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Satellite derived sea surface temperatures (SSTs) are often used as a proxy for in situ

water temperatures, as they are readily available over large spatial and temporal scales.

However, contamination of satellite images can prohibit their use in coastal areas. We

compared in situ temperatures to SST foundation (∼10m depth) at 31 sites inshore of

the East Australian Current (EAC), the dynamic western boundary current of the south

Pacific gyre, using an area averaging approach to overcome coastal contamination.

Varying across- and along-shelf distances were used to area average SSTmeasurements

and de-correlation time scales were used to gap fill data. As the EAC is typically

anisotropic (dominant along-shore flow) the choice of across-shelf distances influenced

the correlation with in situ temperatures more than along-shelf distances. However, the

“optimal” distances for both measurements were within known de-correlation length

scales. Incorporating both SST area and time averaging (based on de-correlation time

scales) produced data for an average of 96% of days that in situ loggers were deployed,

compared to 27% (52%) without (with) area averaging. Temperature differences between

the in situ data and SSTs varied depending on time of year, with higher differences

in the austral summer when daily in situ temperatures can range by up to 4.20◦C.

The differences between the in situ and SST measurements were, however, significant

with or without area averaging (t-test: p-values < 0.05). Nevertheless, when using

the area averaging approaches SSTs were only an average of ∼1.05◦C different from

in situ temperatures and less than in situ temperature fluctuations. Linear mixed models

revealed that latitude, distance to the coast and nearest estuary did not influence the

difference between the in situ and satellite data as much as the water depth. This

study shows that using de-correlation length and time scales to inform how to process

satellite data can overcome contamination and missing data thereby greatly increasing

the coverage and utility of SST data, particularly in coastal areas.
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INTRODUCTION

Water temperature is an important predictor of coastal diversity
(Tittensor et al., 2010) and distribution (Block et al., 2011; Last
et al., 2011; Wernberg et al., 2011) across a wide range of taxa.
This is not surprising given that temperature is a key factor
influencing reproduction (Pankhurst, 1997; Byrne et al., 2009),
survival (Pepin, 1991; Eggert, 2012), growth (Morrongiello and
Thresher, 2015; Singh and Singh, 2015) and behavior (Biro
et al., 2010; Allan et al., 2015) of many marine species. Satellite
derived sea surface temperature (SST) measurements are widely
used as a proxy for water temperature (Block et al., 2011;
Brodie et al., 2015), due to readily available data, broad spatial
coverage and long-time series (albeit at low spatial resolution)

in the absence of in situ recordings (which are often at short
time scales and spatially limited). Although such (skin) SST
measurements are only representative of the first microns of
the sea surface (or ∼10m depth if foundation SST is used),
they are regularly used as a proxy for temperatures at greater
water depths (≥10m) in ecological and biological studies (e.g.,
animal tracking: Papastamatiou et al., 2013; Lea et al., 2015;
fisheries data- Brodie et al., 2015; Montero-Serra et al., 2015).
SST, however, may not be available for coastal areas due to
contamination in the satellite-derived images [noisier radar
returns from land and sea (Brooks et al., 1990) and improper
instrument corrections (Shum et al., 1998)]. In addition, previous
studies have demonstrated biases in SST data when comparing
it to in situ measurements within coastal areas (Smale and
Wernberg, 2009; Lathlean et al., 2011; Stobart et al., 2016),
with some studies recording up to 6◦C differences (Smit et al.,
2013). These biases are due to contamination of the satellite
processing due to the presence of coastal features such as
the shoreline, estuaries and embayments as well as complex
coastal dynamics such as tides and upwelling (Smit et al.,
2013) that vary over short spatial scales. Despite this well
documented bias of satellite SST data in coastal areas, no
studies have assessed if using spatial area averaging (based on
known decorrelation length and/or time scales) can reduce the

bias or increase the availability of satellite derived temperature
data.

To avoid coastal contamination some authors have used
either a single satellite pixel offshore from the study location
(e.g. Lathlean et al., 2011), or an area averaged value whereby
the mean SST measurements is calculated over a set number
of pixels, including pixels offshore (Smit et al., 2013; Delgado
et al., 2014; Stobart et al., 2016). Stobart et al. (2016) assessed
the daily temperature differences between satellite-derived and
in situ measurements and averaged all the satellite-derived
SST measurements within a 20 km2 box centered on the

in situ logger locations. While Smit et al. (2013) used an
average over the adjacent nine SST data points and Delgado
et al. (2014) used 3 × 2 and 3 × 3 satellite pixels to
compare with coastal and inner-shelf in situ measurements,
respectively. For the latter study this area averaging, as well as
incorporating time-scales over which the satellites passed the
area, produced high correlations (R2 of 0.99) between the two
datasets. Although these methods crudely overcome the problem

of coastal contamination by extending the areas offshore, the
choice of the number of pixels over which to sample is arbitrary
and does not use known oceanographic de-correlation scales
derived from in situ data to inform the users choice of spatial
averaging.

Similarly, cloud cover can contaminate or prevent satellite
measurement leading to missing data, especially if the study
site is restricted in size, which can decrease the usefulness
of this readily available data-source. To overcome this some
researchers have used rolling means over a set number of days
to interpolate any missing measurements (e.g., Nardelli et al.,
2013; Carroll et al., 2016). However, the most appropriate period
of time over which to apply a rolling mean will depend on
local oceanographic conditions and de-correlation time scales.
Although the use of de-correlation time scales have been used
to impute missing satellite data (e.g., Romanou et al., 2006), use
of such methods is limited, particularly in coastal areas where
dynamic oceanographic conditions may occur.

Subtropical western boundary currents (WBC) are hotspots
for SST warming due to climate change (Wu et al., 2012), thus
accurate representation of in situ measurements across wide
spatial and temporal scales within these regions is vital for
ongoing marine ecosystem management. The East Australian
Current (EAC) is the WBC in the South Pacific subtropical
gyre. Formation of the EAC occurs in the Coral Sea (∼10–15◦S)
and results in oligotrophic tropical waters flowing southward
along the continental shelf break until it separates from the
coast, typically at ∼31–32◦S (Cetina Heredia et al., 2014). Here,
it bifurcates into an eastern flow across the Tasman Sea and
a southward mesoscale eddy field that flows poleward. Coastal
areas along the whole of the EAC are strongly influenced by
cross-shelf processes, including upwellingmechanisms (Roughan
and Middleton, 2002). Previous studies have quantified the de-
correlation length scales (Schaeffer et al., 2016) and time scales
(Roughan et al., 2015) along the EAC. However, these have not
been previously incorporated into analyses to assess if these
variables can be used to inform how to process satellite-derived
SST measurements in coastal areas.

In this paper, we aim to: (a) determine the differences between
satellite derived SST foundation and in situ temperatures at
a range of latitudes and water depths along the EAC, (b)
assess if de-correlation length scales can be used to overcome
contamination in satellite derived temperature observations in
coastal areas and (c) determine de-correlation times for each
site and assess if these can be used to fill data gaps in satellite
measurements due to cloud cover.

METHODS

Study Area
This study covered 20 locations across ∼8◦ latitude (∼890 km of
coastline) along the coast of southeastern Australia (Figure 1)
extending from subtropical to temperate zones. In situ
temperature was collated from a number of sources (see
descriptions below), however all the temperature loggers were
deployed between 0.001 and 11.09 km offshore (mean distance:
0.42 km) and deployed between 8.5 and 20m depth.
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FIGURE 1 | Study site map showing the location of each in situ mooring and logger. Horizontal lines indicate the 0.20◦ of latitude that is used to average the data in

the remaining figures.
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Datasets
In situ IMOS Mooring Data
In situ water temperature was collected by the NSW-Integrated
Marine Observing System (IMOS) mooring team (Roughan
and Morris, 2011; Roughan et al., 2015) and was obtained
from the IMOS Data Portal (https://portal.aodn.org.au) for four
moorings (CH070, ORS065, JB070, and BMP070) deployed at
latitudes between ∼ 30◦ to 36◦S (Table 1, red dots on Figure 1).
In addition to measuring current velocity (not used here),
each mooring consisted of a line of thermistors (Aquatech
520 temperature and temperature/pressure loggers; resolution
±0.05◦C) at 4-m (ORS065 only) or 8-m intervals through
the water column extending from the bottom to a sub-
surface float (15–20m below the surface; see Roughan et al.,

2015 for full details of the mooring configuration). All data
were logged internally at 5min intervals and downloaded at
servicing every 8–12 weeks. The depth of the thermocline
was calculated for each mooring location (per 5min intervals)
by determining the largest temperature difference across the
string of temperature loggers (from minimum depth to 45m).
If a temperature difference between the shallowest depths was
evident and constant, the thermocline was assumed to coincide
with the minimum depth, i.e. no mixed layer. All depths within
or below the thermocline were excluded as this water mass
would be decoupled from the shallower waters. The minimum
thermocline depth was 19m (mean 37m). Data were collected
between 2006 and 2017, however the temporal period of available
data differed between each mooring and depth, with data

TABLE 1 | Table of in situ IMOS moorings and NSW DPI-Fisheries loggers included in study given from north to south with deployment dates, number of days with data

available, mean, minimum and maximum temperatures recorded by site and depth.

Deployment time Temperature (◦C) ± SD

Mooring name Latitude

(∼0.2◦)

Depth

(m)

Distance

from coast

(km)

Start date End date No. of days Mean Min Max

Cook Island −28.2 12.0 0.10 10/07/06 15/04/10 1,094 21.8 ± 2.3 16.8 ± 2.3 25.9 ± 2.3

Julian Rocks −28.6 15.7 2.39 1/07/06 16/02/17 3,306 21.4 ± 2.1 16.2 ± 2.1 26 ± 2.1

18.7 2.53 1/07/06 21/08/14 2,685 21.6 ± 2.2 16.2 ± 2.2 26 ± 2.2

20.0 2.61 1/07/06 17/07/16 2,977 21.3 ± 2.1 15.9 ± 2.1 26 ± 2.1

Coffs Harbour −30.0 13.0 1.06 8/02/10 26/07/10 169 21.9 ± 2.2 17.1 ± 2.2 25.7 ± 2.2

17.0 1.58 8/02/10 26/07/10 169 22.1 ± 2 17.2 ± 1.9 25.9 ± 2

Flat Top Rock −30.2 8.5 0.52 14/02/02 1/06/16 4,777 21.1 ± 2.1 16.6 ± 2.1 26 ± 2.1

CH070 −30.2 20.0 11.09 14/08/09 8/04/17 2030 21.9 ± 0.7 16.7 ± 1 26 ± 0.1

Muttonbird Island −30.4 14.0 0.09 20/02/02 1/06/16 4,424 21 ± 2.1 15.7 ± 2.1 26 ± 2.1

Latitude Rock −32.2 9.0 0.35 1/06/06 28/02/11 1,264 20 ± 1.9 14.4 ± 1.9 25.4 ± 1.9

Big Seal Rocks −32.4 14.4 2.60 1/06/06 31/05/16 2,118 19.9 ± 1.9 14.6 ± 1.9 26 ± 1.9

18.8 2.56 1/06/06 3/02/10 1,258 19.4 ± 1.8 14.6 ± 1.8 24.9 ± 1.8

Broughton Island −32.6 11.3 0.06 26/07/07 1/03/11 1,309 19.3 ± 1.9 14.6 ± 1.9 24.5 ± 1.9

11.3 0.15 15/07/06 25/01/17 3,732 19.5 ± 1.8 14.5 ± 1.8 26 ± 1.8

12.0 0.02 26/07/07 4/06/09 674 19.6 ± 1.9 15.2 ± 1.9 24.5 ± 1.9

16.3 0.00 26/07/07 1/10/15 2,790 19 ± 1.8 13.1 ± 1.8 25.7 ± 1.8

Port Stephens −32.6 17.0 0.44 4/10/09 24/05/11 405 20.6 ± 2.1 13.5 ± 2.3 25.9 ± 2

Catherine Hill Bay −33.2 13.0 0.15 17/02/07 9/07/09 789 19.6 ± 2.1 13.9 ± 2.1 25.9 ± 2.1

CTBAR −33.8 10.5 0.21 8/12/08 13/11/12 1,436 19.4 ± 2.2 14.4 ± 2.2 24.6 ± 2.2

ORS065 −33.8 15.0 5.28 2/05/06 29/06/16 3,542 19.7 ± 0.8 13.1 ± 0.6 25.6 ± 0.6

19.0 5.28 2/05/06 29/06/16 3,676 19.6 ± 0.8 14.4 ± 0.6 25.6 ± 0.6

Bondi −33.8 20.0 0.52 14/03/10 3/10/11 448 19.2 ± 2.2 14.7 ± 2.2 25.2 ± 2.2

Jervis Bay −35.0 11.4 0.00 13/10/07 31/12/15 2,841 18.4 ± 2 13.3 ± 2 23.7 ± 2

15.6 0.06 13/10/07 2/08/09 599 18.3 ± 1.7 13.8 ± 1.7 22.1 ± 1.7

JB070 −35.2 20.0 4.49 28/07/09 29/10/09 94 16.1 ± 0.3 12.8 ± 0.5 20.8 ± 0.8

Tollgate Islands −35.8 10.6 0.02 21/11/06 28/09/09 749 18.1 ± 2.3 13.9 ± 2.3 24.9 ± 2.3

18.6 0.29 14/12/13 29/02/16 807 18.3 ± 2.2 14.1 ± 2.2 24 ± 2.2

Black Rock south

coast

−35.8 16.0 1.08 27/11/07 28/10/08 337 17.4 ± 2.3 13.8 ± 2.3 22.6 ± 2.3

BMP070 −36.2 14.0 1.84 30/04/15 28/06/16 157 19.9 ± 1.2 14.9 ± 0.9 23.8 ± 0.4

Narooma −36.2 13.6 0.41 15/08/13 16/02/16 916 17.7 ± 1.9 13.3 ± 1.9 25.9 ± 1.9

14.8 0.07 14/08/13 29/03/15 593 18.8 ± 2.5 13.5 ± 2.5 26 ± 2.5
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coverage ranging from 94 to 3,676 days per mooring/depth
(Table 1).

In situ NSW DPI-Fisheries Logger Data
NSW DPI-Fisheries and the IMOS Animal Tracking Facility
(IMOS-ATF) (hereafter collectively referred to as “NSW DPI-
Fisheries” loggers) deployed in situ temperature loggers at 16
sites (Figure 1), with a total of 26 loggers (Table 1). Data
were collected for different periods of time at each deployment
location (Table 2). Two models of Minilog Temperature Data
Loggers (Vemco - Amirix Systems Inc., Halifax, Canada) were
deployed by NSW DPI-Fisheries at nine of the 16 sites from

2006 to the present. Each logger was deployed approximately
1m above the seabed together with a passive acoustic listening
station (Otway and Ellis, 2011). Initially, Minilog 8TR loggers
were used (2006–2010) and recorded the water temperature once
every 60min. These loggers were later replaced with Minilog II-T
loggers (2011 to present), which also recorded water temperature
once every 60min. Both loggers had a resolution of 0.01◦C, were
accurate to±0.10◦C and deployed for periods of up to 12 months
with retrieval and re-deployment done by scuba divers.

IMOS-ATF also deployed Minilog II-T loggers at Coffs
Harbour, Port Stephens, Sydney (Manly, and Bondi) and
Narooma (Figure 1). Like the NSW DPI-Fisheries instruments,

TABLE 2 | Table of data obtained from in situ IMOS moorings and NSW DPI-Fisheries loggers given from north to south with de-correlation times (ACF, days), mean daily

temperature difference (daily satellite SST minus in situ temperature- DTD), R2 values from linear regressions against the in situ data and proportion of study days (prop

days) with corresponding satellite data.

No area avg Area avg Area and time avg

Site Depth No. of days

in test data

ACF

(days)

Mean DTD

± SD

R2 Prop.

days

Mean DTD

± SD

R2 Prop.

days

Mean DTD

± SD

R2 Prop.

days

Cook island 12.0 547 9 1.1 ± 1.0 0.87 0.57 1.1 ± 1.0 0.83 0.99

Julian Rocks 15.7 1,653 3 1.0 ± 1.1 0.75 0.24 1.5 ± 1.3 0.68 0.51 1.5 ± 1.2 0.68 0.97

18.7 1,342 7 0.8 ± 0.9 0.82 0.23 1.3 ± 1.0 0.78 0.47 1.3 ± 1.0 0.78 0.97

20.0 1,488 9 1.0 ± 1.1 0.72 0.24 1.5 ± 1.2 0.69 0.52 1.5 ± 1.3 0.68 0.82

Coffs Harbour 13.0 84 8 1.0 ± 0.4 0.94 0.51 0.9 ± 0.4 0.95 1.00

17.0 84 7 0.3 ± 0.4 0.96 0.54 0.3 ± 0.3 0.96 1.00

Flat top rock 8.5 2,388 20 0.8 ± 1.0 0.80 0.48 0.8 ± 1.0 0.81 1.00

CH070 20 986 15 0.4 ± 0.7 0.89 0.42 0.7 ± 0.9 0.84 0.55 0.8 ± 1.0 0.80 1.00

Muttonbird island 14.0 2,212 20 0.7 ± 0.9 0.81 0.44 0.7 ± 0.9 0.82 0.99

Latitude rock 9.0 632 6 0.4 ± 0.6 0.87 0.57 0.4 ± 0.7 0.86 0.96

Big Seal Rocks 14.4 1,059 4 0.7 ± 0.9 0.76 0.27 1.2 ± 1.2 0.64 0.59 1.3 ± 1.2 0.66 0.94

18.8 629 4 0.6 ± 0.9 0.8 0.33 1.0 ± 1.1 0.7 0.61 1.1 ± 1.1 0.68 0.92

Broughton island 11.3 1,866 4 1.1 ± 1.0 0.6 0.08 1.0 ± 1.0 0.65 0.55 1.0 ± 1.0 0.68 0.90

11.3 337 4 0.9 ± 0.8 0.85 0.61 0.9 ± 0.8 0.83 0.98

12.0 654 4 1.1 ± 1.3 0.61 0.54 1.1 ± 1.3 0.61 0.88

16.3 1395 5 1.3 ± 1.3 0.53 0.53 1.3 ± 1.2 0.56 0.94

Port stephens 17.0 202 7 1.4 ± 1.3 0.60 0.44 1.3 ± 1.1 0.69 0.99

Catherine hill bay 13.0 394 7 1.2 ± 1.1 0.70 0.55 1.2 ± 1.0 0.72 0.96

CTBAR 10.5 718 16 0.8 ± 0.8 0.85 0.42 0.8 ± 0.8 0.87 0.98

ORS065 15 224 5 1.1 ± 0.7 0.91 0.47 1 ± 0.7 0.90 0.93

19 1767 11 0.0 ± 0.0 0.8 ± 0.9 0.80 0.51 0.7 ± 0.9 0.82 0.99

Bondi 20.0 1,767 9 0.0 ± 0.0 0.9 ± 1.1 0.71 0.51 0.9 ± 1.0 0.74 0.98

Jervis bay 11.4 1,420 20 1.4 ± 1.1 0.77 0.43 1.4 ± 1.0 0.80 1.00

15.6 299 3 1.5 ± 1.1 0.66 0.5 1.5 ± 1.1 0.64 0.85

JB070 20 47 10 0.5 ± 0.9 0.75 0.36 1.2 ± 0.9 0.70 0.43 1.4 ± 1.1 0.54 0.98

Tollgate islands 10.6 374 16 0.4 ± 0.2 1.0 ± 1.0 0.84 0.59 0.9 ± 0.9 0.85 1.00

18.6 403 8 1.2 ± 1.3 0.73 0.47 1.3 ± 1.2 0.73 0.95

Black rock south

coast

16.0 168 13 0.5 ± 0.4 0.90 0.59 0.5 ± 0.3 0.95 1.00

BMP070 14 78 6 1.0 ± 0.9 0.72 0.45 1.0 ± 0.6 0.87 0.92

Narooma 13.6 458 9 1.5 ± 1.5 0.63 0.5 1.7 ± 1.3 0.64 0.99

14.8 296 13 0.1 ± 1.3 0.72 0.3 0.6 ± 1.3 0.72 0.58 0.7 ± 1.4 0.71 1.00

no area avg= satellite derived data with no area averaging, area avg= area averaging using 8 across and 20 km along-shelf distances, and area and time avg= the same area averaging

with SSTs calculated using a rolling mean based on the de-correlation times (ACFs) estimated from the data.
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loggers were deployed approximately 1 meter above the seabed
on passive acoustic listening stations and retrieved every 12
months.

At Muttonbird Island and Flat Top Point (Figure 1) Onset
32K TidbiT loggers (Onset Computer Corporation, MA, USA;
resolution 0.16◦C) were used from 2001 to 2006. Dataflow
Odyssey loggers (Dataflow Systems Ltd, New Zealand; resolution
0.02◦C) were used from 2006 to 2011, Reefnet Sensus loggers
from 2011 to 2014, and thereafter Onset Hobo Pro V2 loggers.
Loggers were accurate to within 0.16◦C from trial comparisons
(Malcolm et al., 2011). All loggers were deployed for up
to 12 months and recorded the water temperature every
30min.

Any data from loggers that were deployed deeper than
the estimated thermocline depth (calculated from data at the
mooring deployed closest to the logger location) were excluded.
For example, if the thermocline was estimated to be at 19m for
a particular mooring then all loggers deployed in the vicinity of
that mooring and at depths >19m were excluded.

Satellite Derived SST
Daily day-night composites (L3S product) of satellite-derived
SST foundation (∼10m depth) measurements obtained by the

advanced very high resolution radiometer (AVHRR) aboard the
NOAA series of satellites were accessed from the IMOS Ocean
Portal (https://portal.aodn.org.au) (Imos, 2017). SST foundation
was used instead of skin-SST (∼10–20µm water depth) as it
is largely free of diurnal temperature variability (Beggs et al.,
2011). As part of routine data processing, IMOS calculate SST
from multiple sensors at a spatial resolution of 0.02◦ latitude ×
0.02◦ longitude (Beggs et al., 2010). Each gridded cell contains the
average of all the highest available quality SSTs that overlap with
this cell, weighted by area of overlap (Beggs et al., 2010). These
data are then flagged according to bias (median bias over all
measurements over the time window of consideration- “sses bias”
variable field in the data) and data quality (based on relationship
to land, atmospheric quality and the distance to the nearest
cloud—“l2_flag” and “quality_level” variable fields in the data—
Griffin et al., 2017). We subtracted the sses bias from the L3S SST
measurements (as recommended by http://imos.org.au/facilities/
srs/sstproducts/sstdata0/reading-data/) and filtered according to
the data quality so that only “acceptable” or “best” quality (quality
level ≥ 4) data were used. Thus the SST data subsequently used
in this paper did not include any data close to clouds (>5 km)
or land, and thus were not available for all the same dates as the
in situmeasurements.

FIGURE 2 | Mean monthly temperatures for in situ locations across each 0.20◦ latitude and 10m depth intervals.
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Data Analysis
Differences Between in situ and Satellite-Derived SST
Temperatures from all the in situ loggers were used to describe
the thermal environment across the different latitudes and
depths of our study locations (daily mean and range averaged
across each month, annual maxima and minima). The daily
temperature mean and range (maximum minus minimum
temperature) were calculated for each logger and averaged
across all the locations within 0.20◦ latitudes (∼20 km along-
shore to match the distances used in the area averaging, see
below, and within temperature decorrelation lengths- Schaeffer
et al., 2016) and within 2m depth intervals (8–9.9, 10–11.9,
12–13.9, 14–15.9, 16–17.9, and 18–20.0m) for each month.
Data were not differentiated by across-shelf distances as all
sites were less than the known decorrelation length scales,
even at depth (all sites were ≤ 11.09 km offshore; decorrelation
length scales: 19 km on the surface and 14 km at 50m depth-
Schaeffer et al., 2016).

The data from each in situ logger were split into two
independent datasets representing two different temporal
periods: (1) 50% of the data from the first deployment was used as
a “training” dataset to calculate the daily temperature difference
and find the “optimal” across- and along-shelf distances (see

below); (2) the remaining 50% of the data, the “test” data, was
used to validate the correction methods using decorrelation
length- and time-scales. To determine the differences between
the in situ and satellite data, the daily mean was calculated
for each in situ logger locations in the training dataset to
match the temporal resolution of the satellite-derived data. Each
in situ recording was matched to a corresponding satellite SST
measurement extracted from the satellite pixel directly over the
sampling location (hereafter referred to as “no area averaging”).
Daily temperature differences (daily satellite SST minus in situ
temperature, hereafter DTD) were calculated to examine short
term and seasonal variation in differences between in situ and
satellite measurements, in a manner synonymous with Stobart
et al. (2016). These matchups were used to compare the average
DTDs for each month for each 0.20◦ latitudinal range and depth
interval.

Using De-correlation Length Scales From in situ Data

to Inform Area- Averaging of SSTs
The EAC flow is typically anisotropic, meaning the flow
dominates in one direction, in this case along-shore to the south
(poleward). Schaeffer et al. (2016) determined that the mean

FIGURE 3 | Mean monthly temperature ranges (averaged from daily ranges) for in situ locations across each 0.20◦ latitude and 10m depth intervals.
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temperature de-correlation length scales at a latitude of ∼29.5–
33.0◦S, upstream of the EAC separation point, were 19 and
29 km in the across- and along- shelf directions in the surface
mixed layer. The across-shelf (along-shelf) distances decreased
(increased) with increasing water depth. Varying across- and
along-shelf distances were used to area average the satellite
derived SST measurements. Across-shelf distances of 4–20 km
(increments of 2 km, which is approximately the resolution of the
satellite pixels) and along-shelf distances of 5–45 km (increments
of 5 km) were used to calculate the area-averaged estimate of SST.
Across-shelf distances were extended offshore from the in situ
location while along-shelf distances were centered on the latitude
of the in situ logger. The mean across all the satellite pixels were
used as the satellite derived SST measurement as shown below:

SSTarea avg =
1

n
×

n∑

i,j =1

xij

where i = latitude coordinate of the in situ logger ± 0.5∗the
along-shelf distance (4–20 km were tested), j = longitude
coordinate+ the across-shelf distance (5–45 km were tested) and
n = the total number of satellite pixels in the i and j distances.
Note: j is positive in this study so that the distance extends

offshore; this would be negative along a western coastline. The
output (SSTarea avg) is a single value for each in situ location for
each day.

The “optimal” across- and along-shelf distances to use
were assessed from the differences between in situ (from the
training dataset) and satellite data, and the correlation (Pearson’s
correlation) between the two measurements. The daily area
averaged SST value from the “optimal” across- and along-shelf
distances (8 and 20 km respectively- see section Results) were
then compared to the corresponding in situ test data using
a linear regression to determine if there was a statistically
significant difference between the two measurements.

Gap Filling Using De-correlation Times Scales
Generally temperature in the mesoscale ocean changes fairly
slowly (far less quickly than say diurnal temperature changes
in the atmosphere over land). Roughan et al. (2015) found that
the de-correlation times of oceanic temperature (including the
same IMOS mooring data that is included in this paper) vary
from 2.3 to 20 days (in 98 to ∼10m water depth, respectively).
Autocorrelation functions (ACF) were used to determine the
sea temperature de-correlation times using the in situ test data
from all locations and the methods of Roughan et al. (2015). The

FIGURE 4 | Mean Pearson’s correlation between satellite data and in situ data for different across-shelf distances.
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hourly mean temperature for each in situ location was calculated
for periods of time when there were no gaps in the logger data
and the de-correlation time was taken as the maximum lag with
an ACF greater than 0.7. These de-correlation times, along with
across- and along-shelf distances of 8 and 20 km respectively,
were then used to calculate a rolling mean SST (centered on the
day of interest) from the satellite derived data to fill gaps when
data was filtered out due to poor data quality flags (e.g., there was
cloud cover) as shown in equation below.

SSTarea and time avg =
1

n
×

n∑

i,j,k =1

xijk

where i = latitude coordinate of the in situ logger ± 0.5∗the
along-shelf distance, j = longitude coordinate + the across-
shelf distance, k = date of in situ logger recording ±0.5∗the de-
correlation time (as calculated by ACF) and n= the total number
of satellite pixels in the i and j distances over k time. Note: j is
positive in this study so that the distance extends offshore; this
would be negative along a western coastline. Again, the output
(SSTarea and time avg) is a single value for each in situ location for
each day.

The total number of days before and after the gap filling and
DTDs were calculated. Again, a linear regression was used to
compare the single daily area- and time- averaged SST value with
the corresponding in situ test data.

Comparison of Satellite Processing Methods
Pairwise (paired) t-tests were used to compare the SST
measurements per location (i.e., the location of the in situ
loggers) from each of the three satellite processing methods [no
area averaging, area averaging (using across- and along-shelf
distances) and area- and time- averaging [using the rolling mean
to input missing days in the satellite data]) to determine if there
was any significant difference between the methods. In addition,
t-tests were used to determine if there was an overall difference
between the SST measurements from each method across all
locations and for each depth interval. Similarly, Wilcoxon tests
were used to determine if there was an overall difference in the
R2 values and proportion of days from each method across all
locations and for each depth interval. Wilcoxon tests were used
for the latter as the data was non-normally distributed.

A linear mixed model (LMM) was used to determine the
influence of the satellite processing method, depth, latitude, and
distances to estuary and coast on the DTDs (response variable).

FIGURE 5 | Mean proportion of days that loggers were deployed that had corresponding satellite data for different across-shelf distances.
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The unique site name was used as a random effect to account for
the repeated measures on the same site (Zuur et al., 2009). The
full equation for the LMM is shown below:

DTDij ∼ α + satij + β1depthij + β2latij + β3estij + β4coastij

+ aj + εij

where sat is the method used to process the satellite data; lat is
latitude; est is the distance to estuary; coast is the distance to the
coast; α is the random intercept for each in situ logger (indexed
by j) for each day (indexed by i), while the ε is a Gaussian error
term.

The LMM was implemented using the lme4 R package (Bates
et al., 2014). Prior to modeling, data exploration was conducted
following the general protocol of Zuur et al. (2010) using
Cleveland dot plots, boxplots, and scatterplots to identify patterns
and any outliers. A variance inflation factor (VIF) was used to
determine if the explanatory variables were correlated and no co-
linearity was evident (all VIF values < 3). Model selection for
the best model was based on the Akaike Information Criterion
(AIC). Any models with a difference in AIC (1AIC) of less than
or equal to two had “strong support”; 1AIC of four to seven
showed “substantial support” and 1AIC greater than 10 showed

“no support” (Burnham and Anderson, 2002). If more than one
model had 1AIC of 10 or less, model averaging was used to
calculate the variable coefficients (Bolker et al., 2009) and relative
importance of each variable using theMuMIn R package (Barton,
2012). The relative importance is the sum of the AIC weights
across all the models with a 1AIC of 10 or less that contain the
explanatory variable.

RESULTS

In situ Temperature
Annual mean temperatures at the in situ locations ranged
from 16.1 to 22.1◦C (Table 1). Annual mean and minimum
temperatures decreased polewards, while maximum
temperatures were approximately 26◦C from the northern
most part of the study area (28◦S) to 33◦S and then decreased
with increasing latitude (Table 1). The mean temperatures
showed clear seasonal patterns across each of the different
latitudes included in this study (Figure 2). Similar temperatures
were recorded for the different depths (8–20m) at each latitude
(Figure 2). The daily temperature ranges averaged for each
month and 0.20◦ latitude also showed clear seasonal patterns
with larger temperature ranges at the start of the year (Figure 3)

FIGURE 6 | Mean Pearson’s correlation between satellite data and in situ data for different along-shelf distances.
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with average daily temperature fluctuations of 1.21◦C (and up to
4.20◦C). Temperature ranges were smallest in the austral winter
months with the smallest short-term fluctuations in June–August
(months 6–8 on Figure 3; mean seasonal temperature ranges:
summer: 2.04◦C, autumn: 1.12◦C, winter: 0.56◦C, and spring:
1.18◦C).

Assessing Across- and Along-Shelf
Distances to Inform Area- Averaging of
SSTs
The correlation between in situ and satellite derived sea
temperatures was variable depending on the across-shelf distance
used to area average the satellite values (Figure 4). The
correlation decreased with increasing across shelf distances
used for the area averaging for all of the latitudes and
depths, albeit at different rates (Figure 4), except for 12–13.9
and 16–17.9m at 30.0◦S, which increased from 4 to ∼12 km
before decreasing or plateauing across the remaining distances.
Moreover, correlations were greatest at highest and lowest
latitudes and shallower depths (e.g., correlations were > 0.75 at
28.2 and 35.8◦S, and greater at 10–11.9m vs. ≥12m at 33.8◦S or
12–13.9 vs. 16–17.9m at 30.0 and 35.0◦S). The only exception

to the latter was at 35.8◦S where the correlations at 16–17.9m
were less than at 18–20m (Figure 4). The proportion of days that
the in situ loggers had corresponding satellite values increased
as the across-shelf distances used in the area averaging increased
(Figure 5). Thus, taking into account the relative change in
correlation for different across shelf distances and proportion of
days with satellite data, an across-shelf distance of 8 km was used
for the remaining analyses. This is approximately half the known
across-shelf de-correlation length scale estimated for surface
waters upstream of the EAC separation zone (Schaeffer et al.,
2016).

The along-shelf distances used in the area averaging had less
of an effect on the correlations than the across-shelf distances
(Figure 6). For many of the latitudes and depths, increasing the
along-shelf distance used in the area averaging did not alter the
correlations (e.g., all correlations at 28.2◦S were ∼0.90 and all
depths at 33.8◦S remained constant). In contrast, the correlation
of the in situ data and the satellite derived data decreased from
∼0.75 to ∼ 0.66 with along-shelf distances of 5–20 km at 30.0◦S
and 16–17.9m depth while it increased over the same distances
for temperatures from 18 to 20m at 35.2◦S, and 12–13.9m
at 36.2◦S. The proportion of days with corresponding satellite
values also increased with larger along-shelf distances used in the

FIGURE 7 | Mean proportion of days that loggers were deployed that had corresponding satellite data for different along-shelf distances.
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area averaging (Figure 7). Overall, the average correlation values
remained the same (0.78) and the mean proportion of days with
corresponding satellite data across all the sites increased from
0.47 to 0.54 with along-shelf distances of 5 and 20 km. Thus,
an along-shelf distance of 20 km was used for the remaining
analyses, which is within the range of known along-shelf de-
correlation distances of 29 km for surface waters (Schaeffer et al.,
2016).

De-correlation Time Scales
De-correlation times varied between 3 and 20 days at the
in situ locations (Table 2) with no clear pattern evident between
latitudes. However, data from the deeper moorings showed
a decreasing de-correlation time with increasing water depth
(Table 2) in agreement with Roughan et al. (2013, 2015).

Differences Between in situ and Satellite
Temperatures
Satellite SST foundation temperatures obtained directly over the
sampling locations (i.e., no area averaging) were only 39% of the
sites (12 out of 31; Table 2). For these sites, the satellite SSTs were
significantly different from the in situ measurements except for
at 10–11.9m depth (Table 3). However, all the satellite derived
values (except for no area-averaging at 10–11.9m depth) were
significantly different from the in situ measurements, regardless
of how the data were processed (Table 3). Nevertheless, using
the area averaging and the area- and time- averaging methods
increased the overall proportion of days compared to no area
averaging (Table 3), although there was only significant increase
overall and between the area and area- and time-averaging
methods (Table 3).

For the sites where satellite SST foundation data was available
for the no area averaging, only 27% of the study days had
corresponding satellite measurements (Table 2). However, using
the area averaging significantly increased the number of days to
52%, while using both the area- and time-averaging approach
overall increased this to 96% (values for each site given
in Tables 2, 3 for value per depth and all sites combined).
Unsurprisingly, as the de-correlation time for a particular
site increased so did the proportion of days that data could
be filled in using the time-averaging (rolling mean) method
(Table 2).

The mean DTD per site for satellite data with no area
averaging ranged from 0.11 to 1.08◦C, which was lower than
the satellite data with area averaging (0.28 to 1.50◦C) and area
averaging with a rolling mean (0.30 to 1.70◦C; Table 2). Both
the area and area- and time-averaged methods were significantly
different to the no area averaging approach except for at 10–
11.9m, but there was no difference between the two area
averaging methods (Table 3). The mean DTD per month varied
greatly over the year for all satellite data processing methods
(Figures 8–10), with the highest DTDs corresponding to the
months with the highest daily temperature ranges (Figure 3). The
DTDs were similar over the different latitudes but increased with
increasing water depth (Figures 8–10).

Model selection of the LMMproduced eight model candidates
with a 1AIC of 10 or less (Table 4). Model averaging showed T
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that satellite data processing method and depth were the
most important variables influencing DTDs (both had relative
importance [rel. imp.] of 1.00). This was followed by distance
to estuary (rel. imp. 0.78), distance to coast (rel. imp. 0.34)
and, lastly, latitude (rel. imp. 0.28). DTDs were significantly
larger for the area averaging and area averaging with rolling
mean methods of processing the satellite data compared to no
area averaging (Table 5). The DTDs significantly increased with
increasing depth (Table 5) and, although DTDs decreased with
increasing distance from the nearest estuary, from the coast
and latitude (i.e., north to south), these differences were not
significant.

DISCUSSION

This study demonstrates that using well-chosen area averaged
satellite SST data can increase the likelihood of obtaining an
SST measurement for coastal areas. Only 39% of sites had
satellite data directly over the logger locations for ∼27% of the
study time. In contrast, area averaged satellite SST data was
available for all sites 52% of the study time, which increased
to 96% when also incorporating a time-averaged component
(rolling mean) based on de-correlation times to impute missing

data. Although the differences between in situ and satellite
SST foundation temperature data were larger for area averaged
measurements, the difference in temperature measurements was
only on average 1.05◦C and less than the maximum daily
temperature fluctuations observed in situ (Figure 3). Therefore,
known across- and along-shelf de-correlation lengths can be used
to inform how many satellite pixels should be used to obtain
an appropriate area averaged SST. In addition the de-correlation
time scales (estimated from the in situ temperature data) can be
used to gap fill the satellite derived temperature record for days
when no satellite data are available (e.g., too much cloud cover).
Together, these two methods can increase the total number of
days for which satellite data are available for a sampling location
(Figures 5, 7;Tables 2, 3), thus reducing the effect of missing data
on studies.

Seasonal Temperature Cycle
As shown in Figure 2, the in situ temperature exhibited a
clear seasonal cycle, with highest mean temperatures in the
late austral summer/early autumn (March to April; months 3–
4) and lowest in late winter/early spring (August/September;
months 8/9). This pattern was evident across all latitudes,
however the mean temperature peaked in April (month 4)

FIGURE 8 | Mean temperature differences between in situ and satellite that was processed at each logger location (i.e. no area averaging).
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rather than March (month 3) for sites further south. Seasonal
vertical temperature stratification is due to local wind forcing
driving upwelling during the summer months and mixing
during the winter months (Wood et al., 2016). This also
influenced the seasonal in situ daily temperature ranges (averaged
across each month) observed in this study (Figure 3). In situ
daily temperature ranges were greatest (up to 4.20◦C) in
the austral summer and early autumn months (January to
March- months 1–3 on Figure 3), which corresponded with
the strongest vertical temperature stratification (Wood et al.,
2016). These larger daily temperature fluctuations in the summer
and early autumn in turn correlated with greater differences
between the in situ and satellite temperatures (Figures 8–
10).

Correlations Between in situ vs.
Satellite-Derived Temperatures
The findings of this study are consistent with previous studies
that have compared in situ temperature data from intertidal
(Lathlean et al., 2011), subsurface (Pearce et al., 2006), and
shallow waters (Smale and Wernberg, 2009; Stobart et al., 2016)
with satellite SST data. However, all of these studies used either

the closest satellite pixel to their study location (Malcolm et al.,
2011; Baldock et al., 2014), an average of all the satellite data
within an arbitrary distance (e.g., 20 km2 box centered on logger
location: Stobart et al., 2016), or number of pixels (Delgado
et al., 2014) from the logger locations. This study demonstrates
how the choice of the number of satellite pixels used in across-
and along-shelf directions affect the correlation of the data to
in situ measurements. As the EAC flow is typically anisotropic
(dominant along-shore flow), the choice of the number of satellite
pixels used in the alongshore direction had less of an effect on
the correlations than number of pixels used in the across shore
direction.

Correlations between the in situ and satellite data were
greater upstream and downstream of the EAC separation zone
(i.e., greatest at higher and lower latitudes). Although the
EAC separation zone can occur anywhere between 28◦ and
38◦S, it predominately occurs at 30.7◦-32.4◦S (Cetina Heredia
et al., 2014). Across- and along-shelf correlations at 20–29m
depth decreased by ∼0.06 at latitudes within the separation
zone (32.2◦ and 32.4◦S respectively; Figures 4, 6) compared
to the latitudes immediately north (30.4◦S: decrease of 0.03)
and south (32.6◦S: decrease of 0.01). Mesoscale eddies regulate

FIGURE 9 | Mean temperature differences between in situ and satellite that was processed at each logger location using an area average of 8 km across shelf and

20 km along shelf (i.e. area averaged values).
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the temporal variability in the EAC separation zone, with a
southward progression as eddies develop and then an abrupt
retraction in latitude after the detachment of an eddy (Cetina
Heredia et al., 2014). These eddies may be warm core (anti-
cylonic) or cold core (cyclonic), with deep or shallow mixed
layer depths respectively. Thus the area within and south of the
separation zone has increased anomalies of sea level, surface
temperature and surface chlorophyll a (Everett et al., 2012,
2014) resulting in a highly dynamic area in which temperatures
change over shorter across-shelf distances and depths. This is
particularly evident at 35.8◦S where there was a larger difference
between the correlation between in situ and satellite data (against
different across-shelf distances) at different depths other latitudes
(Figure 4).

Even with the lower correlations within the EAC separation
zone, the correlations between in situ and satellite data were
≥0.73 in water depths of 8–16m within all across- and along-
shelf distances tested in this study. This indicates that satellite
SST foundation temperatures (∼10m water depth) can be used
as a proxy for water depths <16m but must be used with
caution for deeper waters, as correlations decreased to ≤0.66.
Therefore, long-term in situ monitoring is needed for water

depths >16m, as this is information that is not available from
satellite data. It has been shown that extrememarine temperature
events (e.g., marine heatwaves: Schaeffer and Roughan, 2017)
can occur throughout the water column, and their intensity
and duration may be either not detected or underestimated by
satellite SST. Such events can have devastating consequences
on marine biota (Smale and Wernberg, 2012; Wernberg et al.,
2013). Without long-term national monitoring locations, such
as the Australian National Reference Station network, which
provide sub-surface temperature information (Lynch et al.,
2014), the frequency and severity of such events may be
underestimated and thus omitted from marine management
strategies.

Latitude, distance to the coast and nearest estuary did not
influence the difference between the in situ and satellite data as
much as the water depth. A number of the loggers used in this
study were deployed close to marine/tide dominated estuaries
(e.g., Jervis Bay) with low and intermittent freshwater inflows
(and thus shallow intermittent river plumes, e.g., Johnston et al.,
2015). This is in agreement with Stobart et al. (2016), who
also found that the proximity to estuaries did not explain
differences between in situ and satellite data in the vicinity of

FIGURE 10 | Mean temperature differences between in situ and satellite that was processed at each logger location using an area average of 8 km across shelf and

20 km along shelf with a rolling mean based on the de-correlation time for the in situ location to fill in missing data (i.e. area- and time- averaged values).
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TABLE 4 | Table of the most parsimonious linear mixed models (all models with

1AIC ≤ 10). df, the degrees of freedom.

df Delta

AICc

Weight

∼ sat method + depth + dist est 7 0 0.4

∼ sat method + depth + lat + dist est 8 1.87 0.16

∼ sat method + depth + dist coast + dist est 8 1.91 0.16

∼ sat method + depth + dist coast 7 2.91 0.09

∼ sat method + depth 6 3.61 0.07

∼ sat method + depth + lat + dist coast + dist est 9 3.84 0.06

∼ sat method + depth + lat + dist coast 8 4.87 0.04

∼ sat method + depth + lat 7 5.55 0.03

low flow/tide-dominated estuaries. Thus in proximity to low
flow estuaries, ocean dynamics (which manifest as temperature
changes at depth, latitude and season) play a greater role in
influencing temperature (and thus biases in satellite derived
data).

Area Averaging and Gap Filling Satellite
Data
It was only possible to extract satellite data directly over the
sampling locations for 12 out of the 31 sites included in this
study due to their proximity to the coast. Therefore, although the
difference between the in situ and satellite data increased when
using an area averaging approach, data were available for all sites
and a longer proportion of the study time. In addition, the overall
temperature differences between the in situ and satellite data
only increased by ∼0.29◦C, which was substantially less than the
mean daily temperature ranges of up to 1.21◦C (andmaximum of
up to 4.20◦C) experienced in the austral summer/early autumn.
Although this approach allowed more sites close to the coast to
be sampled, up to 57% of the time satellite data were still missing
(due to cloud cover). Complex, multivariate approaches can be
used to interpolate missing data [e.g., the Data Interpolating
Empirical Orthogonal Functions (DINEOF)- (Alvera-Azcárate
et al., 2007)], however here we showed that using a rolling mean
based on the de-correlation time of each site produced data
on average for 96% of the study time, while changes in the
differences between the in situ data were minimal. The combined
area averaging and use of a rolling mean (i.e., the area- and
time-averaged method) provides researchers working in coastal
areas with simple method by which SST data can be extracted
for stationary, point locations. Future studies using satellite
data as a proxy for in situ temperatures should consider the
dominant oceanographic conditions of their study site, preferably
using known de-correlation length and time scales (such as
those quantified by Schaeffer et al., 2016 and Roughan et al.,
2015, repsectively), to determine the appropriate number of
satellite pixels for obtaining their SST measurements and the
number of days over which to average. However, users should
be aware that SST measurements from polar-orbiting satellites
(even with no area averaging) may be significantly different from

TABLE 5 | Table of the model averaged estimates, standard errors (SE) and

p-values from all the most parsimonious linear mixed models.

Estimate SE P-value

No area avg 0.04 0.41 0.92

Area avg 0.47 0.03 <2e−16

Area and time avg 0.48 0.02 <2e−16

Depth 0.04 0.01 <2e−16

Latitude −0.01 0.02 0.80

Distance to estuary −0.04 0.02 0.03

Distance to coast −0.02 0.04 0.53

in situ measurements and may not capture the full seasonal
variability in short-term changes in temperature (such as the
daily temperature ranges observed from the in situ data in
this study). Such areas may be of high biological or ecological
importance (Scales et al., 2014), thus the suitability of using SST
as a proxy for in-water temperature will depend on localized
conditions and specific temperature value of interest (e.g., weekly
SST versus identifying “frontal” systems). For example, satellite
derived measurements (regardless of whether they are area-
and/or time-averaged) will not be able to capture the full
variability in the ranges of temperatures experienced over short
time scales (of hours rather than days) within the dynamic EAC
separation zone, where, as previously discussed, warm- and cold-
core eddies regularly detach from the EAC poleward flowing
jet (Cetina Heredia et al., 2014). Likewise, satellites will not
detect upwellings or marine heatwaves that do not reach the
surface. In both of these examples the use of an area- (and
time-) averaging approach may further reduce the ability to
truly represent these short-term changes, as the measurements
will be representative over a wider spatial area (and temporal
period).

Implications for Future Research
Studies using satellite SST to determine the influence of seasonal
water temperature should be aware of the seasonal biases
and differences with in situ data. In addition, satellite data
may not reflect the full range of temperature variation that
may be ecologically important for marine biota, particularly
at short-term scales and at depth. This sentiment reflects
that of previous research, whereby Smale and Wernberg
(2009) concluded that satellite SST data do not “adequately
detect ecologically important small-scale variability or
provide reliable information on temperature extremes” and
Stobart et al. (2016), who highlighted that SST was only
reliable for broad temperature patterns. These, together with
increasing frequency of extreme temperature events (e.g., marine
heatwaves; Schaeffer and Roughan, 2017), makes long-term
monitoring programs critical especially those that provide high
resolution temperature over a range of spatial scales (including
depth).

In conclusion, our results show that de-correlation length and
time scales can be used to process satellite data to overcome
coastal contamination and missing data, however, care must be
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taken when using such data and the suitability should be assessed
on a case-by-case basis. The correlation between satellite derived
SST and in situ data is dependent on the latitude, depth of
data acquisition and the time of year. Local oceanographic and
weather conditions will differentially affect water temperatures
through the water column and over shorter temporal scales
than satellite data are measured. However, our results show that
with careful consideration of the above factors, satellite derived
SST can be used as a proxy for temperature in the top 15m
along the coast of SE Australia, in a highly dynamic WBC
regime.
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