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Conservation of horseshoe crabs has recently received increasing attention as several
populations are in decline. However, scarce information on their distributions in
Southeast Asia is impairing conservation efforts. In this study, we sought to improve
our understanding of the geographical range and distinct populations of the three Asian
horseshoe crabs species in order to identify optimal conservation areas. We mapped the
geographic range of Carcinoscorpius rotundicauda, Tachypleus gigas, and T. tridentatus
using recent data from field work, literature, Global Biodiversity Information Facility
(GBIF), and unpublished data from our scientific network. The data were correlated with
23 different environmental variables of potential ecological importance for horseshoe
crabs using the openModeller webservices, including new tidal variables. Ecological
niche models were generated using two algorithms, Maximum Entropy and support
vector machine, for the three species under present conditions, and projected into a
climate change scenario of 2050. The niches of the Asian horseshoe crabs were mostly
determined by tidal regime, chlorophyll A concentrations, depth, distance to land, and
sea surface temperature. According to our predictions, horseshoe crabs in Southeast
Asia are not expected to experience any severe change in extent and distribution of
suitable habitat in the future. In order to conserve Asian horseshoe crabs, we suggest
establishing Marine Protected Areas at locations where distinct populations and several
species occur, such as northern Vietnam, China, Borneo, and southern Japan.

Keywords: Carcinoscorpius, climate change, ecological niche modeling, conservation, marine protected area,
Tachypleus, Xiphosura

INTRODUCTION

Coastal and intertidal areas are currently under threat globally due to a range of anthropogenic
activities, including infrastructure development and coastal protection, as well as effects of climate
change, such as rising sea levels pushing coastal areas closer to anthropogenic structures, resulting
in “coastal squeeze” (Defeo et al., 2009). Coastal areas are characterized by high productivity
and species richness (Ketchum, 1972; Ray, 1991), and humans depend strongly on a variety of
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species that are living and reproducing in the coastal zone, such
as fishes (Allison et al., 2009; Bell et al., 2009), sea cucumbers
(Purcell et al,, 2013), and horseshoe crabs (Chatterji, 1994), thus
the conservation of such species is of great importance.

During the past decade, horseshoe crab conservation has
received increasing attention (Botton et al., 2015). Horseshoe
crabs are marine chelicerates of the order Xiphosura, containing
only four extant species. Three species occur in the coastal waters
of India, Southeast Asia, China, and Japan [Carcinoscorpius
rotundicauda (Latreille, 1802), Tachypleus gigas (Miiller, 1785),
and T. tridentatus (Leach, 1819)]. One species [Limulus
polyphemus (Linnaeus, 1758)] occurs in the coastal waters of
the eastern continental shelf of North America and in the
Gulf of Mexico (Sekiguchi and Shuster, 2009). Populations
of horseshoe crabs world-wide are currently in decline (e.g.,
Cartwright-Taylor et al., 2011; Kwan et al.,, 2016; Smith et al,,
2017), and the IUCN Red List of Threatened Species now
describes L. polyphemus as vulnerable (Smith et al., 2016).
Although the Asian horseshoe crab species are thought to be in
greater decline than L. polyphemus, these species are currently
listed as data deficient (World Conservation Monitoring Centre,
1996a,b,c). While the geographic range of L. polyphemus is
known (Sekiguchi, 1988; Anderson and Shuster, 2003; Sekiguchi
and Shuster, 2009; Faurby et al., 2011), the precise distribution of
the three Asian species remains less clear (World Conservation
Monitoring Centre, 1996a,b,c), thus impairing conservation
efforts.

The global decline in horseshoe crab populations is mainly
due to anthropogenic activities. For L. polyphemus the decline
has primarily been due to overharvesting and loss of breeding
habitat (Smith et al., 2017), as this species breeds on beaches with
slight slopes; a habitat commonly used for real estate construction
and development (Nordstrom, 2004). Coastal armoring as a
response to erosion is an additional factor reducing available
breeding habitat (Jackson et al., 2015). Wild caught horseshoe
crabs are used commercially in medicine, where substances from
their hemolymph (Carcinoscorpius, Limulus, and Tachypleus
Amoebocyte Lysate, CAL, LAL, and TAL) are used to test
if drugs, blood products, and pharmaceutical devices are free
from bacterial contamination (Levin and Bang, 1968; Rao
and Bhagirathi, 1989; Levin et al., 2003). L. polyphemus is
released after collection of LAL, but the two Tachypleus species
are commonly used for chitin production after hemolymph
collection, thus harvesting of these species results in 100%
mortality (Gauvry, 2015). However, a synthetic, commercially
available version of the CAL test has been developed (Ding
et al., 1995; Lonza, 2016). The three Asian horseshoe crab
species are fished for human consumption (Botton, 2001), and
were previously imported to North America to be used as bait
(Smith et al.,, 2016), although this import is now prohibited
(IUCN, 2013). As for L. polyphemus, the expansion of urban
infrastructure into coastal areas, as well as coastal armoring
present additional anthropogenic habitat disturbances for the
Asian horseshoe crabs, thus in some areas, such as Japan and
Peninsular Malaysia, horseshoe crab breeding habitats are now
almost completely lost due to coastal infrastructure development
(Botton, 2001; Nelson et al., 2016). In response to the declining

horseshoe crabs populations, Marine Protected Areas (MPAs)
have been established, especially in the USA (Carl N. Shuster
Jr. Horseshoe Crab Reserve, Delaware Bay) and Japan (Saikai
National Park in Nagasaki). However, in most of Southeast Asia
MPAs protecting critical horseshoe crab habitats are still scarce.

Climate change might have additional detrimental effects on
the distribution and population sizes of horseshoe crabs. Rising
sea levels could reduce suitable horseshoe crab breeding habitats,
since the retreating shorelines would bring the horseshoe crabs
closer to the human infrastructure near the coasts. This is the
case for Delaware Bay, New Jersey, USA, where sea levels have
risen at a high rate during the twentieth century and hence
decreased horseshoe crab breeding habitat (Loveland and Botton,
2015). Climate change would also affect ecological factors that
influence the developmental success of horseshoe crab eggs and
larvae, such as salinity and temperature (Jegla and Costlow, 1982;
Laughlin, 1983; Ehlinger and Tankersley, 2004; Zaleha et al.,
2011), oxygen levels (Palumbi and Johnson, 1982; Funch et al,,
2016), beach geochemistry, wave energy, and erosion (Botton
etal., 1988; Penn and Brockmann, 1994; Jackson et al., 2008). One
of the species, C. rotundicauda, is found in habitats characterized
by mangroves, which are also vulnerable to the effects of climate
change, primarily rising sea levels (Gilman et al., 2008).

Ecological niche modeling (ENM, also known as species
distribution modeling) allows for predictions of suitable habitats
for a given species by identifying the environmental factors
driving the species’ distribution, such as temperature, salinity,
or depth (Peterson et al, 2011). Furthermore, ENM can be
used to project the distribution of suitable habitats of a species
into future scenarios (e.g., future climate change scenarios),
allowing forecasts of possible species range shifts. For example,
the method has been used to predict future distributions and
range shifts for Mediterranean fishes (Albouy et al., 2013) as
well as changes in suitable habitat for commercially important
fish and invertebrates along the Atlantic coast of North America
(Kleisner et al., 2017). ENM can be regarded as an important tool
for conserving threatened species, and has proven useful for the
assessment and planning of protected areas (Kremen et al., 2008;
Stirling et al., 2016). Thus, the scattered information on Asian
horseshoe crab distributions and their unknown conservation
status would benefit from gathering recent occurrences as well
as a modeling of suitable habitats in the region. The objectives of
this study were to (1) identify important environmental factors
that influence the distributions of the three Asian species of
horseshoe crabs, (2) update the information on current species
distributions, and (3) identify possible high priority regions for
their conservation, where climate change has minimal effect and
where species ranges overlap.

MATERIALS AND METHODS
Species Data and Study Area

The geographic study area included all coastal waters between
10.0° S to 35.0° N and 77.0° W to 135.0° E, thus including
the continental shelves of the Bay of Bengal, India and
Indonesia and between Indonesia and Japan. This area, the
geographical mask, was chosen based on the existing knowledge
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of horseshoe crab distribution limits in Asia (Sekiguchi, 1988),
and used for geographical filtering of occurrence records,
collecting background points, and building and projecting
the models. We assembled occurrence records (presence-
only) for all three species in this region from our own
observations, collaborators, scientific networks as well as through
publishing a scratchpad site at http://horseshoecrabs.myspecies.
info/ (Table 1, Supplementary Table1). For many species,
numerous distribution records exist in the literature, and we
manually geo-referenced additional occurrence data from these
sources (Supplementary Table 2). Subsequently, we added data
from the Global Biodiversity Information Facility (http://gbif.
org) in September, 2015 (Supplementary Table 3). A taxonomic
data refinement workflow (Mathew et al., 2014) was used to
check the synonyms, download, visualize, filter, and integrate
occurrence records for all species. We inspected all records and
excluded those of dubious identity (e.g., on land, in deep water,
or without clear reference of origin), as well as those older than
1995 and those outside the geographical mask. All new data (i.e.,
excl. GBIF records) were submitted to the Ocean Biogeographic
Information System (http://www.iobis.org/) and are available
under the link https://doi.org/10.14284/293.

Environmental Data

Based on available information on general ecology of horseshoe
crabs (Bonaventura et al., 1982; Sekiguchi, 1988; Shuster
et al., 2003), we included 23 environmental variables in the
analysis, relating to sea surface temperature, chlorophyll A
concentration, salinity, oxygen and nutrient concentrations,

distance to land, water depth, pH, and tidal regime (Table 2).
Chlorophyll A variables were included since chlorophyll levels
acts as a proxy for phytoplankton primary production, which
in turn reflects food availability for filter-feeding bivalves,
which is one of the most important food items for horseshoe
crabs (Chatterji, 1994). We used 13 marine layers from Bio-
Oracle (http://www.bio-oracle.ugent.be/) with a resolution of
five arc-minutes (Table2; Tyberghein et al, 2012). These
data layers are generated from monthly satellite data (Aqua-
MODIS and SeaWiFS; https://oceancolor.gsfc.nasa.gov) as well
as in situ measured oceanographic data from the World
Ocean Database, 2009 (Boyer et al,, 2009), and overlap with
the species occurrence data in their temporal origin. In
addition, we used five marine layers for both present and
2050 climate scenarios from AquaMaps (http://www.aquamaps.
org/download/main.php) with a resolution of 30 arc-minutes
(Table 2; Kaschner et al., 2008). Present-day (i.e., year 2010)
datasets from AquaMaps were built from long-term averages of
temporally varying environmental variables (Ready et al., 2010),
while future data sets for 2050 were derived from the IPSL-CM4
A2 climate change scenario (IPCC, 2007).

We additionally generated five present-day (i.e., year
2010) global tidal variables with the Finite Element Solution
oceanographic model (FES2012), provided by Noveltis, Legos
and CLS Space Oceanography Division and distributed by
AVISO+ (http://www.aviso.altimetry.fr/) (Table 2, more detailed
information on how the global tidal variables were created can
be found in Supplementary Data Sheet 1). FES2012 is a fully
revised version of the original global hydrodynamic tide solution

TABLE 1 | Occurrence data used in the analysis. Environmentally unique points (EUPs) were calculated from the compiled observations (records) using the respective
geographical mask with a resolution of 300 arc seconds and 23 environmental variables.

Species Records (EUPs)

Source references (number of records)

Carcinoscorpius rotundicauda 123 (67)

Adibah et al. (2015) (5), Behera et al. (2015) (1), Cartwright-Taylor et al. (2009) (1), Cartwright-Taylor et al.

(2011) (7), Chatterji (1999) (2), Chatterji and Parulekar (1992) (1), Chiu and Morton (2003) (2), Dao et al. (2009)
(1), Faizul et al. (2015) (1), Faurby et al. (2011) (3), Fusetani et al. (1982) (1), GBIF (11), Hong (2004) (1), Jeffries
et al. (1989) (1), Key et al. (1996) (1), Kungsuwan et al. (1987) (3), Lee and Morton (2005) (1), Ngy et al. (2007)
(1), Raman et al. (2014) (2), Robert et al. (2014) (2), scientific network (50), Sekiguchi (1988) (15), Srijaya et al.
(2010) (2), Tanu and Noguchi (1999) (1), www.wildsingapore.com (3), Yap et al. (2011) (3), Zhou and Morton
(2004) (1)

Tachypleus gigas 125 (88)

Behera et al. (2015) (1), Cartwright-Taylor et al. (2011) (1), Chatterji (1999) (1), Chatteriji et al. (1992) (1),
Chatterji et al. (2004) (1), Faizul et al. (2015) (1), Faurby et al. (2011) (2), GBIF (24), Ismail and Sarijan (2011)
(2), John et al. (2011) (2), Kamaruzzaman et al. (2011) (1), Key et al. (2000) (3), Kungsuwan et al. (1987) (3),
Liew et al. (2015) (5), Patil and Anil (2000) (1), Raman et al. (2014) (2), Robert et al. (2014) (1), Rozihan and
Ismail (2011) (4), Rozihan and Ismail (2012) (3), Sahu and Dey (2013) (1), scientific network (51), Sekiguchi
(1988) (8), Shakibazadeh et al. (2013) (1), Tan et al. (2011) (1), Vijayakumar et al. (2000) (1), Zaleha et al.
(2011) (1), Zaleha et al. (2012) (2)

Tachypleus tridentatus 81 (65)

Almendral and Schoppe (2005) (1), Botton et al. (1996) (2), Cai et al. (2015) (1), Chatterji and Pati (2014) (1),
Chiu and Morton (2003) (5), Chiu and Morton (2004) (1), GBIF (6), Hsieh and Chen (2009) (4), Hu et al. (2009)
(6), ltow et al. (1998) (4), Kannan et al. (1995) (2), Kwan et al. (2015) (1), Lee and Morton (2005) (1), Liao et al.
(2012) (1), Nishida et al. (2015) (1), Robert et al. (2014) (2), scientific network (23), Shigenaga et al. (1990) (1),
Weng et al. (2012) (5), Xu et al. (2011) (3), Yang and Ko (2015) (1), Yang et al. (2009a) (3), Yang et al. (2009b)
(1), Yang et al. (2007) (3), Zhou and Morton (2004) (2)

Sum 329 (210)

All original occurrence records are accessible through http://www.iobis.org/.
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TABLE 2 | Environmental variables investigated for ecological niche modeling of the three Asian horseshoe crabs.

Source (Resolution) Variable (Abbreviation) Unit CR TG TT
Bio-Oracle (5 arc-minutes) Mean dissolved oxygen (Oxy) mi/l
Mean nitrate [NO3]/[NO3+NOo] (NO3) pwmol/|
Mean phosphate (PO4) pwmol/l
Silicate mol/m3
pH _
Mean sea surface salinity (SSS) PSU
Maximum sea surface temperature (Max SST) °C
Minimum sea surface temperature (Min SST) °C
Sea surface temperature range (Range SST) °C *
Mean calcite concentration (CaCO3) mol/m3
Maximum chlorophyll A concentration (Max ChlA) mg/m3 * * *
Minimum chlorophyll A concentration (Min ChlA) mg/m8
Range of chlorophyll A concentration (Range ChlA) mg/m?3 * * *
AquaMaps (30 arc-minutes) Mean sea surface salinity (SSS) PSU
Mean sea surface temperature (Mean SST) °C > > >
Mean chlorophyll A concentration (Mean ChiA) mg/m?3 h * *
Distance to land (DL) km > * >
Mean depth (Depth) m
FES2012 (3.75 arc-minutes) Annual average cycle amplitude (AverAmpl) cm * * *
Maximum annual cycle amplitude (MaxAmpl) cm * * *
Annual standard deviation of cycle amplitude (CycleDev) cm
Annual average duration of tidal cycles (CycleDur) hours

Annual number of cycles (CycleNumber)

Informative variables are shown in bold. Variables used in the modeling of present distribution (*) and potential range shifts (**) are indicated for each species under the columns CR
(Carcinoscorpius rotundicauda), TG (Tachypleus gigas), and TT (T. tridentatus). Variable abbreviations used throughout the article are given in parentheses.

model (Lyard et al., 2006) with improvements regarding longer
altimeter time series, more accurate ocean bathymetry, major
non-linear tides, and more accurate tidal currents. It includes
overall 32 tidal constituents distributed on 1/16° grids (amplitude
and phase), corresponding to 3.75 arc-minutes (Carrére et al.,
2012). The tidal variable layers can be accessed through
a webservice (https://www.biodiversitycatalogue.org/services/
37), and is hence available for future research on distribution
modeling of marine intertidal organisms. In addition, we
deposited the raster files together with the algorithm for calling
the FES program and creating the ASCII grids at the Swedish
Environmental and Climate Data Repository (www.ecds.se)
under the identifier 87196c86-8e36-4908-8f16-424e61aa313c.

Analysis of Environmental Variables

Environmental values were obtained using version 2 of
the BioClim workflow (http://purl.ox.ac.uk/workflow/myexp-
3725.2) available at the BioVeL portal, https://portal.biovel.
eu (Hardisty et al., 2016). The workflow was used to
retrieve environmentally unique points (EUPs) from the species
occurrence files for a set of 23 environmental data sets (Table 2).
Since all points within a raster cell share the same values for
the environmental variables, EUPs are obtained by filtrating the

occurrence points, so that each raster cell contains no more than
a single point (Nix, 1986). The workflow returned environmental
values from the specified layers that matched with the species
occurrence records, and it was executed in batch mode (called
data sweep function) to repeat all calculations with the same
parameter settings for all species.

We analyzed differences in environmental tolerances between
all three horseshoe crab species by applying a Welch’s test
for unequal variances to the retrieved environmental values
(Supplementary Table 4). This test was chosen because the
data did not conform to parametric test assumptions. In
addition, pairwise comparisons of environmental tolerances
between species were performed using the Games-Howell
Post-Hoc test (Supplementary Table 5). Both statistical tests were
performed using SPSS version 22 (IBM Corporation, 2013).
We subsequently performed a correlation analysis (data not
shown) as well as a principal component analysis (PCA) on
the environmental values using the R statistical environment
3.0.2 (R Core Team, 2013). The analyses were performed in
order to identify ecologically important variables that explain the
variation in the data set, and which can be used as predictor
variables (Metzger et al., 2005; Porfirio et al., 2014). The PCA was
estimated as a 23-dimensional hypervolume and used to compare
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the environmental space occupied by the three species. We used
all non-correlated variables that were represented (with >5%) in
the first two components of the PCA to build the niche models,
except for Mean SST, which was included in the future projection
(Supplementary Tables 6-8).

Ecological Niche Modeling

We used version 20 of the ecological niche modeling (ENM)
workflow  (http://purl.ox.ac.uk/workflow/myexp-3355.20) in
batch mode (called data sweep) to describe and compare
the geographical space occupied by the three species and to
estimate the distribution of suitable habitat with favorable biotic,
environmental, and geographical conditions. Demographic or
dispersal properties that may also be used in species distribution
modeling were not considered (Peterson et al., 2011; Reiss et al.,
2014). For more information on the ENM workflows see Holl
et al. (2013), Leidenberger et al. (2015a,b), and De Giovanni
et al. (2015). We executed parallel analyses with two ENM
algorithms by means of the openModeller webservice suite (de
Souza Muinoz et al, 2011). These are i) Maximum Entropy
v. 1.0 (Phillips et al., 2006; Phillips and Dudik, 2008) and ii)
support vector machine v. 0.5 (Scholkopf et al., 2001). These
two methods were chosen because Maximum Entropy (Maxent)
is a presence-background algorithm that has been shown to
perform with high predictive accuracy even if there are moderate
errors in the geo-referencing (Elith et al., 2006; Graham et al,,
2008), and support vector machine (SVM) is a machine-
learning algorithm that is not analyzing characteristics of
statistical distributions and hence does not require independent
observation data, and thereby overcomes potential problems
with spatial autocorrelation in the species occurrence data
(Drake et al., 2006).

Models were created using each species maximum
distribution range within the mask and a set of predictor
variables identified in the PCA. Variables selected for present
day projections (high resolution variables) and future trend
analysis (low resolution variables) are listed in Table 2. Models
were created based on EUPs (Table1) with the following
specifications. Maxent models were set to run with 10.000
background points (including input points) drawn from the
mask. Feature selection was automated, allowing the algorithm
to combine feature types when fitting a model, and perform
500 iterations. Tolerance for detecting model convergence
was set to 0.00001, while sample threshold was set to 80
(product), 10 (quadratic), and 15 (hinge). SVM models were
set to execute the C-SVC algorithm with radial basis kernels,
gamma values 1/k (where k is the number of layers), and a
cost value of 1. All models were set to produce a probabilistic,
instead of binary output. Predictive models may encounter some
problems with extrapolations (Zurell et al., 2012), i.e., when the
environmental hyperspace of the scenario is not represented
by true observations. These were minimized by using only few
essential variables in the future predictions, thereby avoiding
complexity and interaction between too many factors, as well
as through using a consensus approach (Table 2; Pearson et al.,
2006).

For each species, we ran both algorithms across two sets
of environmental layers (specified above and in Table 2); one

with high resolution (using Bio-Oracle and FES2012 layers) and
one with low resolution (using AquaMaps layers). The high-
resolution models were used for present day projections of
suitable habitat, while the low-resolution models were used to
deduct climate driven changes in suitable habitat. Models were
tested using 10-fold cross-validation based on the area under
the curve (AUC) value and omission error rate (false negative
rate), and subsequently projected using present and (in case of
AquaMaps layers) 2050 climate scenarios (Table 3). The results
of the ENMs were visualized as maps showing the distribution
of suitable habitat of a species in a particular geographic region
at a particular time (de Souza Mufioz et al., 2011). The sweep
function allowed automated batch processing of all species for
a given algorithm and parameter set. Overall, we executed
12 niche models, ie., two algorithms, three species, and two
environmental datasets (Table 3).

GIS Analysis

Raster maps created by the niche modeling algorithms
were processed using the qGIS software package v. 2.6
Brighton (Quantum GIS Development Team, 2014). Maps
of individual models are available in the Supplementary
Material (Supplementary Images 1-6). For the consensus
analysis presented in the maps, we transformed each individual
model into a binary output using the lowest presence threshold
(LPT) in order to include any signal of suitable habitat.
Thereafter the maps of both models were merged into a single
consensus model highlighting only areas where both algorithms
agreed on the prediction of suitable habitat. Likewise, heat maps
showing the predicted changes between 2050 and present-day
distributions were created as consensus maps identifying only
areas where both algorithms agreed on predicted loss or gain of
suitable habitat. Finally, we compared high-resolution models
(used for present day projections) with low-resolution models
(for future change projections). We found that both model
settings predict suitable habitat for similar biogeographic regions
with few deviations mentioned in the discussion below.

RESULTS

Environmental Factors Defining Horseshoe

Crab Distributions

The PCA showed that C. rotundicauda and T. gigas largely share
the same ecological niche, and that the niche of T. tridentatus to
some extent overlaps with the niches of the other two species
(Figure 1). Further, the PCA showed that the distributions of
the three species are mainly driven by chlorophyll concentration,
tidal regime, temperature, depth and distance to land (Figure 1,
Table 2). The combination of the environmental tolerances
represents the specific fundamental ecological niche for each of
the three species. We found no difference between the three
Asian species in any of the tidal variables (Figures2A-C).
All species experienced varied annual cycle deviation as well
as cycle durations of varied lengths. The mean minimum
sea surface temperature found for T. tridentatus was 17.0°C
and hence 10 degrees lower than those for T. gigas and
C. rotundicauda (Figure 2D). T. tridentatus experienced a larger
mean temperature range of 12.7°C compared to T. gigas and
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TABLE 3 | Results of model tests for all models of current distribution (based on Bio-Oracle and tidal variables) and future trend analysis (based on AquaMaps variables).

Species

Model Algorithm Criterion CR TG T
Current distribution SVM AUC 0.977 (0.01) 0.976 (0.01) 0.948 (0.04)
(BioOracle variables) OE 1.429 (4.52) 1.250 (3.95) 1.667 (5.27)
MAXENT AUC 0.983 (0.02) 0.985 (0.02) 0.935 (0.08)
OE 2.857 (6.02) 1.111(3.51) 2.000 (6.32)
Future trend analysis SVM AUC 0.959 (0.01) 0.967 (0.01) 0.962 (0.03)
(AquaMaps variables) OE 1.667 (56.27) 1.250 (3.95) 3.333 (10.54)
MAXENT AUC 0.974 (0.03) 0.974 (0.02) 0.952 (0.07)
OE 6.190 (8.03) 1.111(3.51) 2.000 (6.33)

Performance was assessed for two model algorithms (SVM, Maxent) and all three species separately (CR, C. rotundicauda; TG, T. gigas;, TT, T. tridentatus), with area under the curve

(AUC) values and omission error (OE) in %. Both criteria were measured as mean values

obtained from 10-fold cross validation with standard deviation in parentheses.
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FIGURE 1 | Niche overlap analysis of the three Asian horseshoe crab species showing the principal component analysis plots of the environmental “hypervolume” for

23 predictor variables [CR, C. rotundicauda (l); TG, T. gigas (A); TT, T. tridentatus (@)]. Ellipses represent 68% of the hypervolume for each species; points represent
presence of each species at environmentally unique locations. The positions of variable names have been adjusted to prevent overlapping.

C. rotundicauda, which experienced a mean range of 3.9 and
4.0°C, respectively (Figure 2E). The water oxygen levels followed
the same pattern as sea surface temperatures, with a higher
mean for T. tridentatus (5.0 mL/L) compared to T. gigas and
C. rotundicauda (4.4 and 4.5 mL/L, respectively, Figure 2F).
Neither the maximum chlorophyll A concentration nor the range
of chlorophyll A concentration differed between the species
(Figures 2G,H). We found a mean salinity of 33.5 PSU for
T. tridentatus, which was slightly higher compared to T. gigas
(31.8 PSU) and C. rotundicauda. (32.3 PSU, Figure 21I), although
the narrow salinity range for C. rotundicauda was likely an
artifact caused by inaccessible data from inland waters (see
Discussion). The mean nitrate level was higher for T. tridentatus
(1.9 pmol/L) than the other two species (0.6 pmol/L for
both) (Figure 2J). Mean phosphate differed between all three
species, with T. gigas experiencing the highest (0.28 umol/L) and
T. tridentatus the lowest (0.20 umol/L) mean level (Figure 2K).

T. tridentatus differed from the other two species in occupying a
niche with higher mean pH value (Figure 2L).

Species Distributions

The sampled distribution of C. rotundicauda includes the coasts
of eastern India and Bangladesh, the coasts of Malaysia, Thailand,
Cambodia, and southern Vietnam (Figure 3), but excludes the
eastern coast of Vietnam, however, the distribution continues
along the coast of northern Vietnam and southern China.
C. rotundicauda is also present along the coasts of the Indonesian
islands Sumatra and Java, as well as Borneo. The distribution of
T. gigas is similar to that of C. rotundicauda, except that T. gigas
seems to be absent from the coasts of Bangladesh, Cambodia,
northern Vietnam, and China (Figure4). T. tridentatus is
distributed along the coasts of southern Japan, China, Taiwan,
and northern Vietnam, in addition to the Philippines, and the
islands of Borneo and Java (Figure 5).
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FIGURE 2 | Comparison of the three horseshoe crab species (CR, C. rotundicauda; TG, T. gigas; TT, T. tridentatus) showing the variation of 12 key environmental
variables. Variable and unit are shown on the y-axis. Gray boxes indicate 50% of the sample points and are limited by the 1st (Bottom) and 3rd quartiles (Top). Black,
horizontal lines within the gray boxes display the medians. Comparisons between C. rotundicauda and the two Tachypleus species for salinity were excluded because
of absence of environmental data for inland waters. Asterisks show significant (<0.05) differences between species.

Distribution of Suitable Habitat

Both models, SVM and Maxent, demonstrated high predictive
power, as seen by the high AUC values (all values >0.9)
performed  marginally

(Table 3). The Maxent

model

better than SVM for all species except T.
Omission errors were very low for both models (<3.5%),
except for Maxent’s future prediction for C. rotundicauda

(6.2%).

tridentatus.
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ot d R

FIGURE 3 | Distribution maps for Carcinoscorpius rotundicauda with
environmentally unique points, indicating the sampled distribution range for the
species. Upper map (A) shows present-day projections of suitable habitat in
red based on consensus of Maxent and SVM algorithms. Lower map (B)
shows changes between the present-day and 2050 projections of suitable
habitat based of consensus of Maxent and SVM algorithms, with green cells
indicating loss of suitable habitat and red cells indicating gain of suitable
habitat. Support values for the individual models are given in Table 3.

Suitable habitats for C. rotundicauda are distributed along
the coastline of mainland Southeast Asia, from the Bay of
Bengal, including Sri Lanka, to southern China, except from the
eastern coasts of Peninsular Malaysia and Vietnam (Figure 3A).
Suitable habitats are also present in the Malacca Strait between
Sumatra and Peninsular Malaysia, Southeast Sumatra, southern
coast of Java, the coast of Kalimantan (Indonesian Borneo), and
the coast of Sarawak (Malaysian Borneo). Additionally, small
areas of suitable habitat are found in Sabah (Malaysian Borneo),
West Papua, and in Manila Bay, Philippines. The distribution
of suitable habitat differs from the sampled distribution, as
it includes the coasts of Myanmar, southern Borneo, eastern
Sumatra, and southern Java.

The distribution of suitable habitat for T. gigas is similar to
that of C. rotundicauda, however, for T. gigas it does not go
further east along the Southeast Asian mainland than to southeast

FIGURE 4 | Distribution maps for Tachypleus gigas with environmentally
unigue points, indicating the sampled distribution range for the species. Upper
map (A) shows present-day projections of suitable habitat in red based on
consensus of Maxent and SVM algorithms. Lower map (B) show changes
between the present-day and 2050 projections of suitable habitat based of
consensus of Maxent and SVM algorithms, with green cells indicating loss of
suitable habitat and red cells indicating gain of suitable habitat. Support values

for the individual models are given in Table 3.

Vietnam (Figure 4A), nor does it include the south coast of Java.
Compared to the current known distribution, the distribution of
suitable habitat includes the coast of Myanmar, Bangladesh, east
coast of Sumatra, and southern Borneo.

The distribution of suitable habitat of T. tridentatus spans
from northern Vietnam, along the coast of China, and into the
Sea of Japan (Figure 5A). It also includes the coast of northwest
Taiwan and Japan, including the Seto Inland Sea. Small areas
of suitable habitat are present along the coasts of Southwest
Myanmar, East Sumatra, South Java, Borneo, South Vietnam, Bay
of Bangkok, and Manila Bay.

Changes in the Distribution of Suitable
Habitat Under Climate Change Scenarios

We included three environmental variables, mean sea surface
temperature, mean chlorophyll A concentration, and distance
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FIGURE 5 | Distribution maps for Tachypleus tridentatus with environmentally
unique points, indicating the sampled distribution range for the species. Upper
map (A) shows present-day projections of suitable habitat in red based on
consensus of Maxent and SVM algorithms. Lower map (B) show changes
between the present-day and 2050 projections of suitable habitat based of
consensus of Maxent and SVM algorithms, with green cells indicating loss of
suitable habitat and red cells indicating gain of suitable habitat. Support values
for the individual models are given in Table 3.

to land, for the modeling of the future distributions of
suitable habitat (Table 2). Our models predicted that the habitat
suitability for C. rotundicauda will increase in several coastal
areas throughout Southeast Asia. More suitable habitats will arise
in more eastern regions; the Philippines and along the coasts
of several Indonesian islands: Sulawesi, Lombok, Sumbawa, and
Flores (Figure 3B). Similarly, for T. gigas several areas along
the coasts of Southeast Asia will become more suitable in the
future (Figure 4B). The Bay of Bengal and North Sumatra will
be less suitable. T. tridentatus will lose suitable habitat in the
future, however, none of the lost areas are overlapping with the
species’ current occurrences (Figure 5B). In summary, none of
the Asian horseshoe crabs seem to undergo a major range shift
driven by prospective changes of the environmental factors tested
here.

DISCUSSION

Carcinoscorpius rotundicauda

We found that C. rotundicauda occurs along the coasts of
Bangladesh, Cambodia, Vietnam, East Thai-Malay Peninsula,
and China, in addition to the countries and coasts already
surveyed by Sekiguchi (1988) (India, West Thai-Malay Peninsula,
Singapore, and Indonesia). However, contrary to Sekiguchi
(1988) we have not found evidence for its presence at Palawan,
Philippines (Figure 3). According to the occurrence record,
C. rotundicauda is absent along the coast of Myanmar, even
though our models indicate suitable habitat in this area. Indeed,
there is evidence that horseshoe crabs are present in this region,
however, the available information points to L. polyphemus, and
is likely a misidentification (Thapanand-Chaidee et al., 2010). We
thus conclude that C. rotundicauda probably is present along
the coast of Myanmar, and that missing records of horseshoe
crabs are due to lack of studies in the area. The sampled
distribution of C. rotundicauda shows a gap along the east
coast of Vietnam, extending approximately 1,500 km in the high-
resolution projections (based on Bio-Oracle variables, Figure 3)
and approximately 400km in the low-resolution projections
(based on AquaMaps variables). The absence of the species
in this region might be explained by the narrow continental
shelf present along the coastline, which provides less horseshoe
crab habitat, as well as water characterized by a high degree
of mixing with deep water (Rojana-anawat et al., 2001). The
distribution gap could also be related to food availability, as
the east coast of central Vietnam has a lower macrozoobenthos
biomass compared to the southern and northern coasts (Nguyen
and Dao, 1995). However, the lack of mangroves along the east
coast of central Vietnam may be the most plausible explanation
for the distribution gap (Hong and San, 1993). C. rotundicauda is
commonly known as the mangrove horseshoe crab, as it is often
found in habitats characterized by mangroves and mudflats in
contrast to the two Tachypleus species, which can be found at
open sandy beaches (e.g., Cartwright-Taylor et al., 2011; Robert
et al., 2014; Jawahir et al., 2017), thus a scarcity of mangroves
would have a negative effect on the presence of C. rotundicauda.

When interpreting our model results, it is important to
mention that species distribution models do have caveats, which
may lead to false or uncertain projections of actual species
distribution ranges (Jarnevich et al., 2015). We have tried to
mitigate such caveats and uncertainties through an unbiased
sampling of the biological data from independent sources, a
careful selection of predictor variables, and through modeling
with several environmental data sets and analytical algorithms.
Nevertheless, the indication of a gap in the distribution of
C. rotundicauda along the Vietnamese east coast should still
be treated as a hypothesis that needs further validation with
additional sampling and modeling.

The future distribution of suitable habitat of C. rotundicauda
includes several coastal areas of Indonesian islands east of
the sampled distribution. Since horseshoe crabs reside on the
continental shelves (Sekiguchi and Shuster, 2009), it has been
argued that the distributions of the Asian horseshoe crabs are
delimited by the eastern edge of the continental Sunda Shelf
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(roughly corresponding to Wallace Line). Thus, even though
areas of future suitable habitat are present east of the Sunda Shelf,
we would not expect C. rotundicauda to be able to reside here,
unless humans have mediated their dispersal. The models used in
this study find an approximation of the fundamental niche of the
horseshoe crabs, not the realized niche, thus geographical barriers
are not necessarily detected.

We found that C. rotundicauda, as well as the other two Asian
horseshoe crab species, inhabit coastal areas with varied tidal
regimes. This is in contrast to L. polyphemus, as this species can
be found in areas with mixed semi-diurnal tides (i.e., tidal cycles
of approximately 12h) (Rudloe, 1985; Barlow et al., 1986). The
narrow range of salinity found for C. rotundicauda is most likely
an artifact, as we know that the three Asian species occur in
river estuaries, and C. rotundicauda has been found at salinities
as low as 10 PSU (Chatterji, 1999; Mishra, 2009; Chen et al.,
2015). Unfortunately, we could not include occurrences from
inland rivers in Southeast Asia in our models, due to lack of
environmental data from these areas. The narrow temperature
range of C. rotundicauda reflects its tropical distribution, and
can be related to its preference for temperatures between 20 and
30°C (Srijaya et al., 2014), which seems to be necessary for regular
ecdysis (Lee and Morton, 2005). We find that C. rotundicauda
is present in waters with lower pH levels compared to seawaters
of normal pH level (around 8.2). This corresponds well with
previous findings suggesting that pH levels found in horseshoe
crab habitat are low due to the presence of estuaries (mixing of
freshwater with pH levels of 7-7.5), photosynthesis by algae, as
well as anoxic decomposition of organic material (Jawahir et al.,
2017).

Tachypleus gigas

The distribution of T. gigas found in this study is consistent with
that found by Sekiguchi (1988), with the exception that we also
found occurrences of T. gigas along the east coast of the Thai-
Malay Peninsula (Figure4). Our high-resolution projections
show limited suitable habitat at the southern extension range of
the species (i.e., around Java), but the low-resolution projections
clearly indicate suitable habitat along the northern coastline of
Java.

As with C. rotundicauda, we suggest that T. gigas is present
along the coast of Myanmar even though occurrence data are
missing, due to the lack of research in the area. The presumed
presence of T. gigas in this area needs to be confirmed with real
observations in the future. Alternatively, there is the possibility
that other factors not included in the models, such as biological
interactions or substrate conditions, may actually refrain T. gigas
form inhabiting this region. Our models predict additional future
suitable habitats in more eastern regions of Indonesia, but again
we argue that T. gigas is unable to disperse into these areas
because of the deep waters east of the continental Sunda Shelf.

T. gigas is known to occur in areas with lower salinities
than our results show (15-26 PSU) (Cartwright-Taylor et al.,
2011). However, T. gigas is not as tolerant to low salinities as
C. rotundicauda (Chatterji, 1999), and it has been shown that
salinities lower than 20 PSU prevent its eggs from hatching
(Zaleha et al., 2011). Apart from salinity, the ecological tolerances

of T. gigas found in this study are similar to those of
C. rotundicauda, which reflect their overlapping distributions.

Although we found overlapping niches and distributions for
C. rotundicauda and T. gigas, the local habitat preferences are
different between the species on a smaller spatial scale, i.e.,
C. rotundicauda is associated with mangroves and mudflats and
T. gigas with sandy sediments at more exposed beaches, and
adding an environmental factor such as sediment characteristics
to our models might separate the niches of the two species
(Jawabhir et al., 2017).

Tachypleus tridentatus

In contrast to the T. tridentatus distribution reported by
Sekiguchi (1988), we found no recent occurrence data on this
species at the coasts of Sumatra, Sulawesi, South Vietnam,
or Luzon, Philippines (Figure 5). However, we found several
occurrences along the coast of South China. Although the coast
of Myanmar is an area of suitable habitat for T. tridentatus,
we would not expect it to occur here, as the area lies far west
from any sampled occurrence sites. But according to our high-
resolution model, the species might occur at the coast of Sumatra,
as suggested by Sekiguchi (1988), even though we did not find any
recent records of its presence here. There are no occurrences of
T. tridentatus within the Yellow Sea, and we were unable to find
historical evidence suggesting previous presence here, although
the species is distributed at the coasts of the Korean Peninsula
and Japan as well as in the East and South China Sea. Our high-
resolution models indicated suitable habitat in the Yellow Sea,
but this was not confirmed by the low-resolution models, leaving
some degree of uncertainty in our projections for this area. The
reason why T. tridentatus may be absent in the Yellow Sea could
be related to a variety of factors, e.g., unsuitable sediment type or
breeding habitat. If this discontinuity reflects a true distribution
gap, it would suggest the presence of allopatric populations of
T. tridentatus along each side of the Yellow Sea and future studies
should aim to find more evidence for a distribution gap in this
area. The future prediction of T. tridentatus shows less suitable
habitat in several areas, however, none of these areas lie within
the current known distribution of the species.

All Asian horseshoe crab species are known to occur at lower
salinities than reported by this study, including T. tridentatus,
as juveniles have been found at salinities of 8-24 PSU at
a nursery beach in Hong Kong (Chiu and Morton, 2004).
The temperature range of T. tridentatus is wider than of the
two other Asian species, which reflects the wider latitudinal
range of T. tridentatus, however, ecdysis in juveniles is halted
at temperatures below 22°C (Lee and Morton, 2005). Thus,
temperature is likely an important factor limiting the distribution
of T. tridentatus to the north. Our results show that T. tridentatus
experiences a high level and narrow range of pH, which might be
explained by the interaction between temperature and pH. Lower
temperatures result in higher pH (Zumdahl and Zumdahl, 2000),
and thus the colder waters around Japan might have a higher pH
compared to warmer waters surrounding more southern Asian
countries. The chlorophyll A levels found for T. tridentatus
does not differ from the two other Asian horseshoe crabs. Our
results indicate that chlorophyll A concentration, in addition to
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temperature, is an important ecological factor determining the
distributions of the Asian horseshoe crabs. This is supported
by Hsieh and Chen (2009), who found that high densities of
juvenile T. tridentatus were correlated with high chlorophyll
A levels and high densities of polychaetes. They argued that
chlorophyll A concentration reflected the amount of microalgae
and hence the abundance of food available for higher trophic
levels including polychaetes and that it was likely that polychaetes
were an important food source for the juvenile horseshoe crabs.
Thus, food resources for juvenile T. tridentatus increase with
chlorophyll A concentration.

Potential Areas for Protection of

Horseshoe Crabs

We suggest four criteria for identifying areas apt for conservation
of horseshoe crabs in general, inspired from previous
conservation studies (Petit et al., 1998; Hannah et al., 2007;
Botero-Delgadillo et al., 2012). Marine Protected Areas (MPAs)
with focus on horseshoe crab conservation should be prioritized
in (1) geographic regions with disconnected distribution ranges,
indicating physically distinct (i.e., allopatric) populations; (2)
regions separated by large population breaks known from
previous population genetic or phylogeographic studies; (3)
areas with overlapping distributions of two or more species
of horseshoe crabs; and (4) areas where the species experience
little loss of suitable habitat under future climate scenarios. As
previously noted, the potential distribution of suitable habitat,
as well as the future potential distribution, found in this study
should be considered as hypotheses of where Asian horseshoe
crabs can be found and not as definitive results (Jarnevich
et al, 2015). Thus, further investigations and models of the
relationship between the species and the areas suggested here
should be conducted prior to making decisions regarding
conservation.

Our results show a wide gap in suitable habitat between
C. rotundicauda populations in the southern and northern parts
of the Vietnamese coast (Figure 3A). This, as well as the lack of
mangrove habitat in the region (Hong and San, 1993), suggests
the existence of allopatric populations of C. rotundicauda on
the southern and northern coasts of Vietnam. Additionally,
there is a gap in the distribution of suitable habitat at the
northeast coast of Peninsular Malaysia, and there is evidence that
genetically distinct populations of C. rotundicauda reside on
each side of the Thai-Malay Peninsula (Obst et al., 2012; Adibah
et al., 2015). The suitable habitat distribution also shows two
separate distribution areas of C. rotundicauda on Borneo and
Java, which could be allopatric to the three distinct distribution
sites at mainland Southeast Asia. Consequently, based on our
models, we hypothesize that there are probably five separated
distribution ranges of C. rotundicauda in Southeast Asia, i..,
India to South Peninsular Malaysia, East Thailand to South
Vietnam, North Vietnam to South China, Java, and Borneo,
and none of these areas will become less suitable in the future
according to our study. Based on our criteria 1, 2, and 4, we
suggest the establishment of MPAs in coastal areas of West and
East Thailand, North Vietnam and South China, and Borneo, in
order to conserve C. rotundicauda in Southeast Asia (Figure 6).
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FIGURE 6 | Map of Southeast Asia and Japan showing regions which are
optimal for the establishment of MPAs in order to conserve the three Asian
species of horseshoe crabs. Rectangles with diagonal lines and green color
indicate areas where MPAs for horseshoe crab conservation are absent,
whereas rectangles with vertical lines and purple color indicate areas where
MPAs for horseshoe crab conservation are already established.

Contrary to C. rotundicauda, we do not expect allopatric
populations of T. gigas to exist across the Thai-Malay Peninsula
as there is a continuity of suitable habitat for T. gigas in
this region (Figure 4A). This assumption is supported by the
short genetic distance between T. gigas collected from Vietnam
and the Andaman Sea (Obst et al, 2012). The contrast in
habitat continuity between T. gigas and C. rotundicauda can
be explained by different habitat preferences for the two species.
C. rotundicauda is more confined to mangroves and river deltas,
while T. gigas is more frequent in truly marine environments,
which is likely to result in higher dispersal along the coast.
However, there is evidence of limited dispersal between the
T. gigas populations in Northwest and Southwest Peninsula
Malaysia (Rozihan and Ismail, 2011). Thus, based on our
results, we hypothesize three distinct distribution areas for
T. gigas: India to South Vietnam, Java, and Borneo. Additionally,
C. rotundicauda and T. gigas are co-occurring at several locations
along the coasts of the Southeast Asian mainland, hence
according to criteria 1, 3, and 4 we suggest establishment of MPAs
at the locations along the Southeast Asian mainland as wells as
Borneo (Figure 6).

For T. tridentatus our results show four distinct distribution
ranges; Japan to South Korea, China to North Vietnam,
Borneo to Philippines, and Java (Figure 5A). T. tridentatus has
overlapping distribution ranges with the two other Asian species;
T. tridentatus and C. rotundicauda co-occur in South Vietnam
as well as in the Hainan and Guangxi region of the Chinese
coast, and all three Asian species co-occur along the coasts of
Borneo and Java. According to criteria 1, 3, and 4, establishment
of MPAs should hence be recommended in Japan, North Vietnam
and South China, and Borneo (Figure6). In Japan, MPAs
are already established (http://mpatlas.org/explore/), and some
of these include important breeding sanctuaries for horseshoe

Frontiers in Marine Science | www.frontiersin.org

11

May 2018 | Volume 5 | Article 164


http://mpatlas.org/explore/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles

Vestbo et al.

Horseshoe Crab Distributions and Conservation

crabs, such as the Saikai National Park in Nagasaki. For areas
where C. rotundicauda occurs sympatrically with T. gigas or
T. tridentatus, it is important to consider the different habitat
preferences for the species, i.e., low-salinity mangroves and river
estuaries for C. rotundicauda, and high salinity sandy beaches for
T. gigas and T. tridentatus.

Based on our analysis we propose that at least five regions
should have high priority for horseshoe crab conservation:
four in Southeast Asia, based on geographically separated areas
with suitable habitat as well as the co-occurrence of two or
more species, and one in Japan for the protection of distinct
populations of T. tridentatus (Figure 6). We recommend that
future MPAs are examined on site to ensure their suitability and
that specific habitats, i.e., mangroves, mudflats, or gentle slope
beaches, are present in order to provide the appropriate habitat
for the horseshoe crab species in question (e.g., Kwan et al,
2016), as some factors of potential importance for horseshoe
crab habitat suitability, such as sediment characteristics and
presence of anthropogenic structures, could not be included in
our analysis. The work presented here provides an initial step in
the conservation of the Asian horseshoe crabs species, a research
area in need of increasing attention considering the importance
of these coastal organisms to human subsistence and health.

Future Studies

Destruction of breeding habitats pose a significant threat to
horseshoe crabs (e.g., Mishra, 2009; Zaldivar-Rae et al., 2009;
Nelson et al., 2016) and adult horseshoe crabs are harvested
on the beaches during spawning for commercial exploitation.
Since our study focused on the distribution range of adult and
juvenile horseshoe crabs, we can only draw few conclusions
about the distribution and preferred environmental conditions
of horseshoe crab breeding sites. However, the approach
implemented in this study could also be used to inventory and
predict potential breeding sites using scientific networks and
fieldwork, but should then include additional environmental
variables. Horseshoe crabs nest on beaches with slight slopes
and in mangroves and estuaries. Hence data on habitat types,
beach inclination, sediment type and granularity, wave action,
and organic contents of the sediment are essential variables that
need to be measured and included for such analysis. Additionally,
our study includes tidal regime environmental variables in the
ecological niche modeling that can be used in future research on
the distributions of other intertidal organisms, and thus could be
of importance for the conservation of intertidal communities at a
global scale.

CONCLUSIONS

The distributions of the three Asian horseshoe crab species have
been assembled with this work, and marine areas of suitable
habitat have been identified. Additionally, our models predict
that C. rotundicauda and T. gigas in the future will experience
increased habitat suitability. The information on ecological
variables important for the three species, as well as the current
and future distributions of suitable habitat provided here, can
be used as an initial step in determining where MPAs should

be established for conservation purposes and to determine the
IUCN conservation status of the three Asian horseshoe crab
species.
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