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Planktonic larvae are thought to be very susceptible to offshore advection in upwelling

regimes, increasing dispersal and decreasing recruitment. However, larvae of 42 species

of nearshore benthic crustaceans primarily developed on the inner shelf at locations both

in (98.5%) and away (99.8%) from a perennial upwelling center in the upwelling season of

a recruitment-limited region characterized by persistent, strong, upwelling. During three

cross-shelf cruises conducted at each location, larvae of 21 species remained on the

inner shelf at both sites by occurring beneath seaward-flowing surface currents while

larvae of other species migrated to midshelf (four species) or offshore (14 species) by

initially developing near the surface. Postlarvae apparently returned to shore either deep

in landward-flowing upwelled water or near the surface where behavior allows them to

be transported shoreward by internal waves, diel wind cycles or wind relaxation events.

Thus, recruitment limitation in upwelling regimes does not appear to be caused by

larval mortality from offshore transport, requiring new research directions to advance our

understanding of population dynamics, structure and connectivity.

Keywords: larval transport, behavior, population connectivity, recruitment limitation, upwelling

INTRODUCTION

Variation in larval recruitment often determines population and community dynamics in the
sea. Both larval dispersal and mortality have been challenging to measure rendering estimates of
population connectivity uncertain. Moreover, the ability of larvae to regulate transport could have
a large impact on dispersal and population connectivity and has been debated for decades. We
recently determined that larvae occurred close to shore in persistent, strong upwelling on the Pacific
Coast of the USA—rather than lost offshore as was widely expected (Morgan et al., 2009b,c, 2011;
Morgan and Fisher, 2010; Fisher et al., 2014; Hameed et al., 2018)—and that larval mortality in
the nearshore retention zone was much lower than previous estimates of larval mortality anywhere
(White et al., 2014). We then demonstrated that larval behaviors enabling larvae to remain close
to shore throughout development also enable them to settle near natal populations (Drake et al.,
2013; Hameed et al., 2016). We now investigate whether larvae also completed larval development
close to shore at one of the strongest upwelling centers further reducing the scale of population
connectivity.

On the west coasts of continents, strong wind and Coriolis generate seaward-flowing surface
currents (Ekman transport) dropping sea level along the coast while upwelling deep, cold water
(Hickey, 1998). It has been suggested that larvae of nearshore species are lost to offshore transport
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by persistent, strong upwelling conditions (Parrish et al., 1981;
Roughgarden et al., 1988; Menge and Menge, 2013), especially
at the apex of headlands and immediately equatorward, where
wind stress is most intense (Winant et al., 1988; Koracin et al.,
2004) as well as at headlands where alongshore flow separates
forming an offshore-directed jet (Barth et al., 2000; Kaplan and
Largier, 2006). Meanwhile, flow may curve shoreward on the
downstream of headlands resulting in onshore flow (Shannon
et al., 1981; Halle and Largier, 2011) or forming a separation
eddy where larvae may be accumulated (Wing et al., 1995,
1998; Graham and Largier, 1997; Roughan et al., 2005; Mace
and Morgan, 2006a; Morgan et al., 2011; Ryan et al., 2014).
Thus, larvae are widely expected to be most prone to offshore
transport in upwelling centers and immediately downstream of
headlands, limiting recruitment and enhancing dispersal away
from this source, whereas farther downstream of headlands, they
may be entrained in an eddy or transported onshore increasing
recruitment and reducing dispersal away from this source.

Larval behavior may reduce transport at headlands and
upwelling centers just as it does elsewhere along the coast. The
characteristic vertical circulation in wind-driven upwelling areas
enables invertebrate larvae and other zooplankters to reduce
transport by regulating depth in vertically sheared currents
(reviewed by Peterson, 1998; Morgan, 2014), as they do in other
places where vertical shear occurs for different reasons (Epifanio
and Garvine, 2001; Queiroga and Blanton, 2005; Morgan, 2006,
in press; Epifanio and Cohen, 2016). Most species of larvae and
copepods in upwelling regimes complete development close to
shore within a coastal boundary layer, where Ekman transport
is weak and alongshore currents are slow (Peterson et al., 1979;
Morgan et al., 2009a; Shanks and Shearman, 2009; Morgan and
Fisher, 2010; Nickols et al., 2013; Fisher et al., 2014; Hameed
et al., 2018). They remain below a shallow Ekman layer or
undertake diel vertical migrations, ascending near the surface to
forage at night when offshore flow slows (Peterson et al., 1979;
Peterson, 1998; Batchelder et al., 2002; dos Santos et al., 2008;
Morgan et al., 2009a; Shanks and Shearman, 2009; Morgan and
Fisher, 2010; Miller and Morgan, 2013). By avoiding upward
transport into the seaward-flowing surface layer, they are subject
to onshore flow and experience a flux convergence at the coast
(Genin et al., 2005; Shanks and Brink, 2005). Different species are
transported away from shore by occurring in the Ekman layer
early in development and toward shore deep late in development,
known as an ontogenetic vertical migration (OVM; Peterson
et al., 1979; Grantham, 1997; Peterson, 1998; Mace and Morgan,
2006b; Papastephanou et al., 2006; Tapia and Pineda, 2007;
Morgan et al., 2009a,b; Morgan and Fisher, 2010; Morgan, 2014).
In some places or seasons, larvae late in development rise near
the surface, known as a reverse ontogenetic vertical migration
(ROVM), where behavior can allow internal waves, diel wind
cycles or wind relaxations to transport them toward shore (Hobbs
et al., 1991; Shanks, 1995a; Pineda, 1999; Poulin et al., 2002;
Marta-Almeida et al., 2006; Morgan et al., 2009a; Morgan and
Fisher, 2010).

We tested whether larval behavior effectively regulates
transport at upwelling centers, as elsewhere, or whether it is
overwhelmed by the intensity of wind forcing and currents. We

compared cross-shelf and depth distributions of larvae of inshore
benthic crustaceans along two transects near one of the strongest
upwelling centers on the west coast of North America during the
peak upwelling season. If larval behavior is overwhelmed, then
(1) larvae should occur farther offshore at the upwelling center
or (2) interspecific differences in larval behavior should render
weak species more prone to offshore transport than others. If
larval behavior effectively regulates larval transport, then cross-
shore transport should be similar among species along the coast
and to previous years. We also sampled beyond the shelf break
to determine how many species are observed far offshore and
potentially transported to the open ocean.

MATERIALS AND METHODS

Study System
We conducted the study within the perennial upwelling
center of Point Arena in northern California (Figure 1),
which is the windiest region along the Pacific Coast of
North America (Koracin et al., 2004; Dorman et al., 2005).
Prevailing northwesterly winds last for weeks in the spring-
summer upwelling season, and near-surface waters (<50m)
flow equatorward and seaward (Hickey, 1998; Roughan et al.,
2006). Shallow depths and coastline topography slow flow
<10 km from shore (Lentz and Chapman, 1989; Largier et al.,
1993; Kaplan et al., 2005; Kirincich et al., 2005; Nickols et al.,
2012). This coastal boundary layer widens south of Bodega
Bay where flows impinge on the upstream shores of Point
Reyes (Robart, 2013) as equatorward flow is deflected offshore,
separating from the apex of Point Reyes (Kaplan and Largier,
2006; Vander Woude et al., 2006). Upwelled water and plankton
are entrained in an upwelling shadow in the lee of Point Reyes
until winds weaken and alongshore flow reverses, transporting
larvae poleward and onshore in less than a day (Wing et al.,
2003; Roughan et al., 2006; Vander Woude et al., 2006; Morgan
et al., 2011, 2012). This occurs about every 4 to 10 days (Send
et al., 1987; Largier et al., 1993). Reversing flows result in little
net alongshore transport (Largier et al., 1993; Kaplan et al.,
2005).

Approach
We sampled stations across the shelf along transects off Bodega
Head and in the upwelling center off Stewarts Point (Figure 1)
toward the end of prolonged upwelling events when larvae are
expected to be farther from shore, if simply advected by near-
surface currents. We targeted three distinct upwelling events to
sample different larval pools. We planned cruises using marine
weather forecasts and offshore conditions at National Data Buoy
Center 46013 (38◦ 13′ 30′′ N, 123◦ 19′ 00′′ W; http://www.ndbc.
noaa.gov; Figure 1). We considered upwelling conditions to be
northwesterly wind >5 m/s and water <10◦C or decreasing. We
surveyed vertical distributions of larvae at six stations along two
cross-shelf transects on consecutive days on 28 and 29 May,
24 and 25 June, and 14 and 15 July 2009. The Bodega Head
transect extended farther from shore as the continental shelf is
wider. Stations at Bodega Head were located 1, 6, 11, 32, 42,
and 63 km from shore at ∼20, 25, 80, 90, 100, and 120m depth,
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respectively. Stations at Stewarts Point were located 1, 3, 10, 20,
30, and 49 km from shore at∼20, 25, 80, 90, 100 and 120m depth,
respectively.

FIGURE 1 | Map of the study area depicting locations of stations along

cross-shelf transects off Bodega Head and Stewarts Point in northern

California. Location of NDBC buoy 46013 (•) is also shown.

We obtained wind velocity data from NDBC Buoy 46013 and
calculated alongshore wind stress by converting it to true north
and rotating it to 320◦ at an air density of 1.3 kg m−3 and a
drag coefficient of 1.4 × 10−3 to place cruises in the context
of upwelling conditions. We obtained water temperature and
salinity from a Sea-BirdMicroCAT and chlorophyll-a fluoresence
from aWET Labs EcoFluorometer, both at 4m below the surface
on moorings placed on the 15m isobaths off Bodega Head
and Stewarts Point from mid-May through July (Figure 1). In
addition, temperature 1m deep and 1m above the seafloor was
recorded with Onset Tidbit thermistors. We measured current
using an acoustic Doppler current profiler (ADCP, 1,200 kHz;
Teledyne RD Instruments, Poway, California, USA), which were
bottom-mounted at moorings off Bodega Head and Stewarts
Point at 30m depth (Figure 1). We also mapped surface currents
hourly across the study area using high-frequency (HF) radar.

We conducted three pairs of cruises along the two transects
near the end of upwelling events, observed as periods of
equatorward wind stress, cold water and low chl-a at the
moorings off Bodega Head and Stewarts Point (Figure 2).
Sampling on 28–29 May occurred at the onset of relaxation
following a short upwelling event, with rising water temperature
and chl-a and poleward flow (Figure 3). Sampling on 24–25 June
occurred at the end of the strongest prolonged upwelling with
temperatures still very low, even with the onset of relaxation on
25 June. Sampling on 14–15 July occurred at the end of a more
moderate but prolonged upwelling event with winds and cold
temperatures showing that relaxation had not yet started.

We collected plankton in daylight using an electronically
tripped Tucker Trawl (0.5 or 1 m2 mouth) with four nets (335-
µmmesh) and temperature and depth sensors to take one sample
above the thermocline and two samples below it. We sampled the

FIGURE 2 | Time series data from 15 May through 26 July 2009: (A) alongshore wind stress at NDBC buoy 46013, (B) Bodega Head temperature and chlorophyll-a

fluorescence and (C) Stewarts Point temperature and chlorophyll-a fluorescence. Surface temperature shown as black line and bottom temperature as thin gray line,

with chlorophyll-a fluorescence as thick gray line. Survey timing is indicated by vertical gray bars.
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FIGURE 3 | Two-day mean surface current velocity recorded by

high-frequency radar across the study region during cruises conducted on

28–29 May, 24–25 June, and 14–15 July 2009. Arrow orientation shows

direction while darkness of shading represents speed (cm/s).

surface of the water column using a neuston net (0.5 m2 mouth,
335-µmmesh). We profiled temperature and salinity with depth
at the beginning and end of plankton tows using a conductivity,
temperature and depth profiler (Sea-Bird 19-Plus).

We determined cross-shelf distributions for the 42 species
of nearshore benthic crustaceans following our previous
approach (Morgan et al., 2009b). Larval concentrations per
m2 standardized for the depth of the water column. We
determined the cross-shelf and depth distributions of the 39
most abundant species over the six cruises with a nonparametric
analysis of similarity (ANOSIM) and a hierarchical cluster
analysis and ordination. After averaging depths at each station
for the cruises, we determined that cross-shelf distributions of
larvae were similar among dates (Bodega: ANOSIM R = 0.054,
p = 0.035; Stewarts: ANOSIM R = 0.045, p = 0.049), so
we averaged dates before conducting analyses on cross-shelf
and depth distributions. We tested the resulting dendrogram
for differences among groups with a similarity profile test
(SIMPROF) and the percent contribution of each species and
stage to significant clusters with (SIMPER) to classify cross-shelf
and depth distributions for each combination of species and
stage. Nonmetric Multidimensional Scaling (nMDS) revealed
the separation of larval assemblages by distance from shore
and depth. Contours of cross-shore and depth distributions of
species by stage were plotted to evaluate whether depth regulation
maintained different cross-shelf distributions. We combined
species with similar depth distributions during development
to simplify presentation and reported the mean depth center
of mass (ZCM) and standard error for each species or
group.

RESULTS

CTD profiles of temperature and chl-a revealed water column
structure across the shelf along the two transects (Figure 4). On
28 and 29 May, a warm surface layer was observed, strongest
nearshore and consistent with poleward flow–this layer was also
characterized by high chl-a concentrations. On June 25 and
24 following a strong, prolonged upwelling event, cold waters
shoaled nearshore with weak stratification off Stewarts Point
on 24 June, but evidence of poleward flow and an incipient
warm surface layer inshore occurred off Bodega Head on 25
June. Chl-a was generally low across the shelf, representative
of newly upwelled waters, although a subsurface chlorophyll
maximum was observed well offshore of Stewarts Point, beneath
a warmer layer of oceanic water. Again on 14 July, active
upwelling conditions were observed off Stewarts Point, with
cold water shoaling to the surface nearshore and very low chl-
a concentrations. At Bodega Head, farther from the upwelling
center and a day later, some nearshore stratification and
significant chl-a concentration was observed as well as weak
surface currents (Figure 3).

Surface currents measured by HF radar showed that during
the first pair of cruises on 28–29 May flow was poleward
nearshore at Bodega Head and Stewarts Point; while offshore
flow was observed at Point Arena, onshore flow of surface waters
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FIGURE 4 | Contours of temperature (◦C) and chlorophyll-a from vertical profiles at six stations along transects off Bodega Head and Stewarts Point on 28–29 May,

24–25 June, and 14–15 July 2009. Profile locations at the beginning and end of plankton tows at each station are depicted by black vertical lines.

was observed south of Bodega Head (Figure 3). On June 24–
25, nearshore flow was poleward from Bodega Head to Stewarts
Point and equatorward from Point Arena to Stewarts Point where
these currents converged, deflecting alongshore flow offshore.
On July 14–15, nearshore flows were very weak in the vicinity
of Bodega Head, but equatorward and offshore flow was well
developed from Point Arena to south of Stewarts Point.

The progressive vector diagrams showed net poleward
transport near-bottom and near-surface at both nearshore sites
(Figure 5). Transport was shoreward near-surface and seaward
near-bottom off Bodega Head, whereas it was seaward near-
surface and near-zero near-bottom off Stewarts Point. At both
sites, near-surface transport exhibited greatest excursions during
upwelling and relaxation events, indicating that larvae remaining
deep in the water column would travel the shortest distance.

Larvae of 42 species of benthic crustaceans generally did not
occur farther offshore at the upwelling center at Stewarts Point

than Bodega Head (Figure 6). Larvae largely occurred; l98.7989
< 11 km from shore at both sites, and early larval stages were
abundant inshore where larvae are released. All stages of 22
species occurred on the inner shelf<11 km from shore off Bodega
Head (99.8%) with the large majority of them occurring just 1 km
from shore and most of the rest of them occurring 6 km from
shore (Figure 6), revealing larval retention. Similarly off Stewarts
Point, all stages of these species occurred on the inner shelf
<10 km from shore (98.5%; Figure 6) with most of the rest of
them occurring 3 km from shore. All stages of four more species
occurred <11 km from shore off Bodega Head (96.1%) with the
largemajority of them occurring 1 km from shore andmost of the
rest of them occurring 6 km from shore while late stages occurred
<32 km from shore (Figure 6). Similarly off Stewarts Point, all
stages of these species occurred <10 km from shore (95.4%) with
the large majority of them occurring just 1 km from shore and
most of the rest of them occurring 3 km from shore while late
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FIGURE 5 | Progressive vector diagrams of potential alongshore and cross-shore displacement due to currents measured near-surface (gray line) and near-bottom

(black line) from mid 24 May through 26 July 2009 at Bodega Head and Stewarts Point. Current velocity was measured by a bottom-moored ADCP at 30-m depth at

each site. Positive alongshore distances are poleward and positive cross-shore distances are shoreward.

stages occurred <30 km from shore (Figure 6). Early stages of
16 more species occurred <11 km from shore (81.8%) and late
stages occurred far offshore in much lower abundance off Bodega
Head (18.2 %, Figure 6). Similarly off Stewarts Point, early stages
of these species occurred <10 km from shore (70.6%) and late
stages occurred far offshore in low abundance (Figure 6). Thus,
along both transects, larvae of most species were retained on the
inner shelf while late stages other species ranged to the midshelf
or offshore.

The 39 most abundant species differed primarily across
stations (Bodega Head: ANOSIM R = 0.439, p = 0.001; Stewarts
Point: ANOSIM R = 0.373, p = 0.002) but also among depths
(Bodega Head: ANOSIM R = 0.107, p = 0.096; Stewarts Point:
ANOSIM R= 0.145, p= 0.055), indicating that depth regulation
contributed to interspecific differences in cross-shelf transport
at both sites. Cluster analysis and nMDS showed pronounced
spatial structure in larval assemblages along both transects
grouping taxa into inner, mid and offshore categories for both
transects with an outlier (neuston at Station 3) for the offshore
group at Stewarts Point (Figure 7).

A nearshore cluster of all stages of 21 species largely occurred
<6 km from shore (Figures 7, 8), five species of porcelain
crabs (Petrolisthes cinctipes, Pet. eriomerus, Pet. manimaculus,
Pachycheles rudis, Pac. pubescens), a mud shrimp (Neotrypaea
californiensis), five species of barnacles (Balanus crenatus
B. glandula, Semibalanus cariosus, Chthamalus dalli/fissus),
three hermit crabs (Pagurus samuelis, P. hirsutiusculus,
P. granosimanus) and seven pea crabs (Pinnixa faba, P.
tubicola, Pinnotheres pugettensis, Scleroplax granulata, Fabia
subquadrata, two unidentified species). However, postlarvae of
the three barnacles, three hermit crabs and seven pinnotherids
occurred in very low concentrations to ∼18 km from shore

during the cruise off Bodega Head on 28 May (Figure 8).
Pinnotherid postlarvae occurred in low concentrations <30 km
off Bodega Head and <20 km off Stewarts Point, because one of
the species (F. subquadrata) disperses midshelf (Morgan et al.,
2009c). Off Bodega Head, all stages of these species composed
12.9% of all larvae along the transect contributing 11.26% of
the similarity to the cluster, and off Stewarts Point, all stages of
these species composed 2.4% of all larvae collected along the
transect and contributed 3.11% of the similarity to the cluster
(Figure 7). Larvae of these species occurred below the shallow
Ekman layer (Figure 8). Porcelain crabs undertook a ROVM
(Figure 8) with similar ZCMs of larvae at the shallow stations
inshore off Bodega Head (11.9 ± 3.0m) and Stewarts Point (9.7
± 4.6m) and postlarvae ascending to the neuston (0.5m) at
both sites. In contrast, pinnotherid crabs undertook an OVM
(Figure 8) with similar ZCMs of larvae inshore off Bodega Head
(17.2 ± 3.2m) and Stewarts Point (16.5 ± 3.5m) and postlarvae
descending much deeper in the water column (Bodega 49.0m;
Stewarts 37.4 ± 2.3m). The rest of these species mostly occurred
below the Ekman layer throughout development while perhaps
undertaking an OVM with postlarvae occurring deeper than
larvae on one or more cruises along both transects (Figure 8).
Neotrypaea californiensis larvae occurred higher in the water
column (14.5 ± 5.7m) than postlarvae (24.0 ± 0.7m) off
Stewarts Point, though not off Bodega Head where both larvae
(32.4 ± 15.0m) and postlarvae (26.7 ± 8.9m) occurred deeper
than off Stewarts Point. Late-stage barnacle larvae were shallower
(5.1 ± 2.3m) than postlarvae (12.9 ± 1.0m) off Bodega Head,
though postlarvae were deeper on only one cruise off Stewarts
Point. Similarly, hermit crab larvae were shallower (17.7 ±

0.6m) than postlarvae off Bodega Head (46.8 ± 24.4m), though
postlarvae were deeper on only one cruise off Stewarts Point
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FIGURE 6 | Densities (mean/m2 + 1 SE) of larval stages of 42 species of benthic crustaceans relative to distance from shore for all depths and cruises combined at

Bodega Head and Stewarts Point on 28–29 May, 24–25 June, and 14–15 July. Twenty-two species largely remained on the inner shelf off Bodega Head (<11 km from

shore) and Stewarts Point (<10 km from shore) throughout development. Four species primarily occurred on the inner shelf and ranged across the midshelf late in

development off Bodega Head (<32 km from shore) and Stewarts Point (<30 km from shore). Sixteen species primarily occurred on the inner shelf and ranged

offshore late in development off Bodega Head (>32 km) and Stewarts Point (>30 km). Note scale changes.

Amidshelf cluster of all stages of four species largely occurred
<6 km from shore with late stages occurring <32 km at both
sites, including the xanthid crab Lophopanopeus bellus, two
grapsid crabs (Hemigrapsus oregonensis,H. nudus) and Romaleon
(Cancer) antennarius (Figures 7, 9). Off Bodega Head, all stages
of these species composed 85.1% of all larvae along the transect
contributing 38.10% of the similarity to the cluster. Off Stewarts
Point, all stages of these species composed 93.7% of all larvae
collected along the transect and contributed 31.16% of the
similarity to the cluster (Figure 7). The vertical distributions
of L. bellus and the grapsid crabs were similar throughout
development (Figure 9). ZCMs of L. bellus off Bodega Head
were 14.0 ± 2.4m for early larvae and 16.0m for postlarvae

(late stages were not collected), and ZCMs off Stewarts Point
were 23.8 ± 5.5m for early larvae, 27.9m for late larvae and
for 27.9m postlarvae. Off Bodega Head, ZCMs of grapsid larvae
were 13.1 ± 3.1m for early stages, 14.6 ± 2.6m for late stages
and 12.6m for postlarvae, and off Stewarts Point, ZCMs were
11.1 ± 1.0m for early stages, 10.8 ± 1.8m for late stages and
postlarvae were not collected (Figure 9). Vertical distributions
also were similar throughout development for R. antennarius off
Bodega Head (early 23.3 ± 10.9m, late 19.0 ± 3.0m, postlarvae
17.8 ± 0.8m), but there was evidence of a possible OVM
off Stewarts Point with larvae occurring shallower (early 14.3
± 5.5m, late 15.2 ± 6.8m) than postlarvae on two cruises
(31.8± 6.8m).
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FIGURE 7 | Top panels. Hierarchical clustering dendrogram (using group-average linking) of 48 samples taken from four depths at six sampling stations across the

continental shelf: 1, 6, 11, 32, and 63 km from shore off Bodega Head and 1, 3, 10, 20, 30, and 49 km from shore off Stewarts Point. Samples were categorized

based on 25 and 40% similarities. Solid black lines indicate significant group structure at the 1% level. Sample distances offshore are reported beneath each group.

Bottom panels: Nonmetric multidimensional scaling plots (2D stress: 0.08 for Bodega Head and 0.09 for Stewarts Point) from the 48 samples with superimposed

significant clusters at similarity levels of 25% (solid lines) and 40% (dashed lines) off Bodega Head and Stewarts Point.

An offshore cluster composed of 14 species with early
larval stages largely occurring <11 km from shore and late
stages occurring >30 km from shore (Figures 7, 10). Off
Bodega Head, all stages of these species composed 1.9% of
all larvae collected along the transect and contributed 49.36%
of the similarity to the cluster, and off Stewarts Point, all
stages of these species composed 3.4% of all larvae along
the transect contributing 65.73% of the similarity to the
cluster (Figure 7). Larvae of seven majiids (Pugettia richii,
P. producta, P. gracilis, Scyra acutifrons, Mimulus foliatus,
Oregonia gracilis, unidentified species) primarily completed
development <1l km from shore, whereas larvae of three
species of cancrid crabs [Metacarcinus (Cancer) magister, Cancer
productus, Glebocarcinus (Cancer) oregonensis], two barnacles
(Balanus nubilus, Pollicipes polymerus), Emerita analoga and
an unidentified porcellanid occurred in low concentrations
beyond 11 km (Figures 7, 10). Larvae of these species commonly
occurred in the Ekman layer midshelf and offshore (Figure 10).
Cancrid postlarvae even were prevalent in the neuston at Station
3 off Stewarts Point (Figure 10), being reflected as an outlier
for the offshore group off Stewarts Point in the dendrogram
(Figure 7). The barnacles appeared to undertake an OVM
(Figure 10); ZCMs were shallower for late-stage barnacle larvae

(Bodega 15.3 ± 0.1m; Stewarts 15.6 ± 2.8m) than postlarvae
(Bodega 30.5 ± 3.6m; Stewarts 27.2 ± 4.5m). Majiids may have
undertaken an OVM (Figure 10). Off Bodega Head, ZCMs of
majiid larvae were shallower (early 11.7 ± 1.6m, late 11.1 ±

1.1) than postlarvae (21.9 ± 15.8m), and off Stewarts Point,
early-stage larvae also were shallower (15.8 ± 5.3m) than
late-stage larvae (20.6 ± 13.4) and postlarvae (22.1 ± 2.3m).
Cancrids may have undertaken a ROVM (Figure 10). Cancrid
larvae off Bodega Head were deeper (early 12.0 ± 0.4m) than
postlarvae (0.5m), and this also was the case off Stewarts Point
(early 22.2 ± 10.9m, late 13.8 ± 1.0m), except during one
cruise when postlarvae occurred in low concentrations ∼45m
deep resulting in a ZCM of 20.2 ± 13.1m. Emerita analoga
larvae commonly occurred in the surface layer across the shelf
(Figure 10) with ZCMs off Bodega Head of 6.7 ± 2.2m for
early larvae and 12.5m for late larvae and ZCMs off Stewarts
Point of 15.0m for late larvae. Unidentified porcellanid larvae
also occurred in the surface layer across the shelf off Stewarts
Point with ZCMs of 0.5m for early larvae and 10.0m for
late larvae, but early stages were deep in the water column
during the one cruise that they were collected off Bodega
Head with a ZCM of 59.4m (Figure 10). We did not detect
ontogenetic changes in vertical distributions of E. analoga
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FIGURE 8 | Inner-shelf larval development of 21 species in relation to distance from shore and depth off Bodega Head and Stewarts Point for larvae that largely

occurred <6 km. First row of panels for five species of porcelain crabs (Petrolisthes cinctipes, Pet. eriomerus, Pet. manimaculus, Pachycheles rudis, Pac. pubescens);

second row of panels for a mud shrimp (Neotrypaea californiensis); third row of panels for five species of barnacles (Balanus crenatus B. glandula, Semibalanus

cariosus, Chthamalus dalli/fissus); fourth row of panels for three hermit crabs (Pagurus samuelis, P. hirsutiusculus, P. granosimanus); and fifth row of panels for seven

(Continued)
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FIGURE 8 | pea crabs (Pinnixa faba, P. tubicola, Pinnotheres pugettensis, Scleroplax granulata, Fabia subquadrata, two unidentified species). The depth center of

mass (ZCM; mean with SE in parentheses) is given at the bottom of each panel. ZCM with no variation shown in parentheses indicates species were collected during

a single cruise, and separate groups of larvae within panels were collected during different cruises. Missing panel indicates that small larvae passed through nets.

FIGURE 9 | Midshelf larval development of four species in relation to distance from shore and depth off Bodega Head and Stewarts Point where larvae largely

occurred <11 km from shore with late stages primarily occurring <32 km. First row of panels for the xanthid crab Lophopanopeus bellus; second row of panels for

two grapsid crabs (Hemigrapsus oregonensis, H. nudus); and third row panels for a rock crab Romaleon (Cancer) antennarius. The depth center of mass (ZCM; mean

with SE in parentheses) is given at the bottom of each panel. ZCM with no variation shown in parentheses indicates species were collected during a single cruise, and

separate groups of larvae within panels were collected during different cruises. Missing panel indicates that small larvae passed through nets.

or the unidentified porcellanid because we did not collect
postlarvae.

DISCUSSION

We have shown that larvae of nearshore benthic crustaceans are
retained nearshore or reliably migrate different distances from
shore during the season of peak upwelling and in the core of
an upwelling center within the region of the most persistent,
strongest upwelling along the Pacific Coast of North America. In
this work and previous studies, we have repeatedly sampled larval
assemblages during many cruises over multiple locations and
years (Morgan et al., 2009b,c; Morgan and Fisher, 2010; Hameed
et al., 2018). In this work, we focused on the time and place of
maximum upwelling, showing that larvae were not transported
farther offshore at this region of strong, persistent upwelling,
contrary to widespread expectations. During the present study,
we sampled larvae of 42 nearshore benthic crustaceans and
99; l98.7989% of all larvae were collected over the inner shelf,

<11 km from shore along both transects. Larvae were most
concentrated within a few kilometers of the shoreline, in the
coastal boundary layer where offshore Ekman transport and
alongshore currents are weak (Lentz and Chapman, 1989; Largier
et al., 1993; Kaplan et al., 2005; Kirincich et al., 2005; Roughan
et al., 2006; Morgan et al., 2009c; Morgan and Fisher, 2010;
Nickols et al., 2012, 2013; Hameed et al., 2018). Not only was
this characteristic coastal-boundary-layer circulation (Pettigrew
andMurray, 1986; Shanks, 1995a; Largier, 2002, 2003) persistent,
but it is expected to contribute to nearshore larval retention of
diverse benthic crustaceans in other upwelling regions worldwide
(Morgan, 2014).

All larval stages of 21 species occurred in high concentrations
primarily in the coastal boundary layer<6 km offshore, including
the five species of porcelain crabs, mud shrimp, five species of
barnacles, three hermit crabs and seven pea crabs. The three
species of barnacles, three species of hermit crabs and six of
the seven species of pinnotherids in this nearshore group also
completed development in high concentrations <6 km from
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FIGURE 10 | Offshore larval development of 14 species in relation to distance from shore and depth off Bodega Head and Stewarts Point where larvae largely

occurred <11 km from shore with late stages occurring >32 km from shore. First row of panels for seven majid crabs (Pugettia richii, Pugettia producta, Pugettia

gracilis, Scyra acutifrons, Mimulus foliatus, Oregonia gracilis, unidentified species); second row of panels for three cancrid crabs (C. magister, C. productus, C.

oregonensis); third row of panels for two barnacles (Balanus nubilus, Pollipes polymerus); fourth row of panels for the mole crab (Emerita analoga); and fifth row of

panels for an unidentified porellanid. The depth center of mass (ZCM; mean with SE in parentheses) is given at the bottom of each panel. ZCM with no variation

shown in parentheses indicates species were collected during a single cruise, and separate groups of larvae within panels were collected during different cruises.

Missing panel indicates that small larvae passed through nets.

shore off Bodega Head in our previous studies (Morgan et al.,
2009b,c; Morgan and Fisher, 2010; Nickols et al., 2013; Hameed
et al., 2018). In our present study, these barnacles and hermit
crabs completed development close to shore in five of the six
cruises, but in the 28May cruise off Bodega Head their postlarvae
were found in very low concentrations up to∼18 km from shore.
This survey was conducted during a relaxation event when a
poleward flow from the Gulf of Farallones can transport plankton

offshore north of Point Reyes, unlike during prevailing upwelling
conditions (Kaplan and Largier, 2006; Morgan et al., 2012).
In addition, one of the seven pinnotherids (F. subquadrata)
developed farther from shore than the other six species in our
previous study off Bodega Head, but we did not distinguish it
from the other pinnotherids during the present study.

Of the species that did not complete their larval life
nearshore, many occurred in high concentrations <11 km early
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in development and in lower concentrations farther from shore
late in development. The four species that occurred midshelf
(L. bellus,Hemigrapsus spp., R. antennarius) or the 14 species that
occurred offshore (seven majiids, three cancrids, two barnacles,
mole crab, unidentified porcellanid) late in development had
similar distributions in our previous studies (Morgan et al.,
2009b,c; Morgan and Fisher, 2010; Nickols et al., 2013; Hameed
et al., 2018). Postlarvae of all of these species spanned the
continental shelf while recruiting onshore. Crustacean larvae had
similar cross-shelf distributions off Oregon (Lough, 1974; Fisher
et al., 2014), indicating that these interspecific differences are
maintained in time and space.

Distinctive vertical distributions of larval stages were
related to horizontal distributions likely contributing to
maintaining the three cross-shelf patterns. Larvae in the
nearshore group occurred deep in a shallow water column
early in development and most species either descended
(N. californiensis, B. crenatus, B. glandula, Pagurus spp.,
pinnotherids) or ascended (porcellanids) late in development
apparently undertaking an OVM or ROVM, respectively.
Similar ontogenetic changes in vertical distributions were
evident in our previous study off Bodega Head, and in addition,
Chthamalus spp. underwent a ROVM (Morgan et al., 2009c).
The subsurface vertical distributions of all these larvae and
postlarvae undertaking an OVM (in this and prior studies)
placed them in onshore and weak alongshore flow (Largier et al.,
1993; Dever et al., 2006; Roughan et al., 2006; Nickols et al.,
2012), likely facilitating retention nearshore (Peterson, 1998;
Batchelder et al., 2002; Papastephanou et al., 2006; Morgan et al.,
2009c; Morgan and Fisher, 2010; Nickols et al., 2013; Hameed
et al., 2018). Barnacle and pinnotherid larvae typically stay deep,
whereas N. californiensis and Pagurus spp. larvae rise near the
surface at night (Morgan and Fisher, 2010) after winds subside
and are often onshore reducing transport (Peterson et al., 1979;
Hobbs et al., 1991; Peterson, 1998; Batchelder et al., 2002; Poulin
et al., 2002; Marta-Almeida et al., 2006; dos Santos et al., 2008;
Bonicelli et al., 2016). By undertaking a ROVM, postlarvae of
the porcellanids and Chthamalus spp. could be transported
shoreward by winds and internal tides in the neuston (Pineda,
1994, 1999; Shanks, 1995a), which occur in our region during
relaxation periods in a stratified water column (Rosenfeld, 1990).

Early stages of the rest of the species were transported farther
from shore by spending more time in surface currents (Morgan
et al., 2009c; Morgan and Fisher, 2010), as do copepods (Peterson
et al., 1979; Peterson, 1998; Batchelder et al., 2002; Papastephanou
et al., 2006). Ten species (R. antennarius, two barnacles, seven
majiids), generally descended into deeper onshore flow late in
development during our present or previous study (Morgan
et al., 2009c). Onshore transport of late stages limits cross-
shelf displacement and returns postlarvae to shore (Peterson
et al., 1979; Grantham, 1997; Peterson, 1998; Papastephanou
et al., 2006; Morgan et al., 2009c). The three species of cancrids
transported offshore returned to shore as postlarvae by ascending
to the neuston. Ontogenetic vertical migrations either were not
apparent (L. bellus) or indeterminate without all larval stages
being collected (E. analoga, unidentified porcellanid) in this
or our previous study (Morgan et al., 2009c). Even without

ontogenetic changes in vertical distributions, crabs in this region
generally rise near the surface at night (Morgan and Fisher,
2010) facilitating onshore transport by internal tides and winds
(Jamieson and Phillips, 1988; Shenker, 1988; Hobbs et al., 1991;
Shanks, 1995b; Rasmuson and Shanks, 2013).

As we discussed previously (Morgan et al., 2009c; Fisher et al.,
2014; Morgan, 2014), passive advection and eddy diffusion alone
cannot explain the differences in cross-shelf distributions among
so many species, because (1) these larvae are released inshore
and encounter the same physical processes, (2) distances larvae
migrate from shore are not related to larval durations, (3) larval
densities were adjusted to account for increasing depth across the
shelf to ensure that high larval concentrations after hatching were
not simply reduced by dilution due to vertical mixing as the water
column deepened offshore and (4) late stages were as abundant
or increased midshelf and offshore instead of decreasing. Thus,
behavior is common across larval taxa and many species exhibit
behaviors that reduce offshore transport in upwelling regions
elsewhere on the Pacific Coast, including in the weaker upwelling
off Oregon (Peterson et al., 1979; Shanks and Shearman, 2009;
Fisher et al., 2014) and central through southern California
(Grantham, 1997; Tapia and Pineda, 2007), as well as worldwide,
including Chile (Poulin et al., 2002; Bonicelli et al., 2016) and the
Iberian Peninsula (Marta-Almeida et al., 2006; dos Santos et al.,
2008; Bartilotti et al., 2014).

If larvae remain close to shore, why are populations
recruitment limited in persistent, strong upwelling regions?
Presumably, there is a constraint between the larval availability
in the plankton over the inner shelf and the settlement of benthic
larvae in shoreline habitats. Recent work has shown that the
ability of postlarvae to enter the surf zone largely depends on
temporal and spatial variation in surfzone hydrodynamics, which
is determined by breaking waves interacting with alongshore
changes in coastal morphology, yielding a spectrum of surf
zones from dissipative to reflective (Wright and Short, 1984).
Broad surf zones along mildly sloping shorelines usually have
far more larvae and other plankton and much greater settlement
onshore (Shanks et al., 2010, 2017, 2018, in press; Morgan et al.,
2016, 2017, 2018). These dissipative surfzones have bathymetric
rip currents, which concentrate plankton by recirculation in a
series of rip currents alongshore, unlike narrow reflective surf
zones at steep shores (Shanks et al., 2010, 2017, 2018, in press;
Morgan et al., 2016, 2017, 2018). Individual based biophysical
models revealed that Stokes drift and benthic boundary layer
streaming coupled with downward swimming in response to
turbulence from waves facilitated onshore larval delivery beaches
(Fujimura et al., 2013, 2014, 2017, 2018). The striking differences
in surfzone oceanography at dissipative and reflective shores
predictably affect larval recruitment and productivity of inshore
communities (Morgan et al., 2016, 2017, 2018; Shanks et al.,
2017, in press) and appear to explain recruitment limitation
at many sites in California (Morgan et al., 2016, 2017; Shanks
et al., 2017; Shanks and Morgan, 2018). Together with the above
results on larval distributions in upwelling areas, this suggests a
shift in paradigms from the past idea that upwelling necessarily
limits recruitment to new ideas that recruitment limitation and
population connectivity may be better explained by alongshore
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differences in surfzone circulation (Shanks et al., 2017; Shanks
and Morgan, 2018; Morgan, in press).

Larval retention evidently occurs all along coasts in upwelling
regions, rather than primarily occurring in bays and eddies in
the lee of headlands. This implies that alongshore transport
and the scale of connectivity in benthic metapopulations in
upwelling areas is less than previously suggested. Larval transport
would be reduced even further if postlarvae effectively navigate
onshore in upwelling regimes. Elsewhere, postlarvae can navigate
onshore to suitable settlement sites using hierarchies of cues
that are effective over different spatial scales, including celestial
bodies, polarized light, magnetic and electric fields, waves and
tides, and acoustic, chemical and visual cues (Kingsford et al.,
2002; Montgomery et al., 2006; Arvedlund and Kavanagh, 2009;
Morgan, in press). Adding onshore navigation into individual
based biophysical models in upwelling regions (Pfeiffer-Herbert
et al., 2007; Carr et al., 2008; Petersen et al., 2010; Domingues
et al., 2012; Drake et al., 2013; Nolasco et al., 2013) should
reduce the scale of population connectivity even further, but
onshore navigation remains to be documented for species
in upwelling regimes (Morgan, in press). The ultimate goal
is to determine realized population connectivity, reconciling
evidence from studies of circulation, plankton, genetics and
microchemistry. Next steps should also include incorporating
documented reproductive outputs of a metapopulation (Hameed
et al., 2016), larval behaviors documented here and previously
(Morgan et al., 2009b; Morgan and Fisher, 2010) and larval
mortality rates (White et al., 2014) into the numerical
circulation model (Regional Ocean Modeling System; Drake
et al., 2013). This would provide one of the first reliable
estimates of realized population connectivity (Burgess et al.,
2014). Clearly, a fresh look at the underlying processes
responsible for spatial and temporal patterns of recruitment

and population connectivity for diverse taxa and locations
across upwelling coasts is needed to better understand the
regulation of marine populations and communities (Shanks
et al., 2017; Morgan et al., 2018; Shanks and Morgan,
2018).

In conclusion, larval retention is likely commonplace all
along upwelling coasts with larvae recruiting closer to home
and more abundantly than has been widely appreciated. Here,
we demonstrated that this is even true at locations and times
when upwelling is strongest, such as in the Point Arena
upwelling center. This deeply affects the ecology, evolution
and management of species in upwelling regimes. More
larval retention should increase coupling between stock and
recruitment, local adaptation and local benefits of marine
protected areas as well as vulnerability of marine protected areas
to overfishing and other disturbances (Strathmann et al., 2002;
Sanford and Kelly, 2011; Burgess et al., 2014, 2016).
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