Experimental Design
Physiological measurements, transcriptomes, and gene
expression analyses presented here build upon experiments
previously published by Castillo et al. (2014) and Davies et al.
(2016). Briefly, whole S. siderea colonies from nearshore (N = 6)
and forereef (N = 6) reef zones were collected from the Belize
Mesoamerican Barrier Reef (total colonies = 12) in July 2011
and transported to the University of North Carolina at Chapel
Hill (UNC) Aquarium Research Center. At UNC, whole coral
colonies were sectioned into 18 fragments, each of which were
maintained in one of six experimental treatments (3 tanks
per treatment; 18 tanks total). Treatments tested the effects of
temperature and pCO2 independently. The pCO2 treatments
corresponded to near-pre-industrial (P324: 324± 89µatm, 28.14
± 0.27◦C), predicted end-of-century (P604: 604 ± 107µatm,
28.04 ± 0.28◦C), and an extreme mid-millennium scenario
(P2553: 2553 ± 506µatm, 27.93 ± 0.19◦C). Temperature
treatments spanned the monthly minimum and maximum
seawater temperatures (T25: 25.01 ± 0.14◦C, 515 ± 92µatm;
T28: 28.14 ± 0.27◦C, 324 ± 89µatm, T32: 32.01 ± 0.17◦C,
pCO2 472 ± 86µatm) over the 2002–2014 interval (Castillo
and Helmuth, 2005; Castillo and Lima, 2010; Castillo et al.,
2012). The same treatment condition was used for pCO2 and
temperature controls, which represented near-present-day pCO2

and annual mean temperature (Control: 477 ± 83µatm, 28.16
± 0.24◦C). Tanks were illuminated with 250 µmol photons m−2

s−1 on a 12-h light-dark cycle for 95 days. Upon completion of
the experiment, tissue (coral+ symbiont) was extracted by water
pick, immediately preserved in RNAlater, and stored at −80◦C
until RNA was extracted.

Symbiodinium Physiology: Coral Color and
Photochemical Efficiency
Coral color from standardized photographs has been historically
used as an indicator of chlorophyll A concentration and symbiont
density, and more generally as an indicator of coral bleaching
(i.e., Winters et al., 2009; Kenkel et al., 2013; Chakravarti et al.,
2017). Coral fragments were photographed with a standardized
color scale at the end of the 95-day experiment prior to
tissue extraction. Adobe Photoshop was first used to balance
exposures, which were standardized across photographs using
a white standard. Total red, green, blue, and sums of all color
channel intensities (red, green, blue) were normalized relative
to the standardized color scale in each photo and calculated
for 10 quadrats of 25 × 25 pixels within each coral fragment
as a measure of brightness, with higher brightness indicating
a reduction in coral color (i.e., reduced symbiont density
and chlorophyll a concentration). This analysis was performed
following Winters et al. (2009) using the MATLAB macro
“AnalyzeIntensity.” Resulting data were inverted so that higher

values represent increased coral pigmentation (i.e., increased
symbiont density and chlorophyll a concentration).

One-time measurements of the maximum photosynthetic
efficiency of photosystem II (Fv/Fm; where Fv = Fm – Fo;
and Fv, Fm, and Fo are variable, maximum, and minimum
fluorescence, respectively) were obtained on day 94 of the
experiments with an underwater PAM fluorometer (saturation
width 0.80 s of >5,000 µmol photon m−2 s−1 saturation light
pulse; Diving-PAM, Walz, Germany) at 20:00 h, 2 h after daytime
illumination ended to ensure that non-photochemical quenching
was suppressed and that the corals were adequately dark-adapted
(three measurements per coral fragment). Reductions in Fv/Fm
values are indicative of sustained damage to the photosystem.

All statistical analyses were implemented in R (RDevelopment
Core Team, 2015) using the ANOVA function based on log-
transformed sum of all color channels and Fv/Fm data. The
sum of all channels was chosen as the color metric proxy here
since these data correlated best with Fv/Fm (Figure 1B; Adjusted
r2: 0.7366, p < 0.001). Experimental treatment and reef zone
were modeled as fixed effects and significant differences across
levels within factors were evaluated using post-hoc Tukey’s HSD
tests. All assumptions of parametric testing were explored using
diagnostic plots in R.

Transcriptome Assembly, Annotation, and
Symbiodinium Identification
Detailed descriptions of sequence library preparations,
transcriptome assembly, and separation of host and symbiont
contigs can be found in Davies et al. (2016). Briefly, RNA was
isolated from 94 coral fragments and pooled by reef zone within
each experimental treatment, yielding a total of 12 sequencing
libraries (Table 1), each of which contained RNA from at
least six fragments. Since each coral can host a community
of Symbiodinium, RNA pooling is not expected to yield any
additional complications compared to preparing each coral
independently. Pooled libraries were prepared and sequencing
was performed using four lanes of Illumina HiSeq 2000 at the
UNC—Chapel Hill High Throughput Sequencing Facility, which
yielded paired-end (PE) 100 bp reads (Table 1).

Transcriptome de novo assembly of over 770 million PE
reads was completed using Trinity (Grabherr et al., 2011)
and resulting contigs were assigned as either coral- or
Symbiodinium-derived contigs using a translated blast search
(tblastx) against host and symbiont specific databases (Davies
et al., 2016). Symbiodinium-specific contigs were annotated by
BLAST sequence homology searches against UniProt and Swiss-
Prot NCBI NR protein databases with an e-value cutoff of
e−5 (UniProt Consortium, 2015). Annotated sequences were
then assigned to Gene Ontology (GO) categories. Transcriptome
contiguity analysis (Martin and Wang, 2011) and Benchmarking
Universal Single-Copy Orthologs v2 (BUSCO; Simão et al., 2015)
were used to assess Symbiodinium transcriptome quality and
completeness.

Symbiodinium Community Composition
To compare Symbiodinium expression across reef zones and
experimental treatments, it was first necessary to determine
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FIGURE 1 | Physiological measurements of in hospite Symbiodinium. (A) Photochemical efficiency of Symbiodinium photosystem II (PSII) (Fv/Fm) after 94 days in

experimental treatments. Blue circles: forereef population average (±SE); red triangles: nearshore population average (±SE). Asterisk (*) indicates a significant

interaction between treatment and reef zone. Treatment pairs lacking a letter in common indicate a statistically significant difference between those treatments

pursuant to Tukey’s Honest Significant Difference tests. High temperatures reduce Fv/Fm, however, symbionts from nearshore environments remain significantly higher

than those from the forereef, while forereef symbionts exhibit higher Fv/Fm in all other treatments. (B) Maximum Fv/Fm of Symbiodinium vs. mean coral color intensity

after 94 days in experimental treatments (T25 = 25.01 ± 0.14◦C, 515 ± 92µatm; Control = 28.16 ± 0.24◦C, 477 ± 83µatm; P324 = 28.14 ± 0.27◦C, 324 ±

89µatm; P604 = 28.04 ± 0.28◦C, 604 ± 107µatm; P2553 = 27.93 ± 0.19◦C, 2553 ± 506µatm; T32 = 32.01 ± 0.17◦C, 472 ± 86µatm), as measured by the

sum of all color intensities in the red, green and blue channels in standardized coral photographs across all treatments. This relationship demonstrates that Fv/Fm and

coral color (a proxy of bleaching) are highly correlated.

TABLE 1 | Summary of RNA libraries, including the number of corals from which RNA was pooled (“Pool”), reef zone where corals were collected (forereef = “FR” and

nearshore = “NS”), temperature (◦C) ±SD, pCO2 (µatm) ±SD, raw 100 bp paired-end reads (“PE Reads”), mapped reads to the coral host, and symbiont (“Mapped”)

and total number of Symbiodinium goreaui-specific read counts (“Symbiont”).

Sample Pool Reef zone Temp (◦C) pCO2 (µatm) PE reads (106) Mapped (106) Symbiont (106)

FR_P324 6 FR 28.14 ± 0.27 324 ± 89 63.6 59.2 24.1

FR_P604 6 FR 28.04 ± 0.28 604 ± 107 77.1 72.3 16.8

FR_P2553 7 FR 27.93 ± 0.19 2553 ± 506 48.1 44.7 17.1

NS_P324 6 NS 28.14 ± 0.27 324 ± 89 88.3 82.4 35.0

NS_P604 8 NS 28.04 ± 0.28 604 ± 107 48.5 45.3 10.5

NS_P2553 6 NS 27.93 ± 0.19 2553 ± 506 69.2 64.6 23.3

FR_T25 11 FR 25.01 ± 0.17 515 ± 92 50.9 47.4 20.5

FR_Control 14 FR 28.16 ± 0.24 477 ± 83 63.2 58.8 24.3

FR_T32 9 FR 32.01 ± 0.17 472 ± 86 50.0 47.2 1.2

NS_T25 7 NS 25.01 ± 0.17 515 ± 92 100.0 93.1 39.9

NS_Control 7 NS 28.16 ± 0.24 477 ± 83 56.7 52.7 23.6

NS_T32 7 NS 32.01 ± 0.17 472 ± 86 54.7 51.5 3.9

TOTAL 770.3 719.2 235.1

Shaded samples were excluded from analyses due to low read counts arising from low RNA yields, resulting in the availability of 235.1 million reads for downstream analyses.

which Symbiodinium lineages were present in each library. Reads
were trimmed with Fastx_toolkit (<20 bp length cutoff and bp
quality score >20) and resulting quality filtered reads were then
mapped to an ITS2-specific database (Franklin et al., 2012) using
Bowtie 2.2.0 with the—a flag to search all possible alignments
(Langmead and Salzberg, 2012). All possible alignments were
identified and then the read was quantified in the analysis
if all possible alignments for that read mapped to a single
reference lineage. This analysis determined that 96.7–100% of

mapped reads from 10 of the 12 libraries exclusively aligned
to a single Symbiodinium lineage (Symbiodinium goreaui C1),
with remaining libraries [nearshore 32◦C (NS_T32) and forereef
32◦C (FR_T32)] hosting divergent communities consisting of
S. goreaui (C1) and Symbiodinium trenchii (D1a). However, these
two libraries hosting divergent communities were excluded from
downstream expression analysis due to temperature-induced
symbiont loss causing low symbiont concentrations, which
ultimately led to insufficient quantities of mapped Symbiodinium
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reads (1.2 and 3.9 million) relative to other libraries (10.5–39.9
million).

Mapping and Differential Expression
Analysis for Symbiodinium Goreaui
Raw reads across samples ranged from 48.1 to 100.0 million PE
100 bp sequences. Quality filtered reads were mapped to the
combined host-symbiont transcriptome (S. siderea + S. goreaui)
and S. goreauimapped reads ranged from 10.5 (NS_P604) to 39.9
(NS_T25)million (Table 1). Differential gene expression analyses
were performed on raw counts withDESeq2 [v. 1.6.3; (Love et al.,
2014) in R (v. 3.1.1; R Development Core Team, 2015)] using the
model: design∼ reef zone+ treatment. Raw counts are available
in Supplementary Table 1. Counts were normalized for size
factor differences and pairwise contrasts were computed for each
treatment relative to the control and between the two reef zones.
A contig was considered significantly differentially expressed if
it had an average basemean expression >5 and an FDR adjusted
p < 0.05 (Benjamini and Hochberg, 1995). Raw counts were then
rlog normalized, a principle coordinate analysis was performed,
and the adonis function tested for overall expression differences
across treatments and reef zones (Oksanen et al., 2018). Gene
expression heatmaps with hierarchical clustering of expression
profiles were created with the pheatmap package in R (Kolde,
2012). Gene ontology (GO) enrichment analysis was performed
using the GO_MWU method, which uses adaptive clustering
of GO categories and Mann–Whitney U-tests (Voolstra et al.,
2011) based on a ranking of signed log p-values (Dixon et al.,
2015). Results were plotted as a dendrogram, which traces the
level of gene sharing between significant categories and lists
the proportion of genes in the dataset with raw p < 0.05
relative to the total number of genes within the entire expression
dataset.

Expression Comparison Across Symbiotic
Partners
To compare expression across symbiotic partners, a subset of
highly conserved genes (HCG) from the coral host (S. siderea)
and S. goreaui were mined based on conserved gene annotation,
which were determined based on BLAST sequence homology
searches against UniProt and Swiss-Prot NCBI NR protein
databases (e < e−5; UniProt Consortium, 2015 (N = 2,862
genes; Supplementary Table 2). Differential gene expression
analyses were performed with DESeq2 using only count data
from the HCG set (design ∼ reef zone + partner.treatment)
(Supplementary Table 3). Counts were normalized for size
factor differences and pairwise contrasts were computed for each
treatment relative to the control for each symbiotic partner.
A contig was considered a significantly differentially expressed
gene (DEG) if it had an average basemean expression >5
and an FDR adjusted p < 0.05 (Benjamini and Hochberg,
1995). Significant DEGs were then compared across symbiotic
partners. In order to confirm that S. goreaui gene expression
results were not confounded by strong reef zone differences in
expression, heatmaps were generated on the HCG panel that

was significantly differentially expressed in the host but not the
symbiont.

RESULTS

Reef Zone Variation in Symbiodinium

Photophysiology
Long-term thermal stress treatments resulted in significantly
reduced Fv/Fm of Symbiodinium (p < 0.001; Figure 1A),
which was highly correlated with reductions in coral
color intensity across all treatments (p < 0.001, r2 = 0.74;
Figure 1B), but particularly in the high-temperature treatment
(Adjusted r2: 0.6183, p < 0.001; Supplementary Figure 1A).
Interestingly, Symbiodinium originating from nearshore
habitats had significantly higher Fv/Fm under thermal stress
when compared to forereef Symbiodinium (Tukey’s HSD
p = 0.008), suggesting increased photoacclimation or local
adaptation of nearshore symbionts to warmer temperatures.
However, nearshore Symbiodinium only exhibited significantly
higher Fv/Fm compared to forereef symbionts in the 32◦C
treatment, although coral color intensity did not differ
between reef zones under control conditions or under thermal
stress (Supplementary Figure 1B). In all other experimental
treatments, forereef symbionts had constitutively higher
photochemical efficiencies (Figure 1A; p < 0.001).

Symbiodinium Goreaui Transcriptome
Sequencing data suggest that S. siderea predominately hosted
S. goreaui (C1), which corroborates previous ITS2 sequencing
work that found S. siderea from Belize hosts primarily C1
(Baumann et al., 2018). Although several clade C Symbiodinium
transcriptomes are publicly available, we assembled a novel
transcriptome since our samples were derived from S. siderea
and clade C Symbiodinium are known to exhibit host
specificity (Thornhill et al., 2014) and may therefore be
divergent from previously assembled transcriptomes of clade C
Symbiodinium hosted by the Pacific coral Acropora hyacinthus
(Barshis et al., 2014) and the Caribbean anemone Discosoma
sanctithomae (Rosic et al., 2015). A total of 1,255,626,250
reads were retained after adapter trimming and quality
filtering (81.5%; 69.6% paired, 11.9% unpaired). The resulting
metatranscriptome contained 333,835 contigs (N50 = 1,673), of
which 65,838 were unambiguously assigned as Symbiodinium
specific contigs, with an average length of 1,482 bp and
an N50 of 1,746. Among symbiont contigs, 45,947 unique
isogroups were obtained, of which 22,239 (48.4%) had gene
annotations based on sequence homology. Thirty-nine percent
of Symbiodinium contigs had protein coverage exceeding 0.75
(Supplementary Figure 1) and results from BUSCO suggest that
81.9% of complete and fragmented BUSCOs were present (77.6%
complete, 4.3% fragmented), indicating that the transcriptome
was fairly comprehensive. All raw reads are archived in the
National Center for Biotechnology Information (NCBI) Short
Read Archive (SRA) under accession number PRJNA307543,
with transcriptome assembly and annotation files available at
www.bco-dmo.org/project/635863.
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Altered Symbiodinium Communities Under
Thermal Stress
Analysis of sequencing libraries for Symbiodiniummaintained at
the low (25◦C) and control (28◦C) temperature treatments (for
all pCO2 treatments) revealed that 96.7–100% of reads mapped
exclusively to one clade (N = 30–436) aligned to S. goreaui
(C1; Figure 2). Analysis of sequencing libraries for Symbiodinium
maintained at high temperature treatments [nearshore 32◦C
(NS_T32); forereef 32◦C (FR_T32)] consisted of divergent
Symbiodinium communities hosting 50–75% Symbiodinium D1a
(Figure 2). However, both libraries had very few mapped reads
(NS_T32: 16, FR_T32: 4). Therefore, these two libraries were
removed from all downstream gene expression analyses due
to their divergent ITS2-derived communities, which have been
shown to exhibit strong transcriptomic differences (Barshis et al.,
2014). These libraries also had the lowest mapped Symbiodinium
reads (Table 1), most likely due to reduced symbiont RNA
available under thermal stress.

Minimal Response to Acidification Stress,
With Population-Specific Differences in
Expression of Genes Associated With
Photosynthesis
Without consideration of the high temperature treatment
libraries that were excluded due to low mapped reads,
transcriptomic analysis of S. goreaui gene expression across the
remaining treatments exhibited few DEGs relative to the control
treatment, with 92 (25◦C), 40 (324µatm), 576 (604µatm), and
23 (2,553µatm) DEGs observed for the respective treatments
relative to control treatments, representing a total of 1.69% of the

FIGURE 2 | Proportion of RNAseq reads mapping exclusively to one

Symbiodinium lineage (A4a, B1, C1, D1a) for each transcriptome library, with

independent columns representing a unique transcriptome library. Number at

top of bar indicates total number of reads mapping exclusively to one clade

within that library. Red and blue blocks indicate that the library originated from

nearshore and forereef corals, respectively. Treatment conditions are noted

below the bar (T25 = 25.01 ± 0.14◦C, 515 ± 92µatm; Control = 28.16 ±

0.24◦C, 477 ± 83µatm; P324 = 28.14 ± 0.27◦C, 324 ± 89µatm;

P604 = 28.04 ± 0.28◦C, 604 ± 107µatm; P2553 = 27.93 ± 0.19◦C, 2553

± 506µatm; T32 = 32.01 ± 0.17◦C, 472 ± 86µatm). All libraries were

dominated by Symbiodinium goreaui (C1), excepting the T32 treatments that

were dominated by Symbiodinium trenchii (D1a).

entire transcriptome responding to any treatment (Figure 3A;
Supplementary Table 4). In contrast, 24.45% of genes were
differentially expressed with respect to reef zone, with 3,792
upregulated in nearshore specimens and 6,441 upregulated
in forereef specimens, regardless of treatment condition—
demonstrating a strong whole-transcriptomic response to reef
zone (Figures 3B, 4A, p = 0.016; Supplementary Table 4).
No significant differences in whole-transcriptome response
were detected across experimental treatments (p = 0.33;
Figure 3B). Gene ontology enrichment analysis across reef
zones revealed many significantly enriched GO terms within
cellular components, which were dominated by GO terms
associated with photosynthesis in forereef S. goreaui [e.g.,
thylakoid part (GO:0044436), photosystem (GO:0009521), light-
harvesting complex (GO:0030076), plastid part (GO:0044435)],
suggesting fundamentally different regulation of photosynthetic
genes across reef zones (Figure 4B). Genes associated with these
GO categories can be found in Supplementary Table 5.

Coral Host Elicits Stronger Transcriptomic
Response Than Symbiodinium Goreaui
Contrasting gene expression patterns of the HCG sets of the
coral host (S. siderea) and in hospite S. goreaui (N = 2,862;
Supplementary Table 2) reveal that coral hosts were far
more transcriptionally responsive to experimental treatments
than their Symbiodinium partners (Figure 5). Among these
HCGs, coral hosts modified expression by 3.7–15.7% across
experimental treatments, while S. goreaui only modified
expression by 0.05–2.8% across the same treatments,
demonstrating that coral hosts were far more responsive to
low temperature and acidification stress when compared to their
algal symbionts (Figure 5). Heatmaps also confirmed that the
lack of differential expression of HCG within S. goreaui was not
driven by high levels of within-treatment variance arising from
strong differences in S. goreaui gene expression across reef zones.
Instead, genes that were highly differentially expressed in the
host showed no differences in expression across reef zones for
S. goreaui (Supplementary Figures 2A–D), although other genes
within S. goreaui were differentially expressed across reef zone.

DISCUSSION

Increased Thermotolerance of Siderastrea
siderea From More Thermally Variable
Environments
Reductions in Symbiodinium photosynthetic ability have been
strongly correlated with a lack of thermal tolerance and increased
susceptibility to bleaching (Warner et al., 1999; Takahashi
et al., 2009; Howells et al., 2012). Here, we observed strong
reductions in photochemical efficiency in response to elevated
temperatures (Figure 1A), which has been consistently observed
for Symbiodinium exposed to thermal stress (Warner et al., 1996;
Roth, 2014). Strong reductions in calcification rate (Castillo et al.,
2014) and overall host gene expression reflecting disruption of
homeostasis (Davies et al., 2016) was previously observed for
these same coral specimens in response to the prescribed thermal
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FIGURE 3 | Global RNAseq patterns for in hospite Symbiodinium goreaui under different pCO2 (28◦C) and low temperature (25◦C) treatments. (A) Venn diagram of

the number of differentially expressed S. goreaui genes (out of 45,947, FDR = 0.05) in experimental conditions relative to control conditions. Orange numbers indicate

overrepresented genes and turquoise numbers indicate underrepresented genes, but overall very little transcriptomic response is observed. (B) Principal coordinate

analysis of all r-log transformed isogroups clustered by experimental treatment and reef zone, demonstrating significantly different transcriptome profiles across

S. goreaui from different locations, regardless of experimental treatment (NS = nearshore and FR = forereef; T25 = 25.01 ± 0.14◦C, 515 ± 92µatm; Control = 28.16

± 0.24◦C, 477 ± 83µatm; P324 = 28.14 ± 0.27◦C, 324 ± 89µatm; P604 = 28.04 ± 0.28◦C, 604 ± 107µatm; P2553 = 27.93 ± 0.19◦C, 2553 ± 506µatm).

FIGURE 4 | Differentially expressed genes (DEGs) of Symbiodinium goreaui across reef zones and treatments. (A) Heatmap for the top 300 DEGs for reef zone where

each row is a gene and each column is a unique transcriptome library. The color scale is in log2 (fold change relative to the gene’s mean) and genes and samples are

clustered hierarchically based on Pearson’s correlation of their expression across samples. Red and blue blocks indicate that libraries originated from nearshore and

forereef corals, respectively. Treatment conditions are noted below the bar (T25 = 25.01 ± 0.14◦C, 515 ± 92µatm; Control = 28.16 ± 0.24◦C, 477 ± 83µatm;

P324 = 28.14 ± 0.27◦C, 324 ± 89µatm; P604 = 28.04 ± 0.28◦C, 604 ± 107µatm; P2553 = 27.93 ± 0.19◦C, 2553 ± 506µatm). Hierarchical clustering of

libraries (columns) demonstrates strong reef zone differences in gene expression. (B) Gene ontology (GO) enrichment of the “Cellular component (CC)” category

derived from the transcriptomic differences across reef zones. Dendrograms depict sharing of genes between categories (categories with no branch length between

them are subsets of each other), with the fractions corresponding to proportion of genes with an unadjusted p < 0.05 relative to the total number of genes within the

category. Text size and boldness indicate the significance (Mann–Whitney U tests) of the term. Blue categories are enriched in forereef S. goreaui while red categories

are enriched in nearshore S. goreaui. Forereef S. goreaui exhibit enrichment of GO categories associated with photosynthesis.

stress. These severe impairments in physiological measures of the
host in response to chronic high temperatures might be driven,
in part, by the observed reductions in symbiont photochemical
efficiency (Figure 1A).

Notably, we observed that reductions in S. siderea symbiont
photophysiology at 32◦C were dependent on a coral’s natal reef

location, where the photochemical efficiency (Figure 1A) and
coral color intensity (Figure 1B) of nearshore Symbiodinium
were significantly higher under thermal stress than those of
forereef Symbiodinium. Since Symbiodinium photophysiology
is often associated with thermal tolerance (Warner et al., 1996,
1999; Ragni et al., 2010; Wang et al., 2012), these fluctuating
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FIGURE 5 | Barplot showing numbers of significantly (p < 0.05) differentially

expressed genes (DEGs) for the host (left) and its algal symbiont Symbiodinium

goreaui (right) across the four experimental treatments relative to the control

for the 2862 highly conserved genes (HCG) across host and symbiont. Orange

bars represent enriched genes and turquoise bars represent depleted genes in

the treatment (T25 = 25.01 ± 0.14◦C, 515 ± 92µatm; P324 = 28.14 ±

0.27◦C, 324 ± 89µatm; P604 = 28.04 ± 0.28◦C, 604 ± 107µatm;

P2553 = 27.93 ± 0.19◦C, 2553 ± 506µatm) relative to the control (28.16 ±

0.24◦C, 477 ± 83µatm). Overall, hosts exhibit a much stronger response

across HCGs when compared to in hospite S. goreaui, regardless of

experimental treatment.

responses may be due to photoacclimation or adaptation
of Symbiodinium to more thermally variable nearshore
environments (Castillo and Helmuth, 2005; Baumann et al.,
2016) or to variation in light availability across reef environments.
Indeed, Castillo et al. (2012) observed reductions in linear
extension rates over the past three decades of anthropogenic
warming within cores of forereef S. siderea colonies, while
cores of nearshore, and backreef colonies exhibited constant
(nearshore) or increasing (backreef) extension rates over the
same interval. Castillo et al. (2012) attributed these differential
trends in linear extension to thermal preconditioning of backreef
and nearshore corals, to the extent that nearshore and backreef
environments experience more extreme baseline diurnal and
seasonal fluctuations in seawater temperature compared to more
thermally stable forereef environments. However, differences in
light levels across reef environments and seasons have also been
shown to influence cross-reef differences in a coral’s response
to anthropogenic warming and bleaching (Iglesias-Prieto et al.,
2004) and may also contribute to Symbiodinium performance.

The potential for local adaption of Symbiodinium is thought
to be high given their haploid genomes and short generation
times (Santos and Coffroth, 2003; Correa and Baker, 2011).
Howells et al. (2012) observed increased thermotolerance of
Symbiodinium C1 originating from warmer reef locations, both
in hospite and in culture, and Hume et al. (2016) detected strong

selection for thermal tolerance in S. thermophilium, a lineage
found in extreme temperatures of the Persian Gulf. Recent
work has also revealed that Symbiodinium can rapidly evolve
thermal tolerance in culture (Chakravarti et al., 2017), providing
further evidence of Symbiodinium’s potential for local adaptation
to thermal stress. However, these variations in photochemical
efficiencies in nearshore Symbiodiniummay also be attributed to
the relative changes in ITS2-determined symbiont communities
[from S. goreaui (C1) to S. trenchii (D1a): Figure 2], which
warrant future exploration.

Chronic High Temperatures Cause Loss of
Symbiodinium Goreaui
Symbiodinium genetic diversity has been reported to vary not
only among different coral host species and environments, but
also within a single species of coral (Baker, 2003; Coffroth
and Santos, 2005; Thornhill et al., 2014, 2017). This genetic
diversity has been shown to drive physiological variation within
Symbiodinium (Iglesias-Prieto and Trench, 1994; Warner et al.,
1999; Iglesias-Prieto et al., 2004) and numerous studies have
demonstrated that thermo-tolerance varies amongst lineages
of Symbiodinium (Robison and Warner, 2006; Suggett et al.,
2008). Consequently, some lineages of Symbiodinium appear less
affected by thermal stress, while others are impacted by even
small changes in temperature (Rowan, 2004; Berkelmans and Van
Oppen, 2006; Jones and Berkelmans, 2010; Hume et al., 2016).

Here, we observed that long-term thermal stress induced
compositional shifts in Symbiodinium communities from
S. goreaui (C1) to S. trenchii (D1a) in S. siderea, regardless
of natal reef zone (Figure 2). However, this result is at least
partially due to a loss of symbiosis with S. goreaui, rather than
S. trenchii becoming more successful in hospite under increased
temperatures since corals were exhibiting color loss evident of
bleaching (Figure 1B). These results are consistent with prior
work showing that S. siderea from southern Belize primarily host
S. goreaui (C1) and S. trenchii (D1a) (Baumann et al., 2018),
although Finney et al. (2010) also observed that shallow water
S. siderea from Carrie Bow Caye (>100 km north of the sites
sampled here) hosted Symbiodinium C3, which was not found
here.

Symbiodinium trenchii (D1a) are generally associated with
hosts from marginal reef environments exposed to increased
thermal stress (Pettay et al., 2011, 2015; Pettay and Lajeunesse,
2013). Correspondingly, Pacific Acropora millepora corals
hosting predominantly clade D Symbiodinium have been shown
to exhibit greater thermal tolerance when compared to those
corals hosting Symbiodinium C2 (Berkelmans and Van Oppen,
2006; Jones et al., 2008). However, there appears to be a trade-off
associated with hosting more thermally tolerant symbionts, as A.
millepora hosting clade D Symbiodinium were observed to grow
significantly slower than corals hosting C2 under both control
and field conditions (Jones and Berkelmans, 2010). Although it is
unclear from the data at hand if the Symbiodinium communities
tested here would shift back to being dominated by S. goreaui
after the alleviation of thermal stress (Sampayo et al., 2016), these
shifts could represent acclimation potential for corals exposed
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to future ocean warming (Cunning et al., 2015; Silverstein et al.,
2015).

Symbiodinium Gene Expression and
Photochemical Efficiency Are
Unresponsive to Co2-Induced Acidification
Increases in atmospheric pCO2 have been shown to reduce
calcification rates of reef-building corals (Kleypas et al., 1999;
Hoegh-Guldberg et al., 2007; Chan and Connolly, 2013;
Castillo et al., 2014), but the effects of pCO2 on corals’
algal symbionts are less clear. Some studies report that
elevated pCO2 enhances Symbiodinium primary production,
suggesting that the concentration of dissolved inorganic carbon
in seawater—elevated under high pCO2–is the limiting substrate
for photosynthesis (Crawley et al., 2010; Brading et al., 2011). In
contrast, others have observed negative effects of increased pCO2

on Symbiodinium physiology, including reduced productivity,
photochemical efficiency, and calcification (Anthony et al.,
2008; Zhou et al., 2016). Here, we observed minimal effects
of elevated pCO2 on Symbiodinium photochemical efficiencies
across a wide range of pCO2 conditions (Figure 1A). This lack of
response starkly contrasts the strong physiological response (i.e.,
impaired photophysiology) and community shifts (i.e., C1–D1a)
of Symbiodinium under increased temperatures (Figures 1, 2).
One explanation for this lack of physiological response to pCO2

could be that the specific S. goreaui populations investigated
here are simply not stressed by elevated pCO2, which has been
observed for other Symbiodinium strains (Brading et al., 2011).

This lack of S. goreaui physiological response to acidification
stress was also evident at the whole-transcriptome level,
where no significant differences in overall gene expression
were observed across low temperature and variable pCO2

treatments (Figure 3), even when reef zone-specific responses
were considered (Supplementary Figure 2). This paucity of a
transcriptional stress response in Symbiodinium in response to
stress is consistent with previous studies, which generally observe
little to no transcriptional responses to environmental stressors
(Leggat et al., 2011; Putnam et al., 2013; Barshis et al., 2014), with
the exception of extreme heat stress (Baumgarten et al., 2013;
Levin et al., 2016; Gierz et al., 2017)—which we were unable
to investigate here due to a combination of low symbiont RNA
yield (Figure 1A) and compositional changes in Symbiodinium
communities under elevated temperature (Figure 2).

Instead of responding transcriptionally, it has been proposed
that Symbiodinium use post-transcriptional regulatory
mechanisms, including translational regulation, and post-
translational modifications, to drive molecular responses.
Evidence suggests that very few transcription factors are present
in Symbiodinium transcriptomes and genomes (Bayer et al.,
2012; Shoguchi et al., 2013). Instead, it has been proposed that
these algae utilize small RNAs and microRNAs, (Baumgarten
et al., 2013; Lin et al., 2015), RNA-editing (Liew et al., 2017),
and trans-splicing of spliced leader sequences (Zhang et al.,
2007; Lin et al., 2010; Lin, 2011) to regulate their environmental
stress responses. Another possibility is that the timescale of this
study (95 days) was insufficient to trigger physiological and

molecular responses in Symbiodinium. Although the stability of
dinoflagellate mRNA is known to be considerably longer than
for other organisms (Morey and Van Dolah, 2013), it is possible
that physiological and transcriptomic responses were minimized
by long-term acclimatization of Symbiodinium via phenotypic
buffering (Reusch, 2014).

Lastly, and perhaps most likely, it could be that in hospite
Symbiodinium simply do not respond to changes in pCO2

because their positions within host-derived tissue-bound spaces
buffer the algae from external changes in pH (Rands et al., 1993;
Venn et al., 2009; Barott et al., 2015). However, determination of
the specific factor(s) that account for these results requires further
examination, as they cannot be assessed with the data at hand.

Reef Zone Differences in Photochemical
Efficiency and Genes Related to
Photosynthesis
Symbiodinium exist endosymbiotically across a variety of hosts
and habitats, which presents these algae with diverse challenges
with respect to photosynthesis and survival. Photochemical
efficiency of photosystem II (Fv/Fm) is widely used as an
indicator of photosynthetic performance and stress (Murchie and
Lawson, 2013). Here, higher Fv/Fm values observed in forereef
Symbiodinium relative to nearshore symbionts (Figure 1A)
may indicate photoadaptation between the two populations of
symbionts, since nearshore environments experience increased
temperatures and nutrients along with reduced light levels
relative to forereef habitats (Castillo and Lima, 2010; Baumann
et al., 2016). These environmental differences may stimulate
nearshore corals to rely more heavily on heterotrophy and
dissolved/particulate organic matter relative to corals in light-
replete forereef habitats (Grottoli et al., 2006; Tremblay et al.,
2014).

It is important to note, however, that both nearshore
and forereef Symbiodinium exhibited Fv/Fm > 0.6, which
is generally considered healthy. Therefore, these data do
not necessarily indicate that forereef hosts are receiving
increased photo-assimilates from their Symbiodinium, which
corroborates the comparable calcification rates for coral
specimens from different reef zones within each experimental
pCO2-temperature treatment (Castillo et al., 2014). Instead,
because the photochemical efficiencies of symbionts from
forereef and nearshore corals were divergent even after 95 days
in the same experimental treatments, we speculate that the
environment could have selected for distinct nearshore and
forereef Symbiodinium “ecotypes” that reflect photoadaptation
to their natal reef zone (Iglesias-Prieto et al., 2004; Howells
et al., 2012; Chakravarti et al., 2017)—although further work
is required to test this hypothesis. Another possibility is that
S. goreaui populations from the nearshore and forereef reef zones
represent distinct species, although analyses of higher resolution
loci are required to test this hypothesis.

Notably, reef-zone-specific photochemical efficiencies were
also reflected at the transcriptomic level, where consistent
differences in gene expression were observed (Figures 3B, 4A).
Divergent stable-state gene expression is perhaps not surprising
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given that transcriptomic differences across clades (Barshis et al.,
2014; Rosic et al., 2015) and across strains within a clade
(Parkinson et al., 2016) have been previously observed. Gene
ontology enrichment analysis of differential gene expression
across reef zones detected strong upregulation of genes related to
photosynthesis in forereef symbionts (Figure 4B), corroborating
our observation of higher photochemical efficiencies for forereef
S. goreaui. These differences in regulation of photosynthesis-
related genes across reef zone could facilitate the cross-reef-zone
differences in physiological responses to thermal stress observed
in the present study (Figure 1A).

Thermally sensitive Symbiodinium have been shown to exhibit
increased disruption of PSII photochemistry (Warner et al., 1999;
Robison and Warner, 2006), which has been associated with
variations in the regulation of genes involved in photosynthesis
(Mcginley et al., 2012). Given that investigations into the
differences in gene expression amongst Symbiodinium lineages
consistently observe enrichment of photosynthesis-related genes
(Baumgarten et al., 2013; Barshis et al., 2014; Rosic et al.,
2015; Parkinson et al., 2016; this study), we propose the
evolution of unique photoadaptive Symbiodinium “ecotypes”
that can be differentiated by their transcriptomic signatures of
photosynthesis-related genes.

Coral Hosts Elicit Stronger Transcriptomic
Responses Than Symbiodinium Goreaui
Understanding how each partner of the coral–Symbiodinium
symbiosis responds to environmental stress is required to
accurately predict the susceptibility of corals reefs to future
global change (Weis, 2008). Although both partners exhibit
a wide array of physiological stress responses, Symbiodinium
are assumed to initiate symbiosis breakdown (Berkelmans
and Van Oppen, 2006; Stat et al., 2006; Stat and Gates,
2011) due to their production of ROS, which can damage
the host (Lesser, 1996; Weis, 2008). In contrast, S. siderea
exhibit stronger transcriptomic responses to thermal and CO2-
acidification stress than their Symbiodinium symbionts across
a HCG (Supplementary Table 2) set (Figure 5), suggesting that
symbiosis breakdown, or the process of “bleaching” in S. siderea,
is initiated by the host instead of the symbiont. In addition, the
observation that this color loss is associated with a shift from
S. goreaui (C1) to the more thermotolerant S. trenchii (D1a)
suggests that symbiont loss influences functional diversity of
the symbiont community in a manner that supports thermal
tolerance.

Strong transcriptomic responses of coral hosts are well-
documented (Desalvo et al., 2010b; Meyer et al., 2011; Moya
et al., 2012; Seneca and Palumbi, 2015; Davies et al., 2016),
while Symbiodinium transcriptomic responses are generally more
subtle (Leggat et al., 2011; Baumgarten et al., 2013; Barshis
et al., 2014). For example, Barshis et al. (2014) similarly
observed few transcriptional changes across >50,000 genes in
response to thermal stress across two Symbiodinium lineages
involved in symbiosis (D2, C3K), starkly contrasting the broad
transcriptomic shifts observed in the symbiont’s host when
exposed to identical conditions (Barshis et al., 2013). As discussed

above, S. goreaui in our study may be unresponsive to the
stressors investigated, or the stressors may not have been applied
long enough to elicit a transcriptomic response. Alternatively,
transcriptomic stability of S. goreaui could result from in hospite
buffering of the symbiosome under pCO2 stress, which has been
observed in corals exposed to variable seawater pH (Rands et al.,
1993; Venn et al., 2009; Barott et al., 2015) and in response
to cold stress (Parkinson et al., 2015). Although potentially
costly to the host, manipulation of Symbiodinium responses to
stress through active regulation of the symbiont’s environment
might be favored over the potential chemical toxicity resulting
from the release of reactive molecules by stressed Symbiodinium
(e.g., Lesser, 1996).

CONCLUSION

Acclimation and adaptation play critical roles in determining
an organism’s ability to tolerate environmental variability
(Schlichting and Pigliucci, 1996; Reusch, 2014). Here, we
demonstrate that coral-associated Symbiodinium exhibit the
potential for photoadaptation and/or photoacclimation to
thermal and acidification stress. Photochemical efficiencies of
S. goreaui from nearshore locations were more resilient to
thermal stress when compared to forereef symbionts, suggestive
of local adaptation across reef zones. We also observed
differences in gene expression between S. goreaui from nearshore
and forereef environments that were coupled with differences in
photochemical efficiencies, irrespective of treatment condition.
These transcriptomic differences suggest that photosynthesis-
related gene expression varies by habitat, which may reflect
photoadaptation to unique environments over potentially long
timescales. Host retention of a more thermotolerant S. trenchii
(D1a) under thermal stress was also documented, providing
evidence for a potential mechanism of coral acclimation to
thermal stress. Acclimation to pCO2 was also observed at
both physiological and transcriptomic levels, the mechanism(s)
of which have not yet been identified, although pH-buffering
by the host remains a viable hypothesis. Thus, we find
evidence for both photoadaptation and photoacclimation in
the S. siderea-Symbiodinium symbiotic relationship, which may
explain the relative resilience of this coral species to global change
stressors.
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Supplementary Figure 1 | (A) Maximum Fv/Fm of Symbiodinium vs. mean

coral color intensity after 94 days under experimental heat stress (T32 = 32.01 ±

0.17◦C, 472 ± 86µatm), as measured by the sum of all color intensities in the

red, green and blue channels in standardized coral photographs across all

treatments. This relationship demonstrates that Fv/Fm and coral color are highly

correlated under thermal stress. (B) Coral color intensity after 94 days in control

and thermal stress conditions. Blue circles: forereef population average (±SE); red

triangles: nearshore population average (±SE). High temperatures reduce coral

color intensity, however, symbionts from nearshore and forereef corals do not

differ significantly within a treatment.

Supplementary Figure 2 | Heatmaps for the expression of highly conserved

genes (HCG) found to be differentially expressed in the coral host for each

experimental treatment. The left four columns represent expression of these genes

in the coral host (orange blocks) and the right four columns represent expression

of these same genes in Symbiodinium goreaui (green blocks) across the

experimental treatments relative to the control (28.16 ± 0.24◦C, 477 ± 83µatm):

(A) low temperature (T25 = 25.01 ± 0.14◦C, 515 ± 92µatm), (B) pre-industrial

pCO2 (P324 = 28.14 ± 0.27◦C, 324 ± 89µatm), (C) next-century pCO2

(P604 = 28.04 ± 0.28◦C, 604 ± 107µatm), and (D) extreme-high pCO2

(P2553 = 27.93 ± 0.19◦C, 2553 ± 506µatm). Red and blue blocks indicate that

the library originated from nearshore and forereef reef zones, respectively. Each

row is a gene and each column is a unique transcriptome library. The color scale is

in log2 (fold change relative to the gene’s mean) and genes are clustered

hierarchically based on Pearson’s correlation of their expression across samples.

Results reveal lack of differential gene expression amongst experimental

treatments relative to the control in S. goreaui, compared to strong differential

gene expression amongst treatments in the host, and that this result is not due to

differential gene expression amongst reef zones in S. goreaui.

Supplementary Table 1 | Raw Symbiont Counts.

Supplementary Table 2 | Normalized Counts of Highly Conserved Gene Set for

Coral and Symbiont and their p values from DESeq2.

Supplementary Table 3 | Raw Counts Highly Conserved Gene Set for Coral and

Symbiont.

Supplementary Table 4 | Symbiont normalized counts and gene expression

results from DESeq2.

Supplementary Table 5 | Genes associated with photosynthetic GO categories

in symbiont.
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