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Conservation of marine megafauna is nested within an intricate tapestry of multiple

ocean resource uses which are, in turn, embedded in a dynamic and complex ecological

ocean system that varies and shifts across a wide range of spatial and temporal scales.

Marine megafauna conservation is often further complicated by contemporaneous,

and sometimes competing, social, economic, and ecological factors and related

management objectives. Advances in emerging technologies and applications, such

as remotely-sensed oceanographic data, animal-based telemetry, novel computational

analyses, innovations in structured decision making, and stakeholder engagement and

policy are supporting complex systems and complexity-aware approaches to megafauna

conservation and research. Here we discuss several applications that focus on

megafauna fisheries bycatch and exemplify how complex systems and complexity-aware

approaches that inherently acknowledge and account for the complexity of ocean

systems can advance megafauna conservation and research. Emerging technologies,

applications and approaches that embrace, rather than ignore, complexity can drive

innovation and success in megafauna conservation and research.
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INTRODUCTION

“Stop trying to change reality by attempting to eliminate complexity”
-David Whyte

Marine megafauna, which we define as large-bodied, ocean dwellers like sea turtles, seabirds,
marine mammals, and sharks, have experienced dramatic declines in many ocean regions
(Davidson et al., 2012; Paleczny et al., 2015). The conservation of marine megafauna populations
worldwide is challenged by a suite of pressures, many stemming directly from human activity,
including incidental capture in fisheries or bycatch (Lewison et al., 2014), shipping strikes
(Kraus et al., 2005; Panigada et al., 2006), direct harvest (Clapham, 2015; Fisher, 2016;
Hofman, 2016), and contaminant exposure and accumulation (Law, 2014). In response to these
pressures, research, policy, and education or conservation awareness campaigns regarding marine
megafauna conservation issues have increased considerably (Authier et al., 2017). However, while
megafauna research, conservation policies, and education efforts have produced important results
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(Taylor et al., 2000; Boyd et al., 2016; Morin et al., 2016), we
suggest that many efforts have yet to adequately embrace the
complexity of the systems in which marine megafauna reside.
Given themounting pressure on ocean resources and the growing
concerns regarding marine megafauna conservation (National
Academy of Sciences, 2017), failing to acknowledge and account
for this inherent complexity may hinder much needed advances
and success in marine megafauna research and conservation.

WHAT ARE COMPLEX SYSTEMS
ANALYSES?

Complex systems approaches are not a single type of analyses,
rather they are a diverse suite of conceptual, analytical, and
computational methodologies that can be applied to “wicked” or
unstructured problems (Jentoft and Chuenpagdee, 2009; Balint
et al., 2011). To understand how complex systems approaches
can support megafauna conservation and research, we must
first define complex systems and complex system analyses. A
complex system is one with a high number and diversity of
interacting components or elements (Levin, 1999; Green et al.,
2005). Complexity in natural systems arises when the system is
influenced by multiple processes operating at disparate spatial
and temporal scales—as is the case for ocean systems and
many of the processes within them. Originating, in part, from
general systems theory (Bertalanffy, 1968; Warren et al., 1998),
complex system analysis focuses on capturing the linked and
often reciprocal nature of a system’s heterogeneous elements
(Arthur, 1999; Manson, 2001; Strogatz, 2001; Levin et al.,
2012). A complex systems approach contrasts to a reductionist
scientific approach which assumes complex, dynamic, emergent
phenomena can be described in terms of their individual,
constituent parts and their interactions. Complexity can be
measured in many forms, including non-linearity, multi-element
feedback loops, path-dependence, self-organization, difficulty of
prediction, and emergence of qualities not analytically tractable
from system components and their attributes alone (Manson,
2001; Bankes, 2002; National Research Council, 2012). Methods
and techniques of complex systems science include, but are not
limited to, nonlinear dynamic analysis, cellular automata, agent-
based modeling, information and network theory, and machine
learning (Shalizi, 2006).

Technological and computational advances have increased the
tractability of complex system approaches (Levin et al., 1997;
Green et al., 2005) and in some ocean research domains, like
fisheries science and fisheries policy, complex systems analyses
have been adopted to some degree (Wilson et al., 1994; Knowlton,
2004; Anderson et al., 2008; Mahon et al., 2008; Glaser et al.,
2013). Although less commonly applied to marine megafauna,
studies that have embraced true complex system approaches
highlight the utility of embracing complexity. For example,
Agent Based Models (ABMs) that simulate the actions and
interactions of autonomous agents have been used to successfully
evaluate individual decision strategies of boat users in whale
watching operations and how these collectively impact local
whale populations in the St. Lawrence river, Canada (Anwar

et al., 2007) and more recently to investigate optimal strategies
for the monitoring of green turtle (Chelonia mydas) populations
in Hawaii (Piacenza et al., 2017). Machine learning methods
have been used to help devise complex models and algorithms
for prediction to classify probable behaviors and to estimate
habitat areas of importance in seabird populations (Guilford
et al., 2009; Fox et al., 2017) whilst artificial neural networks
that identify patterns through unguided simulations have been
used to evaluate breeding habitat suitability for New Zealand fur
seals (Arctocephalus forsteri) (Bradshaw et al., 2002). Finally, a
number of recent advances have been made in understanding
marine megafauna behavior by addressing the dynamic state
space of behavior and by developing big-data approaches that
require no “a priori” assumptions about the behaviors of study
animals (Beyer et al., 2013). Other examples include the use of
Stochastic Dynamic Programming (SDP) and state-dependent
behavioral theory to investigate how disturbance affects pinniped
pup recruitment (McHuron et al., 2017), a dynamic state model
of blue whale migratory behavior and physiology to explore the
effects of perturbations on reproductive success (Balaenoptera
musculus) (Pirotta et al., 2018), and a study of tagged southern
elephant seals (Mirounga leonina) that identifies intrinsic drivers
of movement, to describe the migratory and foraging habitats
(Rodríguez et al., 2017). State spacemodels have also been used to
characterize dynamicmovement of sea turtles (Jonsen et al., 2007;
Bailey et al., 2008), seabirds (Dean et al., 2013), other marine
mammal species (Moore and Barlow, 2011), and sharks (Block
et al., 2011).

One common feature of the examples of traditional complex
system analyses is data richness, i.e., traditional complex
systems analyses are data intensive. For this reason, a strictly
defined complex systems approach may be challenging for
many data limited ocean megafauna research and conservation
efforts (Pott and Wiedenfeld, 2017). However, we suggest
that even when data availability may limit the application
of traditional complex system analyses, adopting complexity-
aware approaches that acknowledge and strive to account
for system complexity and adopt the fundamental precepts
of complexity will be instrumental in advancing megafauna
conservation and research. The term complexity-aware has
been used in computing and computer science since the early
1990’s (Mukherjee and van der Schaar, 2005). Outside of
computer science, the concept of complexity-awareness has
more recently been adopted in the context of social change,
participatory research and project management by the non-
governmental organization community (Paludan, 2015; US AID,
2016). Complexity-awareness acknowledges the prevalence and
importance of non-linear, unpredictable interrelationships, non-
linear causality and emergent properties, in essence, the tenets of
a complex systems approach.

While the term complexity-awareness has not yet been
widely adopted in marine megafauna conservation or the
natural resource community, calls to increase and maintain
complexity in ecological research and conservation efforts
are growing (Crowder and Norse, 2008; Anand et al., 2010;
Stirling, 2010; Parrott and Meyer, 2012; Howarth et al., 2013;
Evans et al., 2017; Johnson and Lidstrom, 2018). Much of
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FIGURE 1 | The three dimensional complexity landscape represented by three

axes: (a) data availability (x-axis), (b) conceptual complexity (y-axis), (c)

analytical complexity (z-axis), where circle size denotes analytical complexity

(larger circles represent higher analytical complexity). Traditional Complex

System Analyses (CSA) are possible when conceptual complexity, analytical

complexity and data availability are high. As conceptual complexity increases,

an analysis or application becomes complexity-aware even when data

availability or analytical complexity are low. The three examples discussed in

the text (1) dynamic ocean management, (2) spatially-explicit risk assessment

and (3) the integration of complexity into economic and social domains are

shown relative to these three axes.

this growing body of literature articulates how complexity
and complexity-aware frameworks and analyses can be
adopted and applied in conservation science, affirming
the need to incorporate complexity into the conservation
science landscape, particularly in response to the growing
threats and stressors on coupled ecological-human systems.
Figure 1 captures this concept and illustrates the complexity
landscape as a function of data availability (x axis), conceptual
complexity (y axis), and analytical complexity (z axis).
While traditional complex systems analyses will be data
intensive and typically include a high level of analytical
and conceptual complexity, even data-poor applications
can adopt a high degree of conceptual complexity and be
complexity-aware.

HOW CAN COMPLEX SYSTEM ANALYSES
AND COMPLEXITY-AWARENESS
SUPPORT MEGAFAUNA CONSERVATION
IN A FISHERIES BYCATCH CONTEXT?

We illustrate complex systems analyses and complexity-aware
approaches in the context of fisheries bycatch, one of the
most significant anthropogenic threats to marine megafauna
(Lewison et al., 2014). Fisheries bycatch, the incidental capture

of unwanted, unused, or unmanaged non-target species (Davies
et al., 2009), is symptomatic of one of the central challenges
to ocean fisheries—how to balance ecological sustainability
with economic and social viability. Megafauna bycatch is
a product of susceptibility driven by the distribution, type,
and magnitude of fisheries effort, and vulnerability based
on ecological characteristics such as life history and species
distribution traits of the bycatch species (Lewison et al.,
2014). For some megafauna species, such as Pacific leatherback
turtle (Dermochelys coriacea), Amsterdam Albatross (Diomedea
amsterdamensis), vaquita (Phocoena sinus), Atlantic humpbacked
dolphin (Sousa teuszii), and Australian and New Zealand sea lion
(Neophoca cinerea and Phocarctos hookeri), fisheries bycatch has
been identified as the single largest threat to extant populations
(Weimerskirch et al., 1987; Lewison et al., 2004; Chilvers,
2008; Weir et al., 2011; Hamer et al., 2013; Taylor et al.,
2016).

In the past decade, research and development of gear and
fishing practice modifications have advanced considerably and
have made important progress in reducing megafauna bycatch.
For some coastal drift and gillnet fisheries, deployment of
visual or acoustic deterrents has been shown to substantially
reduce seabird bycatch (Melvin et al., 1999; Maree et al., 2014),
while acoustic alarms (pingers) have been demonstrated to
decrease bycatch for multiple marine mammal species (Dawson
et al., 1998; Barlow and Cameron, 2003; Carretta and Barlow,
2011; Mangel et al., 2013; Larsen and Eigaard, 2014), and
buoyless nets have been found to reduce sea turtle bycatch
(Peckham et al., 2016). The use of turtle exclusion devices
(TEDs) can also be highly effective in reducing sea turtle
bycatch in trawl fisheries (Crowder et al., 1994; Lewison et al.,
2003) as can the simple use of net lights in small scale
gillnet fisheries (Ortiz et al., 2016; Virgili et al., 2017). The
implementation of circle hooks, alternate baits and bird scaring
devices and improved setting practices in longline fisheries has
been shown across multiple studies to reduce bycatch of sea
turtles and seabirds as well as sharks and other non-target
fishes (Gilman et al., 2005, 2007; Watson et al., 2005; Kerstetter
and Graves, 2006). A number of these gear modifications have
also increased survival rates for animals that are caught and
released.

Despite bycatch mitigation innovations and advances,
bycatch of megafauna remains a substantial challenge to
population viability largely because addressing bycatch is an
inherently complex problem. This complexity stems from the
need to balance the benefits of bycatch reduction against the
costs of altered fishing activity to fishers’ livelihoods and culture.
In addition, the diversity among the regulatory, logistical,
and socio-cultural constraints that create complex context
dependencies influencing bycatch reduction efficacy needs
careful consideration. Further, complexity associated with
data collection, integration, and analysis, and the complex
nature of the dynamic ocean itself, with macro-, meso-,
and micro-scale temporal and spatial variability in ocean
structure, processes and species distributions all must be
considered (Hazen et al., 2013). Here, we describe several
approaches that address megafauna fisheries bycatch by
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embracing complex system and complexity-aware analyses or
frameworks.

DYNAMIC OCEAN MANAGEMENT

Dynamic ocean management (DOM) is an example of a
complex systems approach that can support or supplement
traditional management strategies to support sustainable fishery
targets. DOM is an emerging management paradigm in
which management responses change in space and time, at
scales relevant for animal movement and human use. What
differentiates DOM from static or traditional ocean management
approaches is the use of real-time or near real-time data
on the shifting physical, biological, socioeconomic, and other
characteristics of the ocean and ocean resource users to generate
responsive spatial management measures or strategies (Maxwell
et al., 2012; Hobday and Hartog, 2014; Lewison et al., 2015).
DOM holds promise for bycatch reduction, protected area design
(Dunn et al., 2016) and management of populations of highly
migratory and protectedmarinemegafauna (Maxwell et al., 2015)
because it integrates biological, ecological, environmental, and
socioeconomic data collected over multiple spatiotemporal scales
to provide information to managers and resource users in near
real time (Hobday et al., 2014; Lewison et al., 2015).

While not all DOM approaches adopt traditional complex
system approaches, many employ complex systems and
complexity-aware ecological informatic or eco-informatics
approaches (sensu Hobday et al., 2010; Scales et al.,
2017; Brodie et al., 2018; Hazen et al., 2018). These cited
examples use innovative digital approaches to the generation,
sampling, processing, analysis, visualization, management, and
dissemination of ecological, environmental, and socioeconomic
data (Michener and Jones, 2012) and account for complexity at
a number of levels. Central to these applications is the capacity
to acknowledge complex, often non-linear and emergent,
relationships between oceanographic and biological data using
species distribution models (Elith and Leathwick, 2009; Žydelis
et al., 2011; McGowan et al., 2013; Becker et al., 2014, 2016;
Hobday et al., 2014), often using complex ocean circulation
models. Rapid developments in ocean modeling have supported
the integration of species distribution models with Regional
Ocean Modeling Systems (ROMS), a family of models that
use free-surface, hydrostatic, primitive equations over varying
topography (Wang et al., 2016). Complex or complexity-aware
DOM applications have been developed to reduce sea turtle
bycatch in US Hawaiian fisheries (Howell et al., 2008, 2015),
avoid sturgeon-fisheries interaction in the Atlantic (Breece et al.,
2017), reduce bluefin tuna bycatch in Eastern Australia (Hobday
et al., 2010, 2011), and limit megafauna bycatch in the US West
Coast swordfish fishery (Scales et al., 2017; Hazen et al., 2018).

SPATIALLY-EXPLICIT RISK ASSESSMENT

In coastal fishing zones, resource managers, and planners
have the challenging task of balancing ecological, conservation,
socioeconomic, and cultural objectives. To protect marine

megafauna while supporting fisheries, managers are often asked
to map, measure, and monitor the relative and cumulative
risks to megafauna, with fisheries bycatch as one of the
primary risks. This is particularly challenging in developing
countries where managers contend with the need to support
local livelihoods, paucity of available data, incongruencies across
spatial and temporal scales of available information and often
meager monitoring budgets. Accurately characterizing risks to
megafauna, and identifying opportunities to reduce bycatch,
requires an approach that accounts for the complex relationship
between humans and ocean systems. New methods to investigate
cumulative impacts of human activities (Halpern et al., 2008;
Worm et al., 2009) and drivers of ecosystem risk in marine
systems (Patrick et al., 2010; Hobday et al., 2011; Williams
et al., 2011) have led to the development of risk-based scenario
assessment tools, a complexity-aware approach that uses existing
data and knowledge to evaluate the direct effects of human
activities, climate change, and other stressors on natural resource
conservation and management.

Many applications of spatially-explicit risk assessment are
driven and implemented by stakeholders, managers, and policy-
makers needing a roadmap to understand the complexity of
coastal and ocean systems, often in low capacity, data poor
settings. Spatial risk assessment aims to synthesize and integrate
primary data, literature reviews, expert opinion and other local
knowledge in a transparent manner. Common examples of
spatiotemporal risk assessment are bivariate analyses that include
exposure of a habitat or species to a stressor and some metric for
consequence and recovery potential, and the ability of a habitat or
species to resist the stressor and recover following exposure. To
account for uncertainty or missing data, these assessments can
include variable weighting structure and data quality ratings, e.g.,
weighted averages, to acknowledge data limitations and account
for uncertainty. Even in the face of data and capacity gaps,
spatially-explicit risk assessments enable users to apply existing
information to guide, inform, and identify appropriate survey
methods, equipment and strata, establish baselines (Long et al.,
2017), focus effort and resources in at-risk areas for the purpose
of monitoring fisheries and marine megafauna, and evaluate
alternative management scenarios that reduce risk to threatened
populations (Henrichs et al., 2010).

Recent applications of tools for spatially-explicit risk
assessment demonstrate the importance and utility of this
complexity-aware approach in both data rich and data
poor contexts (e.g., Guerry et al., 2012). Spatially-explicit
risk assessments have been used to support conservation
of habitats in coastal Belize (Arkema et al., 2014; Verutes
et al., 2017), marine and terrestrial fauna in Washington
state, USA (Samhouri and Levin, 2012; Duggan et al., 2017),
freshwater lenses (aquifer) in The Bahamas (Holding and Allen,
2014), and dugongs (Dugong dugon) in Sabah, Malaysia (Briscoe
et al., 2014). In Belize, the InVEST habitat risk assessment
model (naturalcapitalproject.org) is a spatial risk assessment
tool that was applied as part of a coastal zoning process where
risk to habitats was used to alter inputs to ecological production
functions in mechanistic complex, process-based models of spiny
lobster catch and revenue, tourism visitation and expenditures,
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and natural protection provided by coastal habitats during
storms (Arkema et al., 2015; Guannel et al., 2016).

Inspired by InVEST, a new spatial tool has been developed
to evaluate fisheries bycatch risk and support marine
megafauna conservation in developing countries, called ByRA
(mmbycatchtoolbox.org). ByRA couples available information
about the locations of megafauna with fishing effort categorized
by gear type. ByRA outputs are spatially and temporally explicit,
utilize existing data sources (e.g., Ponnampalam et al., 2014;
Peter et al., 2016), community perspectives, and the human
dimension of marine megafauna conservation (Hines et al.,
2005; Teh et al., 2015). To date, the tool has been applied for
the endangered Irrawaddy dolphins (Orcaella brevirostris) and
dugongs (IUCN, 2017a,b) in Malaysia, Vietnam, and Thailand
as the implementation of a new trade policy looms for these and
other nations that currently export wild-caught seafood to the
United States (Williams et al., 2016; Johnson et al., 2017).

BEYOND BYCATCH ECOLOGY:
INTEGRATING ECONOMICS IN SUPPORT
OF COMPLEXITY

As the spatially-explicit risk assessment and structured decision-
making tools illustrate, the complexity of fisheries bycatch
extends far beyond biological or ecological factors (Lotze
et al., 2017). Bycatch of marine megafauna is also defined by
their social, economic, and political contexts (Lewison et al.,
2011; Bisack and Magnusson, 2016). Integrating the economic
factors and dimensions of bycatch into ecology-focused studies
illustrates one key example of supporting complexity-awareness,
moving bycatch from a one-dimensional (ecological) to a
two-dimensional domain (ecological-economic). While there
has been some integration of ecological bycatch research and
socioeconomic relevant factors, e.g., calculations of potential
biological removal (PBR) are an obvious example of this (Lobo
et al., 2010; Jin, 2012; Little et al., 2014; Abbott et al., 2015),
socioeconomic considerations of bycatch are often overlooked in
themarinemegafauna conservation literature (Lent, 2015; Barnes
et al., 2016; Alava et al., 2017; Lent and Squires, 2017; Lotze et al.,
2017; van Beest et al., 2017).

Economic approaches to megafauna bycatch reductions
are limited by data gaps, limited understanding of their
effectiveness (Lent and Squires, 2017) and the difficulty
of integrating economic valuation functions with ecological
production functions (Tschirhart, 2011). One effort to integrate
economics and endangered Stellar sea lion (Eumetopias jubatus)
bycatch demonstrates the utility of integrated, complexity-aware
approaches to bycatch (Finnoff and Tschirhart, 2008). Using
economic and ecological dynamic general equilibrium models
and applying economic principles such as rational behavior,
efficiency, and equilibrium to ecosystem processes, integrated
models were used to assess the impact of alternative quotas in
a local pollock (Gadus chalcogrammus) fishery on eight bycatch
species including otters (Enhydra lutris), killer whales (Orca
orcinus), and Stellar sea lions. Related analyses also consider
the effects of the pollock fishery on the non-consumptive use

of these marine mammals (Finnoff and Tschirhart, 2003b).
By embracing the linked economic-ecological complexity in
fisheries bycatch, these integrated approaches demonstrate the
ability of complexity-aware bycatch analyses to capture the key
interactions and trade-offs between target catch and at-risk
megafauna populations (Finnoff and Tschirhart, 2003a), and
serve as a framework for how to also incorporate linked social or
political factors that can strongly influence megafauna bycatch.

COMPLEXITY FOR STAKEHOLDER
ENGAGEMENT, CONSUMER AWARENESS,
AND POLICY

Embracing complexity is equally important outside the scientific
community as a part of stakeholder engagement, education
and awareness. Because stakeholder groups are the backbone of
marinemegafauna conservation and support for research (Fulton
et al., 2015), stakeholder awareness of the interdependencies and
inherent complexities of the megafauna conservation landscape
is an essential ingredient to effective conservation (Prell et al.,
2009). Although not specific to marine megafauna conservation,
Q-methods, participatory mapping and collaborative learning
methods are examples of approaches that have been used to help
“unpack” complexity surrounding natural resource management
and use (Davies et al., 2016; Hagan and Williams, 2016;
Niedziałkowski et al., 2018). These methods can clarify and
map viewpoints and perspectives of different stakeholder groups
without bias, helping to articulate the potentially competing
interests of the fishing industry and the marine megafauna
conservation community (Prell et al., 2009; Forrester et al., 2015).

Complexity and complexity-awareness is also essential to
consumer education and engagement particularly in the context
of fisheries, and the co-creation of knowledge among stakeholder
groups has been used to support complexity-aware approaches
to education and outreach (Steyaert and Jiggins, 2007). Eco-
labeling and certification standards, like SeaFood Watch (http://
www.seafoodwatch.org/), RASS (http://www.seafish.org/rass/),
or MSC (http://www.msc.org/) can help seafood consumers
deal with complex market and supply chains and support
effective megafauna conservation as well as reinforce corporate
social responsibility commitments (Gutierrez and Thornton,
2014; Caveen et al., 2017; Lent and Squires, 2017). These
complexity-aware education approaches allow consumers to
move beyond a “not in my backyard” perspective to support
meaningful megafauna conservation and sustainable fisheries
across intricate, connected global market chains.

Understanding how complexity affects policies that govern
bycatch will also be an important aspect to embracing complexity
in marine megafauna conservation (Hirsch et al., 2010; Whitty,
2015). Policy approaches that explore policy pathways, such as
the Pragmatic Enlightened Model (Edenhofer and Kowarsch,
2015), can help policy-makers understand what varying levels of
complexity mean across the tradeoffs and practical consequences
of each pathway. A better understanding and integration of
complexity into a policy context will also help to strengthen
policy development and implementation (Paul Cairney, 2017).
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Complexity-aware policies are ones that account for the diversity
of resource stakeholders, and the reality of multiple resource
uses across the seascape (Sayer et al., 2013). The conservation of
marine megafauna, in particular, requires policy and governance
structures that acknowledge the migratory nature of many
megafauna species of conservation concern. Protection of
important breeding or feeding grounds within one jurisdiction
may prove to be necessary but not sufficient to conservation
efforts if sensitive life stages move among unprotected waters,
whether intra- or international. Policies that inherently recognize
the complex relationships among ecological, social and economic
systems and the influence these relationships can have on
policy outcomes across jurisdictions can also ensure that well-
intentionedmegafauna conservation policies do not displace, and
in some cases magnify, marine megafauna bycatch, or different
risks in other jurisdictions (Lenzen et al., 2012; Lim et al., 2017).

COMPLEXITY AND UNCERTAINTY: A
TRADEOFF

Approaches that embrace complexity often improve the accuracy
of how systems are represented and understood. Greater
complexity is, however, also commonly associated with increased
uncertainty that is borne from the addition of parameters
which each have their own uncertainties associated with
them (Fulton et al., 2003; Low-Décarie et al., 2014; Winkler,
2016). Conservation practitioners must therefore weigh the
benefits of using simplified frameworks alongside more complex
approaches. For all conservation applications and frameworks,
there will be a fundamental and common challenge of how
to balance system complexity while minimizing uncertainty
(Collie et al., 2014). In fisheries science, attempts to strike this
balance have led to the development of Models of Intermediate
Complexity for Ecosystem assessments, or MICE (Plagányi
et al., 2014). The MICE approach selects model complexity
based on a specific problem statement and the data available,
with temporal scales to match the questions being addressed
(Essington and Plaganyi, 2013). TheMICE approach for strategic
complexity integration in fisheries research serves as a useful
model for how to increase complexity while limiting sources
of uncertainty in megafauna conservation and research efforts.
Other fisheries-focused initiatives that attempt to recognize the
inherently complex nature of ocean management include the
concepts of Ecosystem Based Fisheries Management (EBFM) and
Integrated Ecosystem Assessments (IEA), which aim to sustain
healthy marine ecosystems and the fisheries they support by
accounting for ecosystem complexity and the holistic impact of
management decisions on those systems (Pickitch et al., 2004;
Levin et al., 2009). Compared to more traditional, single species-
based approaches to fisheries management, both EBFM and IEA
represent how fisheries science has moved toward complexity
and complexity-awareness (Marshak et al., 2017). However, the
well-described shortcomings with the implementation of EBFM
and IEA (Longhurst, 2006; Shelton, 2007; Borgström et al.,
2015; Dolan et al., 2016) highlight the challenges that complex

approaches in megafauna research and conservation will likely
face in operationalizing and implementing complexity in a
measurable and meaningful way.

CONCLUSION

Given the complex ecological, environmental, socioeconomic,
and cultural dimensions that govern ocean systems, and thus
megafauna conservation, the need for complex systems analyses
or complexity-aware approaches will likely not come as a
surprise to most readers of this special issue. While research
and conservation methods that have approached megafauna
conservation from a single element or domain perspective
have yielded important insights and accomplishments, as
the conservation status of many marine megafauna worsens
(Davidson et al., 2012; Paleczny et al., 2015), there is a pressing
need to embrace the complexity that governs marine megafauna
and the systems in which they reside. Even in the face of
limited data and uncertainties, adopting complex systems and
complexity-aware approaches to resource management, marine
spatial planning and resource and marine policy and education
provides a more realistic lens for conservation and research
efforts.

The need to view the conservation landscape as a complex
system and calls for a “conceptual revolution” in how we
approach marine megafauna conservation and research echo
similar calls to infuse complexity into other conservation-
related domains (Blaustein and Kiesecker, 2002; Parrott and
Meyer, 2012; Lash-Marshall, 2013). By accepting that innovation
and effective action in megafauna research and conservation
means embracing complexity, and avoiding oversimplification
sensu Stirling (2010), the marine megafauna research and
conservation community is poised to focus on identifying
levels of complexity that are needed to characterize and
understand patterns of interest in time and space, and drive
real world change. By embracing the inherent complexity
of marine systems, conservation scientists and practitioners
will be better equipped to provide actionable analyses, data,
and information which can be used to protect and conserve
megafauna.
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