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The European Sector of the Arctic Ocean is characterized by low CO2 concentrations

in seawater during spring and summer, largely due to strong biological uptake driven by

extensive plankton blooms in spring. The spring plankton bloom is eventually terminated

by nutrient depletion and grazing. However, low CO2 concentrations in seawater and

low atmospheric resupply of CO2 can cause episodes during which the phytoplankton

growth is limited by CO2. Here, we show that gross primary production (GPP) of Arctic

plankton communities increases from 32 to 72% on average with CO2 additions in spring.

Enhanced GPP with CO2 additions occur during episodes of high productivity, low CO2

concentration and in the presence of dissolved inorganic nutrients. However, during

summer the addition of CO2 supresses planktonic Arctic GPP. Events of CO2 limitation

in spring may contribute to the termination of the Arctic spring plankton blooms. The

stimulation of GPP by CO2 during the spring bloom provides a biotic feedback loop that

might influence the global role played by the Arctic Ocean as a CO2 sink in the future.

Keywords: CO2 limitation, gross primary production, Arctic Ocean, spring blooms, plankton communities, CO2

additions

INTRODUCTION

The shelf seas and the shelf edge of the European Artic Sector are characterized by strong spring
plankton blooms that extend between 70 and 80◦N in the Barents Sea and the northern Svalbard
shelf (Wassmann and Reigstad, 2011). These blooms support high net community production
(NCP) rates and fuel the Arctic food web (Vaquer-Sunyer et al., 2013). The strength of the spring
Arctic plankton bloom results not only from high primary productivity, but also from a very low
respiratory demand of the planktonic community at that time, which leads to high NCP (Vaquer-
Sunyer et al., 2013). The spring bloom is associated with increased photoperiod, and depends
on light availability, ice cover, water masses and nutrient availability, which lead to extremely
pronounced seasonality and spatial heterogeneity (Vaquer-Sunyer et al., 2013). The high biological
CO2 uptake in shallow stratified layers during the spring bloom results in rapid CO2 drawdown
in the surface waters of the Arctic Ocean (Chierici et al., 2011; Yasunaka et al., 2016). Values as
low as 100µatm of partial pressure of CO2 (pCO2) have been recorded at the end of the spring
bloom (Fransson et al., 2009), which is among the lowest pCO2 values reported across the open
ocean (Takahashi et al., 2009). As a consequence, several regions of the Arctic Ocean such as the
Eurasian shelves and the Barents Sea (Fransson et al., 2001, 2009) and the Bering-Chukchi shelves
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(Kaltin and Anderson, 2005), act as intense carbon sink for
atmospheric CO2, taken up ∼66–199 Tg C yr−1 during spring
and summer (Bates and Mathis, 2009).

Arctic spring plankton blooms are generally triggered by
increased solar radiation with increased photoperiod, and
the associated increase in temperature, melting ice and the
consequent increase in underwater irradiance and water column
stratification (Sakshaug and Skjoldal, 1989; Niebauer, 1991;
Reigstad et al., 2002; Hodal et al., 2012; Juul-Pedersen et al.,
2015). The spring bloom is usually considered to be terminated
by nutrient depletion and grazing, but secondary blooms can
be produced by wind-driven events that break down the
weak stratification and supply nutrients to the euphotic zone
(Sakshaug and Skjoldal, 1989; Niebauer, 1991; Wassmann et al.,
1999; Tremblay et al., 2006; Fransson et al., 2017). However,
experimental assessments suggest that low CO2 concentrations
can limit primary production (Mercado and Gordillo, 2011),
such as the low CO2 concentrations observed during spring and
summer in the Arctic Ocean (Bates and Mathis, 2009).

Limitation by CO2 in plankton communities has indeed been
experimentally observed in the European Arctic sector (Engel
et al., 2013; Holding et al., 2015) and in sub-ice blooms in the
Baltic Sea (Spilling, 2007) as well as in temperate regions of the
Atlantic Ocean (Hein and Sand-Jensen, 1997). However, Arctic
CO2 limitation seems to be temperature-dependent (Holding
et al., 2015), light-dependent and acclimation of subarctic
plankton productivity to high levels of CO2 has been observed
(Hoppe et al., 2017). When CO2 is depleted, the intracellular
CO2 concentration decreases, leading to a lower diffusive CO2

supply that reduces photosynthetic rates (Riebesell et al., 1993)
and results in CO2-limited phytoplankton production (Rost et al.,
2006). In polar regions, CO2 limitation is more likely than in
temperate regions because the conversion of HCO−

3 to CO2

in cold waters with high pH supplies little CO2, <5% of the
required CO2 for one polar diatom species (Riebesell et al., 1993).
Isotopic evidence also points at CO2 limitation during peak
and late bloom phases in the Arctic Ocean, reflected in heavier
δ13C signatures in plankton (Tamelander et al., 2009). However,
experimental and observational evidence of CO2 limitation
of phytoplankton production during the spring phytoplankton
bloom is limited, so whether this is an episodic or chronic
situation remains unclear.

Here, we test the hypothesis that the characteristically
low CO2 concentrations in seawater during the Arctic spring
and early summer limit the primary productivity of plankton
communities before dissolved inorganic nutrients are fully
consumed. To test this hypothesis, we conducted a series of
seven experiments to test the response of planktonic gross
primary production (GPP) to elevated CO2. These communities
were sampled west and northwest of Svalbard (European
Arctic sector), during spring and summer. The locations of
the experiments were heterogeneous (Figure S1); four of the
experiments were located in the path of the West Spitsbergen
Current (WSC), that flows northward along the shelf edge at
the west of the Svalbard Islands, and two of the experiments
were located in the mouths of two western fjords. We sampled
seven subsurface plankton communities in the spring and

summer of 2014 and 2015, thereby experiencing a wide
range of conditions in terms of community metabolism and
biogeochemical conditions. We evaluated the net biological
demand for CO2, as the NCP in the euphotic layer, compared this
to the atmospheric supply of CO2 through air-sea exchange, and
assessed the experimental response of the GPP of the plankton
communities sampled to elevated CO2.

MATERIALS AND METHODS

Three cruises were conducted to the west and northwest of the
Svalbard shelf where seven experiments on CO2 addition were
carried out on board R/V Helmer Hanssen in 2014 and 2015:
two experiments were run in May, three in August 2014 and two
in May 2015 (Figure S1). Results of the first experiment, in May
2014, were previously Holding et al. (2015).

A 50 L sample of subsurface seawater (3m) was collected using
a Rosette sampler system, which was fitted with Niskin bottles
and a calibrated CTD profiler (Seabird 911plus), and located in
two 25 L closed tanks using silicon tubes. Samples to measure
the carbonate system parameters, chlorophyll a concentration
(Chl a), nutrients concentrations and phytoplankton community
composition were taken and preserved for further analysis.

To simulate the predicted scenario of atmospheric pCO2 by
2,100 (IPCC Panel, 2014), 25 L of seawater was stored in a
closed tank and the remaining 25 L were bubbled with CO2

until ∼1,000 ppm pCO2 was reached, using an Environmental
Gas Monitor (EGM-3) to measure pCO2 while a water pump
ensured proper mixing. The treated and untreated water were
gently mixed in 10 L carboys to produce an intermediate level
and a gradient of increasing pCO2 between treatments. In 2014,
this gradient included four pCO2 levels in the experiments, but
the experimental design was simplified, based on the results
obtained, to have only two elevated pCO2 levels in 2015. This
allowed experiments with a greater number of communities to be
conducted within the time available (see pCO2 of each treatment
in Table S1).

After every treatment reached the targeted pCO2 (45min),
two sets of samples were collected. The first set was immediately
preserved to determinate the initial dissolved O2 concentration,
δ18O (in dissolved O2), total alkalinity (TA) and total dissolved
inorganic carbon (DIC). The second set of samples was incubated
for 24 h and subsequently preserved to determinate the same
parameters at the end of the incubation. In 2014 the second
set of samples was incubated in transparent methacrylate tubes
which allowed the 60% transmittance of photosynthetically active
radiation surface (PAR) to simulate the irradiance at 3m depth,
with flow-through surface seawater baths to maintain samples
close to the in-situ temperature during the cruises of 2014.
In May 2015, samples were incubated in a 40-L tank with
circulation of surface seawater and neutral screens allowed the
80% transmittance of surface PAR.

Gross primary production (GPP) was measured from the
photosynthetic production of 18O2 following the addition of
H18

2 O during a 24 h incubation, according to Bender et al. (1987)
and Grande (1988). Four 12-ml vials per treatment, made of
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borosilicate, were immediately fixed with 100 µl of saturated
HgCl2 solution and stored in darkness for further δ18Oinitial
analysis. Four other vials per treatment containing glass beads
to mix, were labeled with 80 µl of 98% H18

2 O, shaken to ensure
mixing, incubated for 24 h on deck and subsequently fixed
with 100 µl of saturated HgCl2 solution for further analysis.
At the Stable-Isotope Laboratory of the Instituto Andaluz de
Ciencias de la Tierra (IACT-CSIC) Stable-Isotope Laboratory,
a 4-ml headspace of Helium was generated in each vial. Vials
were left to equilibrate for 24 h at room temperature letting the
dissolved gases in water equilibrate with the headspace, originally
Helium 100%. After 24 h, the δ18O of dissolved oxygen in the
headspace was measured in a Finnigan GasBench II attached to
a Finnigan DeltaPlusXP isotope ratio mass spectrometer, with
precision better than 0.1‰. The flow was passed through a liquid
nitrogen trap to remove water vapor before entering GasBench
II. Oxygen and nitrogen were separated in a Molecular Sieve
5Å chromatographic column. Data, which were corrected with
atmospheric air, are reported as δ18O value (‰) relative to
V-SMOW (Vienna Standard Mean Ocean Water) standard.

The δ18O(H2O) composition of labeled samples was
measured 3 weeks later in a liquid water isotope analyzer (Los
Gatos Research) with precision of 0.2‰ In order to avoid
contamination of the analyzer with highly 18O-enriched H2O
(≈3,000‰), the labeled water was diluted (approximately 1:20)
with a laboratory standard of known isotopic composition. GPP
was calculated from Bender et al. (1999) as:

GPP = [(δ18Ofinal − δ18Oinitial)/(δ
18Owater − δ18Oinitial)]

×[O2]initial

where δ18Oinitial and δ18Ofinal are the initial and final δ18O of
dissolved O2 (‰ vs. V-SMOV), respectively, δ18Owater is the
δ18O of the labeled seawater (‰ vs. V-SMOV) and [O2]initial
is the initial O2 concentration (µmol O2 L−1) measured by
high-precision Winkler titration.

In addition tothe 18O method, the O2 mass balance method
(Carpenter, 1965; Carritt and Carpenter, 1966) was used to
estimate the NCP and the community respiration (R) in darkness
in the water column of the CO2 experiments stations, as well as
in 5 additional stations in the nearby area. NCP and R rates were
calculated by subtracting initial dissolved oxygen concentrations
from dissolved oxygen concentrations measured after incubation
in the dark and light conditions, respectively. GPPmeasured with
the O2 mass balance method (GPP-O2) was calculated by solving
themass balance equation GPP-O2 =NCP+R (Carpenter, 1965;
Carritt and Carpenter, 1966). NCP and R was determined at 3
different depths on the euphotic layer (3m, 15m and 25m, on
average). Seawater samples were collected with a Rosette sampler
system fitted with 10-L Niskin bottles and a calibrated CTD
(Seabird 911plus). Seawater was carefully siphoned from the
Niskin bottles into 100ml narrow-mouth, borosilicate Winkler
bottles. Seven replicates were used to determine the initial
oxygen concentration, and seven replicates were incubated
for 24 h in dark and in light. The bottles were incubated
on deck, following the same procedure previously mentioned
for GPP samples measured with the 18O method. Light
attenuation inside each methacrylate incubator was estimated

with a Photosynthetically Available Radiation (PAR) radiometer
(Biospherical Instruments Inc. QSL-101). Light attenuation was
simulated using screens as a % of the on-deck PAR with
0 screen, 2 screens, 3 screens, simulating 60, 33, and 25%
of surface PAR, respectively. GPP-O2 was calculated by the
difference between the mean final oxygen concentration of light
incubated bottles and the mean final oxygen concentration of
dark incubated bottles. Oxygen concentrations were determined
by automated high-precision Winkler titration (Carpenter, 1965;
Carritt and Carpenter, 1966), using a potentiometric electrode
and automated endpoint detection (Oudot et al., 1988). Values
that reported O2 production in darkness were considered
unviable andwere discarded from the database. The communities
were then characterized as autotrophic communities (GPP/R
ratios > 1, NCP > 0) or heterotrophic (GPP/R ratios < 1,
NCP < 0).

Sampling and analyses for the determination of the carbonate
chemistry in the experiments followed the standard operating
procedures from Dickson et al. (2007). Seawater for TA and DIC
analyses were collected from each treatment carboy with a silicon
tube and carefully siphoned in two 250mL borosilicate bottles per
treatment. Initial samples were preserved with 60 µL of mercury
chloride and stored in dark and cold until analysis onboard
and the final samples were preserved after 24 h of incubation
and analyzed onboard. TA was determined using potentiometric
titration in open cell with 0.05mol l−1 hydrochloric acid using
a Titrino system (Metrohm, Switzerland). The precision was
±2 µmol kg−1, obtained by triplicate analysis of one sample
on a daily basis and Certified Reference Material provided
by Dr. Andrew Dickson (Scripps Institution of Oceanography,
University of California) was used for accuracy check of
the TA analyses. pH was determined spectrophotometrically,
using m-cresol purple and a diode-array spectrophotometer,
HP8453 (Clayton and Byrne, 1993). The analytical precision was
estimated to±0.002 pH units, which was determined by triplicate
analysis of one sample every day. The pH of the indicator solution
was measured daily using a 0.2-mm flow cell, this was then used
as correction for the perturbation caused by the addition of the
indicator solution (Chierici et al., 1999).

The CO2 concentration was calculated from TA and DIC
analysis using the program CO2SYS (Pierrot et al., 2006) and
output parameters were standardized to standard pressure and
in situ water temperature. We used the carbonate dissociation
constants (K1 and K2) of Mehrbach et al. (1973) as refitted
by Dickson and Millero (1987), and the KSO4 determined by
Dickson (1990). The CO2 removal rates were calculated from the
difference in CO2 concentration during 24 h incubation.

The air-sea CO2 flux (F) was calculated using the measured
fCO2 according to the gas flux formulation:

F = K0 × k× (fCO2 − fCO2 air)

k = 0.31×u2×(Sc/660)− 0.5

Where K0 is the solubility, k is the transfer velocity for air-sea
CO2 exchange, fCO2 air and fCO2 are the atmospheric and sea
surface fCO2, respectively, u is the wind speed (mean daily) and
Sc is the Schmidt number. The solubility (K0) was calculated
according to Weiss (1974) using the measured sea surface
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temperature (SST) and salinity values. The transfer velocities
(k) and the Schmidt number (Sc) were calculated according
to Wanninkhof (1992) for monthly and daily average observed
wind speed (Equation 3) and are based on wind speed (u). The
fCO2 air was estimated from the monthly xCO2air from Ny-
Ålesund (www.nilu.no). The dry atmospheric mole fraction was
converted into the atmospheric pCO2 (pCO2air) in wet air using
the relative air humidity, air pressure and air temperature for the
date when the fluxes based on ship data were estimated.

Chlorophyll a concentration (Chl a) was collected from the
same depth at which seawater was collected for the experiments
conducted in May 2015 and was determined fluorometrically by
filtering 200mL of the sub-surface seawater sampled through
Whatman GF/F filters and extracted in 90% acetone for 24 h
before spectrofluorometric determination using a Shimadzu RF-
5301PC spectrofluorometer, following Parsons et al. (1984). For
the experiments conducted in May and August 2014, Chl a
was derived from the fluorescence measured in a calibrated
CTD (Seabird 911plus) at the depth of the sampled seawater
using linear regression equations between results of Chl a and
fluorescence measured in from previous vertical profiles in
same stations (R2 > 0.67 and n = 12 for every regression
equation).

Samples of unfiltered 50mL seawater was collected at the same
depth of the experiments conducted in May 2015 for analysis
of phosphorus, nitrate-nitrite, and silicate concentrations and
vials were kept frozen until analysis using standard seawater
methods using a Flow Solution IV analyzer from O.I. Analytical,
USA. The analyzer was calibrated using reference seawater from
Ocean Scientific International Ltd. UK. Nutrients concentrations
of the experiments conducted in May and August 2014
were analyzed in a previous vertical profile from the same
station.

Samples of 100mL of untreated plankton community were
collected from each experimental community, at the onset of
the experiment, and fixed with glutaraldehyde (at 1–1.5%).
Cells were counted following the Utermöhl method, while
also measuring the linear dimensions of the different taxa
present to allow biovolume calculations by approximation to
the nearest geometrical figure. Samples were concentrated in
50-ml chambers for 48 h and counted in a transmitted-light
inverted microscope (Zeiss Axiovert 200) at 200x or 400x
magnification depending on cell size. Phytoplankton cells were
differentiated into species or genus, and their contribution
to the communities is presented as % of the community
biovolume.

The response of GPP to increased CO2 was compared among
experiments using the Ln-transformed effect size:

Ln effect size GPP = LnGPPE − LnGPPC

Where GPPE and GPPC are the mean response in the
experimental and control treatments, respectively (n = 3–4).
The effect size is frequently used in experimental ecology to
quantify the proportional effect of a treatment and to facilitate
the comparison of biological responses across experiments
(Hedges et al., 1999). An Ln effect size of GPP of zero is

interpreted as having no effect on GPP, whereas a positive
value indicates a positive effect of CO2 on GPP and a
negative value indicates a negative effect of CO2 on GPP.
The variance in the Ln effect size was calculated following
Kroeker et al. (2010). Moreover, comparisons based on the
Ln effect size GPP did not assume normality and were
heterogeneous because the experiments encompassed distinct
phases of blooms, which occur rapidly and yield extreme data
(i.e., very low pCO2 and high GPP; R Core Team, 2014).
The analyses were carried out using RStudio 0.98.945 and the
“Metafor package” designed for meta-analyses (Viechtbauer,
2010).

RESULTS

Community Metabolism and CO2 Demand
GPP-O2 within the euphotic layer increased with increasing Chl
a concentration (p < 0.0001, R2 = 0.81, Figure S2), resulting
in low-CO2 waters (ranging from 281 to 128µatm of pCO2,
Table 1). GPP, measured with the 18O method, of these low-
CO2 communities ranged from 5.8 to 82.4 µmol O2 L−1 d−1 in
spring, under blooming conditions, while in summer GPP was
much lower (0.4–1.4 µmol O2 L−1 d−1), reflecting a recycling
phase. The GPP-O2/R ratio was extremely high in the euphotic
layer in spring (43.4 ± 0.85, with a maximum value of 244.6)
compared with low values in summer (2.67 ± 0.73). As a result,
the waters sampled were consistently undersaturated in CO2 and
with a broad range of primary productivity rates. Consistent
with the role of biota as a CO2 sink, there was oceanic uptake
of atmospheric CO2 at the stations sampled, which increased
with increasing NCP in the euphotic layer (Figure 1, Table 1).
However, the resulting input of atmospheric CO2 was much
smaller than the net CO2 demand by the plankton community,
calculated assuming a 1:1 ratio between O2 and C, accounting for
19%, on average, of the net biological removal (Figure 1,Table 1).

Response to Experimental CO2 Additions
In situ pCO2 ranged from 128 to 281µatm (Table 1, Table S1),
within reported in situ pCO2 across the Arctic Ocean (78 to
765µatm; Bakker et al., 2016), and the experimentally-elevated
pCO2 ranged from 178 to 1,096µatm (Table S1), consistent with
predicted scenarios of atmospheric CO2 by 2,100 (IPCC, 2014).
The experimentally tested plankton communities represented
variable biogeochemical parameters, from low-productivity
communities supported by nutrient recycling sampled in August
2014, to pre-bloom, blooming and decay phases, sampled in May
2014 and 2015. All of the waters sampled were characterized
by low salinity (<34.3) and low temperatures (<0.1◦C), except
in August 2014-1 (7◦C), probably due to the proximity of
surface waters to the WSC that transports warm Atlantic water
mass.

Three of the experiments showed positive responses to CO2

additions, all of them for communities sampled in May (May
2014-1, May 2015-1, May 2015-2). These were characterized by
the highest in situ GPP (6.2, 46, and 82.4 µmol O2 L−1 d−1,
respectively), high Chl a concentration (7.9, 10.6, and 13 µg
Chl a L−1), low pCO2 (<193µatm) and either low nutrient
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FIGURE 1 | Oceanic uptake of CO2 shown by the relationship between the

Ln-transformed air-sea CO2 flux and the Ln-transformed NCP integrated in

the water column from 3 to 25m and the regression equation [Ln air-sea flux =

0.35 (±0.1) + 5.95 (±1.1); p = 0.01, R2 = 0.64, df = 6]. The shaded area

represents the confidence interval (CI).

concentrations (0.7 µmol N L−1, 0.1 µmol P L−1, and 0.9 µmol
Si L−1, in May 2014-1), depleted in nitrite and nitrate (0 NO3

+ NO2, 0.1 PO4, 0.4 SiO4, in May 2015-1) or slightly higher
nitrate, phosphate and silicate (1.7 NO3 + NO2, 0.3 PO4, 1.5
SiO4, in May 2015-2) (Table 1). In these three experiments the
phytoplankton communities supported high cell density, with a
dominance of diatoms in May 2015-1 and 2, such as the centric
diatoms Thalassiosira sp. and Chaetoceros sp., and a community
dominated by Phaeocystis sp. in May 2014-1 (Table 1). The GPP
yield per µmol of added CO2 of every community tested was
calculated as the slope of the fitted regression equations between
GPP and the concentration of added CO2 (Table S1, Figure 2).
The GPP yield per µmol added CO2 increased with increased
GPP at in situ CO2 concentration, being 10-fold higher in spring
than in summer (Figure 2).

The response of GPP to CO2 addition was negative in four
of the seven experiments, including all of the experiments
conducted in August and one experiment in May 2014 (2014-2,
Table 1), with communities generally characterized by low GPP
(from 5.8 to 0.4 µmol O2 L−1 d−1), low Chl a concentration
(1.8 to 0.3 µg L−1), low pCO2 (ranging from 128 to 281µatm)
and low abundance of phytoplankton, dominated by diatoms
such as Chaetoceros sp. and a presence of dinoflagellates, such
as Protoperidinium sp. (Table 1). Dissolved inorganic nutrients
concentrations were generally low (nitrite and nitrate∼0.7 µmol
N L−1, phosphate ∼0.1 µmol P L−1, and silicate ∼0.6 µmol Si
L−1), except for the experiment conducted in August 2014 (2014-
1), which showed high nitrate (10.3 µmol N L−1) and silicate
concentrations (4.8 µmol Si L−1), despite low in situ GPP (1.4
µmol O2 L−1 d−1).

FIGURE 2 | The relationship between the average (±SE) GPP yield per µmol

of added CO2 in each community tested and the GPP at in situ pCO2. The

shape corresponds with the communities tested in spring (circles) and

summer (triangles).

A meta-analysis of the experimental results revealed
consistent patterns in the responses observed. In particular, the
response to CO2 enrichment, measured as the Ln effect size for
GPP, increased significantly with the biomass of the communities
tested (p = 0.002, R2 = 0.36, Figure 3A). The Ln effect size of
GPP became positive, indicative of an increase in GPP under
elevated CO2, during dense blooms with Chl a concentrations
in excess of 7 µg Chl a L−1 (Figure 3A). The Ln effect size for
GPP declined with increasing in situ pCO2 and became positive
when the in situ pCO2 was below 150µatm (Figure 3B). The
strongest GPP stimulation was found in a community with
intermediate GPP (6.2 ± 0.1 µmol O2 L−1 d−1, experiment
May 2014-1) and dominated by Phaeocystis sp. (99.4% of the
biovolume, Table 1, Table S1, Figure 4). Two diatom-dominated
communities (51.5% and 76.6% of the microphytoplankton
biovolume) with high GPP (46 ± 6 and 82.4 ± 11.4 µmol O2

L−1 d−1) were also stimulated by CO2 enrichment (May 2015-1
and May 2015-2 respectively, Table 1, Table S1). As a result of
the CO2 unsaturated waters and the low atmospheric CO2 input
(Figure 1), the turnover of CO2 pool in the communities tested,
calculated as the slopes of fitted regression equations between
the CO2 removal rates (in units of µmol CO2 L−1 d−1) and the
concentration of added CO2, increased with increasing in situ
GPP (Figure 5, Table S1).

DISCUSSION

The atmospheric resupply of CO2 was far too slow to compensate
for the observed biological drawdown of CO2 (19% of removal,
Figure 1), resulting in low-CO2 waters at the end of the Arctic
spring bloom (Kaltin et al., 2002; Bates et al., 2006; Bates and
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FIGURE 3 | The relationship between the Ln Effect Size of GPP (±SE) and: (A) the in situ Chl a concentration in the communities tested and the regression equation

[Ln Effect Size of GPP = −0.7 (±0.17) + 0.10 (±0.3) Chl a; R2 = 0.36, p = 0.002]; and (B) the in situ pCO2 and the regression equation [Log Effect Size of GPP =

1.52 (±0.43) – 0.01 (±0.00) in situ pCO2; R
2 = 0.50, p = 0.0001] at temperature <0◦C in black and 7◦C in red. The shaded area area represents the CI indicates de

95% confidence interval (CI) of the regression equation.

FIGURE 4 | The Ln effect size of GPP (±SE) in relation to the total abundance

of phytoplankton. The solid line represents the regression equation (p < 0.05,

R2 = 0.20).

Mathis, 2009; Fransson et al., 2009, 2017). Upward CO2 supply
from deeper layers was also likely to be low because the seasonal
stratification produced by melting sea ice in the same area
leads to small upward diffusive fluxes (Randelhoff et al., 2016).
The large imbalances that we observed between net biological
CO2 consumption and supply explain the sensitivity of the
Arctic phytoplankton community to CO2 limitation. The time
for photosynthetic removal of the CO2 pool, in the absence of
recycling mechanisms, ranged from more than 10 days for the

FIGURE 5 | The relationship between CO2 turnover (± SE) and GPP at in situ

pCO2 and the regression equation [CO2 turnover = 0.10 (±0.02) + 0.003

(±0.0005) GPP in situ, R2 = 0.87, p-value = 0.001], the shaded area indicates

the 95% confidence interval (CI) of the regression equation. The shape

corresponds with the communities tested in spring (circles) and summer

(triangles).

least productive communities to 3 days for communities in the
most active phase of the spring bloom (Figure 5). Respiratory
remineralization of CO2 was characteristically low during the
spring bloom (40-fold lower than photosynthetic uptake, i.e.,
P/R = 43) as is the atmospheric input of CO2, leading to CO2

depletion, thereby creating the conditions for CO2 limitation
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during the spring bloom. The peak of the spring Arctic bloom
was characterized by autotrophic communities with high net
biological CO2 demand and high P/R ratios on average (43 ±

0.8) showed consistent with previous reports (Vaquer-Sunyer
et al., 2013), with the communities acting as strong CO2 sinks
during spring. In August, when recycling processes drive primary
production, the average GPP-O2/R ratio (3± 0.7) was more than
10-fold lower than that in spring.

The plankton communities tested spanned a range of bloom
stages according to the season and the location and yielded a
broad diversity of responses to increased CO2, from increased
GPP, generally observed (3 of 4 experiments) in the spring, along
with a very high GPP yield per unit CO2 added, to suppression
of GPP in the summer experiments. This is consistent with
expectations, as high net biological demand for CO2 in spring,
along with low resupply from low respiration rates and air-sea
exchange, lead to a rapid CO2 depletion. In contrast, a closer
balance between community production and respiration during
the recycling mode, in summer, when communities are strongly
nutrient-limited, relives them from CO2 limitation. The finding
of a prevalence of suppression of GPP with CO2 enrichment
in the summer was unexpected, as we expected no effect but
not a negative one, which we are unable to explain and may in
fact reflect pH-dependent processes, as CO2 enrichment leads to
decrease in pH, rather than negative effects of CO2 itself.

The broad diversity of responses observed further allowed
us, through a meta-analysis approach, to explore the conditions
associated with CO2 limitation. In particular, we found that these
divergent results were dependent on the biological demand for
CO2 and the extent of CO2 depletion in the water column. These
findings point at a shifting role of CO2 with seasons, supporting
the hypothesis of the existence of transient time windows of CO2

limitation during highly productive periods in spring.
We observed the most negative effect size (i.e., suppression of

GPP with addition of CO2) in a community sampled in warm
surface water and slightly influenced by melting sea ice (with
7◦C temperature and 34.3 salinity), likely indicating an influence
of the WSC, transporting warm Atlantic water mass. This
community supported low Chl a concentration and the highest
pCO2 (281µatm) observed in this study (Figures 3A,B). This
negative result is consistent with the temperature-dependence
of the response of GPP to CO2 reported by Holding et al.
(2015), as well as with the temperature threshold of 5◦C at which
Arctic plankton communities have been shown to shift from
autotrophic to heterotrophic (Holding et al., 2013). However,
the mechanism through which added CO2 suppresses GPP is
unclear. It may involve indirect effects of changes in pH on
cellular composition (Taraldsvik andMyklestad, 2000) or the pH-
dependence of the availability of other nutrients, such as trace
metals (Saito and Goepfert, 2008; Shi et al., 2010; Xu et al., 2010,
2012). No or little response to CO2 enrichment was expected
in waters with pCO2 near atmospheric equilibrium (Mercado
and Gordillo, 2011). In turn, an increase in GPP with CO2

enrichment was expected in cold waters depleted in CO2 relative
to atmospheric equilibrium but still containing enough dissolved
inorganic nutrients to support primary production (Holding
et al., 2015).

Our results showed that GPP increased by 32–72% (Table S1)
on average when CO2 was supplied to blooming phytoplankton
communities (Chl a > 7 µg L−1) supporting high CO2 demand
(GPP > 6 µmol O2 L−1 d−1), and growing under low pCO2

(<150µatm) and in the presence of low, but inorganic nutrients
concentrations. These conditions, found during the Arctic spring
bloom, therefore, define those under which episodes episodic
CO2 limitation is expected. It was previously found that the CO2

concentration limits photosynthesis of phytoplankton bloom
episodes in semi-enclosed systems (Mercado and Gordillo, 2011),
but the environmental conditions for CO2 limitation in Arctic
communities have not yet been defined. Moreover, previous
experimental results showed that increased CO2 concentrations
may increase primary production in nutrient-poor communities
(Hein and Sand-Jensen, 1997) and during nutrient-depleted
conditions resulting in “carbon-overconsumption” (Taucher
et al., 2015). Such carbon-overconsumption has been observed
(Sambrotto et al., 1993; Banse, 1994) and has been associated
with experimental nutrient stress (Taucher et al., 2012, 2015),
suggesting that episodes of CO2 limitation could extend into the
later phases of a bloom.

Enhanced GPP in response to elevated CO2 was observed in
highly productive communities, one dominated by Phaeocystis
sp. and two communities dominated by diatoms (Figure 4).
However, the strongest enhancement was observed in the
community dominated by Phaeocystis sp. (Table 1, Table S1),
which is an important Arctic haptophyte that tends to be
dominant close to drifting ice (Wassmann et al., 1999), and with
increasing salinity and temperature following ice melt events
(Lasternas and Agustí, 2010). Phaeocystis sp. is considered to
have less-efficient carbon concentration mechanisms (CCMs)
than diatoms do (Rost et al., 2008). Elevated CO2 produces
a decrease in inorganic carbon affinity and leads to strong
downregulation in the expression of CCMs in some eukaryotic
algae, such that the diffusive entry of CO2 can be facilitated
(Giordano et al., 2005; Reinfelder, 2010; Raven et al., 2011).
This suggests a possible mechanism through which the GPP of
Phaeocystis sp. and diatom communities are stimulated during
CO2-enriched conditions. Besides, the abundance of Phaeocystis
sp. was greatest when pCO2 concentrations were lower than
150µatm, which can potentially influence competitions among
phytoplankton species (Tortell et al., 2002), a possibility that was
not evaluated in our study. Phaeocystis sp. replaces diatoms when
the growth of diatoms is limited by the availability of silicic acid
while other nutrients remain available to support growth of non-
diatom taxa (Lasternas and Agustí, 2010). Recently, an under
ice bloom in the Arctic dominated by Phaeocystis pouchetii was
detected earlier than expected with subsequent decline of DIC
(Assmy et al., 2017). Our results indicate that both Phaeocystis
sp. and diatoms are sensitive to CO2 limitation during highly
productive periods in the west of Svalbard shelf. Although we
cannot extrapolate our results beyond the study area, they are
nevertheless relevant because the European sector of the Arctic
contributes 50% of the annual Arctic Ocean plankton production
(Arrigo, 2007).

Our results suggest that increased atmospheric CO2 and the
resulting increased air-sea CO2 supply may stimulate Arctic gross
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production of spring algal blooms under conditions of high
biomass, high phytoplankton abundance, presence of nutrients
and low pCO2. In contrast, increased CO2 may supress gross
production during summer conditions, when phytoplankton
biomass and production are low, although the mechanisms
involved are unknown. Moreover, our results are consistent with
previous reports that the response of primary production to
increased CO2 is suppressed at water temperatures above 7◦C
(Holding et al., 2015). The expectation of GPP stimulation with
increased CO2 during spring blooms assumes that the nutrient
supply will not be affected by concurrent changes. Increased
stratification, due to Arctic warming and freshening may
reduce vertical nutrient supplies from deeper layers (Sarmiento
et al., 2004; Wassmann, 2011; Randelhoff et al., 2017), possibly
reducing the intensity and timing of the spring algal bloom and,
therefore, its carbon demand and potential CO2 limitation. In
contrast, areas currently covered by ice would, as the extent of
ice continues to decline, support stronger algal spring blooms
(Arrigo et al., 2008), which may experience episodic CO2

limitation. The greatest increases in primary production in a
future Arctic are expected in the Eurasian perimeter (Slagstad
et al., 2015). However, current models do not consider the effects
of episodic CO2 limitation during the Arctic spring.

The global increase in CO2 seems to have stimulated the
primary production of terrestrial plants on a global scale due
to CO2 fertilization, possibly affecting the rate of increase
in atmospheric CO2 concentration and global temperatures
(Denman et al., 2007; Leggett and Ball, 2015) during the
last 10 years (Keenan et al., 2016). However, the existence
of this slow-down remains controversial (Cowtan and Way,
2014; Karl et al., 2015). Given the relevant role that the
Arctic Ocean plays as a sink for atmospheric CO2 (Bates
and Mathis, 2009), stimulation of Arctic GPP by CO2 during
highly productive periods in spring may strengthen the Arctic
CO2 sink and add, modestly, to biotic feedbacks that may
affects global trends in atmospheric CO2. However, negative
effects of CO2 on primary production of Arctic plankton

communities in summer suggest that the “fertilization effect”
of CO2 on Arctic plankton, resulting in enhanced primary
production during the short, 2–3 weeks, period of the spring
bloom, maybe offset by negative effects through the much
longer, 2–3 months, recycling phase, with potentially negative
effects for the ecosystem. Whereas the mechanisms leading to
enhanced GPP in Arctic plankton with increased CO2 during
spring appear clear, the mechanisms leading to suppression
of GPP with CO2 enrichment during summer need be
resolved.
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