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The warming of the Arctic causes increased riverine discharge, coastal erosion, and the

thawing of permafrost. Together, this is leading to an increased wash out of terrestrial

dissolved organic matter (tDOM) into the coastal Arctic ecosystems. This tDOM may

be anticipated to affect both carbon and nutrient flow in the microbial food web and

microbial community composition, but there are few studies detailing this in Arctic marine

ecosystems. We tested the effects of tDOM on the bacterial community composition

and net-growth by extracting DOM from the active layer of permafrost soil and adding

the aged tDOM concentrate to a natural microbial fjord community (Kongsfjorden, NW

Svalbard). This resulted in an increased carbon load of 128µM DOC in the tDOM

treatment relative to the control of 83µM DOC. We observed changes in community

composition and activity in incubations already within 12 h where tDOM was added.

Flow cytometry revealed that predominantly large bacteria increased in the tDOM treated

incubations. The increase of this group correlated with the increase in relative abundance

of the genus Glaciecola (Gammaproteobacteria). Glaciecola were initially not abundant

in the bacterial community (0.6%), but their subsequent increase up to 47% after 4 days

upon tDOM addition compared to 8% in control incubations indicates that they are likely

capable of degrading permafrost derived DOM. Further, according to our experimental

results we hypothesize that the tDOM addition increased bacterivorous grazing by small

protists and thus tDOM might indirectly also effect higher trophic levels of the microbial

food web.

Keywords: dissolved organic matter, Arctic, terrestrial run-off, permafrost, tDOM, Kongsfjorden, microbial

community composition, Glaciecola

INTRODUCTION

The Arctic is experiencing a warming at nearly twice the global rate, with drastic changes for
the ecosystem (Trenberth and Josey, 2007; Screen and Simmonds, 2010; Vincent, 2010). Higher
sea surface temperatures, melting sea ice, and increased freshwater input from large Arctic rivers,
transporting nutrients, and terrestrial organic matter into the ocean, have multiple implications for
the marine carbon cycle (Li et al., 2009; Doney et al., 2012; Fichot et al., 2013; Holmes et al., 2013;
El-Swais et al., 2015). Higher temperatures are on the one hand responsible for a decreasing sea ice
cover, which in turn may enhance primary production and thus the biological carbon pump (CO2

burial), but on the other hand could also increase the rate of bacterial degradation of phytoplankton
derived dissolved organic matter (DOM) (CO2 production) (Wohlers et al., 2009). This bacterial
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transformation of phytoplankton derived DOMmight lead to the
accumulation of more complex humic-like organic matter via the
microbial carbon pump (Jiao et al., 2010).

In the Arctic, another source of DOM comes from permafrost
soil organic matter and enters the Arctic Ocean via rivers
(Feng et al., 2013; Holmes et al., 2013). Estimations show that
mobilization of DOM has increased up to 6% from 1985 to
2004 (Feng et al., 2013) and will further increase under the
current warming climate (Amon et al., 2012).Yearly, about
3,300 km3 of freshwater stream into the Arctic Ocean and
influence stratification, light absorption, surface temperature, gas
exchange, productivity, and carbon sequestration (Rachold et al.,
2004). This input is often characterized by a high dissolved
organic carbon (DOC) concentration, reaching more than 1,000
µmol kg−1, compared to open ocean concentrations of around
80 µmol kg−1 (Dittmar and Kattner, 2003; Hansell et al., 2009;
Stedmon et al., 2011). The quality of the DOC has in some
studies been described to be mainly refractory (Opsahl et al.,
1999; Dittmar and Kattner, 2003; Xie et al., 2012), while other
studies showed that up to 40% can be degraded within weeks up
to months (Hansell, 2004; Holmes et al., 2008; Vonk et al., 2013;
Sipler et al., 2017a). Thus, it is still disputed whether Arctic tDOM
can represent an important carbon source for marine bacteria,
leading to increased CO2 production and how this may affect the
marine trophic network via the microbial loop.

Several studies have examined the ability of bacteria to
degrade the seasonally available phytoplankton derived DOM
and found that an increase of such carbon sources influences
both the structure and the activity of the bacterial community
(Pinhassi et al., 2004; Sapp et al., 2007; Teeling et al., 2012).
Especially a versatile group of Gammaproteobacteria, belonging
to the order Alteromonadales, responds immediately both in
abundance and activity, when phytoplankton derived DOM
becomes available (Eilers et al., 2000; McCarren et al., 2010;
Pedler et al., 2014; Beier et al., 2015; von Scheibner et al.,
2017). Only few studies have investigated the effects of terrestrial
derived DOM on marine microbial community structure and
activity (Herlemann et al., 2014, 2017; Blanchet et al., 2017;
Traving et al., 2017), of which even less have been conducted
in the coastal Arctic (Sipler et al., 2017a). Common for all
studies is an observed shift in bacterial community structure
due to the addition of tDOM. There is a need to understand
how this community shift might affect higher trophic levels
in order to better understand climate change impacts on the
marine Arctic ecosystem. A higher bacterial activity due to
the degradation of tDOM might cause a higher turnover within
the microbial loop and therewith increased CO2 production, but
ultimately depends on the bacterial growth efficiency. Increased
carbon availability might also enhance the competition between
bacteria and phytoplankton for inorganic nutrients and indirectly
disadvantage larger phytoplankton (Thingstad et al., 2008; Sipler
et al., 2017b). Thus, high tDOM input may decrease primary
production in coastal Arctic areas.

We here studied the impact of permafrost-derived DOM on
an Arctic fjord microbial community using 16S rRNA amplicon
sequencing and followed the changes over the course of a nine-
day incubation experiment. We hypothesized that the increased

organic matter input, as a consequence of increased run-off from
land, would provide a potential source of organic matter for fjord
microbial communities. If bioavailable, this tDOM will stimulate
the growth of some fast-responding bacterial groups that were
initially underrepresented and increase in abundance over time.
In particular, we were interested in answering two questions
(1) how tDOM might alter the fjord bacterial community
composition and (2) how tDOMmight affect the growth and size
of bacteria and subsequently protist grazers. This study thus aims
to improve our understanding of the implications of a warmer
Arctic, influenced by increased run-off from land, on coastal
microbial communities.

MATERIALS AND METHODS

Preparation of Aged Permafrost-Derived
tDOM Stock Solution
Active layer permafrost soil from 50 cm depth, just above the
frozen permafrost table, was sampled in Adventdalen, Svalbard
(78.19N, 15.89 E), and mixed with unfiltered water from the
nearby Adventfjorden (1m depth) in the ratio 600 g soil to 1 L
water. The mix was stored in the dark for 30 days at 4◦C to
degrade the predominantly labile compounds, thus producing
“aged tDOM” as has been done in similar studies (Eiler et al.,
2003). The rationale behind using an aged tDOM stock was
to increase resemblance to the organic matter that reaches the
coastal systems, as the most labile compounds will be degraded
during its transportation from soil to coastal waters (Lobbes
et al., 2000). Before being added to tDOM incubations, the
stock solution was filtered through 0.2µm polycarbonate filters,
ensuring that only dissolved organic matter was present in the
tDOM stock solution. To test the character of DOM in the
tDOM-solution relative to the control, the fluorescent properties
were examined during an earlier analysis, performed in 2014.
Here five fluorescence components (two humic-like and three
amino-like) were described following the method explained in
Stedmon and Markager (2005). The averaged intensity (given in
Raman units) of these components are given in Table S1. The
intensity of the humic-like substances was two-fold higher in
the tDOM-stock relative to the control (0.2µm filtered Atlantic
water) and further one of the amino-like components was 100
times higher in the tDOM stock solution. Since we did not
characterize the DOM composition at the end of the experiment,
we cannot say what exact compounds were consumed or
produced throughout our incubations. The rationale behind
measuring the DOM components in the beginning was to ensure
that more complex compounds were enriched in the tDOM-
solution. The results strongly indicate that the character of
the DOM was significantly different in the tDOM treatment
compared to the control.

Study Site and Experimental Set-Up
Kongsfjorden is a 26 km long fjord, 6 to 14 km wide and
includes two tidewater-glaciers, Kronebreen and Kongsvegen
(Figure 1A). Water samples for incubations were collected on
the 29th of June in 2015 from the center of the fjord near Kings
Bay (78.95◦N, 11.93◦E) at 40m depth (Figure 1A). The water was
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FIGURE 1 | (A) Study area in northwest Svalbard (78.95◦N, 11.93◦E) showing the sampling location in Kongsfjorden (red circle). © Norwegian Polar Institute and

small maps were created using Ocean Data View (Schlitzer, 2011). (B) Illustration of the experimental design showing that for both tDOM treatment and control eight

bottles with the same starting condition were incubated for different periods (from 12h up to 9 days). One bottle was harvested at each sampling point to analyse the

bacterial community composition. Bacterial abundance was measured using flow cytometry for samples at the beginning of the experiment, including the fjord water

(8.1 × 105 mL−1 ), the 0.2µm filtered fjord water (2.8 × 104 mL−1), and the tDOM isolate (3.2 × 104 mL−1 ) and over the course of the incubation in both treatment

and control bottles (number of replicates was dependent on the number of remaining bottles). FW, fjord water; tDOM, solution of terrigenous dissolved organic matter

from permafrost; DOC, dissolved organic carbon.

filtered through pre-combusted GFC filters (1.2µm) to reduce
the presence of protists. The tDOM-stock solution had a carbon
concentration of 190µM DOC and was mixed in the ratio of
1:2.5 with fjord water (83µMDOC) and aliquoted into eight 1 L
air-tight glass bottles (Figure 1B). Filtered (0.2µm) fjord water
was added in the same ratio to the eight control bottles. The final
DOC concentration was 1.5 times higher in the tDOM treatment
incubations (128µM) than in the control incubations (83µM).
The elevated DOC concentration in the tDOM treatment reflects
ranges of natural, elevated concentrations near the sample site
in Kongsfjorden (Zhu et al., 2016). The 16 bottles, 8 treatment

and 8 controls were incubated in the dark at 2◦C. Samples for
bacterial community composition were obtained after 0, 0.5, 1, 2,
3, 4, 5, and 9 days of incubation by harvesting one treatment and
one control bottle, each representing an independent incubation,
as described below. The rationale behind the experimental
design and the statistical power of such an un-replicated time
series sampling strategy are evaluated in the Supplementary
Material (Figures S3, S4). Samples (6mL) for measurements
of bacterial abundance via flow-cytometry were collected as
replicates according to the number of bottles remaining at each
respective sampling point (e.g., 8 replicates at t0, 4 at d4 and 1 at
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d9). Both bacterial abundance and community composition were
also analyzed for the untreated 40m fjord sample and 0.2µm
filtered tDOM-stock solution.

Bacterial Enumeration Using Flow
Cytometry
The abundance of bacteria, virus and heterotrophic
nanoflagellates (HNF) were determined on an Attune R©

Acoustic Focusing Flow Cytometer (Applied Biosystems by
Life technologies) with a syringe-based fluidic system and a 20
mW 488 nm (blue) laser. Triplicate samples of 2mL were fixed
with glutaraldehyde (0.5% final conc.) at 4◦C for a minimum
of 30min, flash frozen in liquid nitrogen and stored at −80◦C.
Samples were first thawed and diluted x10 with 0.2µm filtered
TE buffer (Tris 10mM, EDTA 1mM, pH 8), stained with a green
fluorescent nucleic acid dye (SYBR Green I; Molecular Probes,
Eugene, Oregon, USA) and then incubated for 10min at 80◦C
in a water bath (Marie et al., 1999). Samples were counted at a
low flow rate of 25 µL min−1 and a minimum volume of 100
µL. Bacteria were discriminated on a biparametric plot of green
florescence (BL1) vs. red florescence (BL3).

Additionally, these plots allowed to distinguish between low
nuclear acid (LNA) and high nuclear acid (HNA) bacteria, virus,
and a subgroup we here term “large bacteria.” Heterotrophic
nanoflagellates (HNF) were measured at a high flow rate (500
µL min−1) according to Zubkov et al. (2007). Pico-and nano-
sized phytoplankton were counted directly after thawing and the
various groups discriminated based on their red fluorescence
(BL3) vs. orange fluorescence (BL2) (Paulsen et al., 2016).

DNA Extraction, PCR Amplification, and
Amplicon Sequencing
The bacterial biomass for molecular analysis was collected by
filtering ca. 1 L onto 0.22µmMillipore R© Sterivex filters (Merck-
Millipore), which were flash frozen in liquid nitrogen and
stored at −80◦C. DNA and RNA were simultaneously extracted
from the Sterivex filters using the AllPrep DNA/RNA Mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. In this study, only RNA was used in order
to investigate changes in the active community. Before PCR
amplification, RNA was treated with the DNA-free DNA
Removal kit (Invitrogen, CA, USA). Subsequently, 10 ng of
DNA-free RNA was reverse transcribed using the SuperScript
III First-Strand Synthesis System for RT-PCR (Invitrogen),
according to the manufacturer’s instructions. Amplification of
cDNA (reverse transcribed RNA), targeting the bacterial/archaeal
16S rRNA gene V4 hypervariable region, was performed
using a two-step nested PCR approach with primers 519F
(CAGCMGCCGCGGTAA; Øvreås et al., 1997) and 806R (GGA
CTACHVGGGTWTCTAAT; Caporaso et al., 2011b). In brief,
the first PCR step was performed in triplicates. Samples were
amplified, comprising 10 ng cDNA, 10 µL HotStarTaq Master
Mix (Qiagen), 0.5µM of each primer and nuclease-free water.
PCR reaction conditions were as follows: initial denaturation
of 15min at 95◦C, followed by 25 cycles of 95◦C for 20 s,
55◦C for 30 s, and 72◦C for 30 s and a final extension step of

72◦C for 7min. After triplicate PCR products were pooled, the
DNA Clean & Concentrator-5 kit (Zymo Research Corporation,
CA, USA) was used for purification. During the second PCR
step, 10 ng of pooled PCR product, 25 µL HotStarTaq Master
Mix, 0.5µM of each nested primer (containing a unique eight-
nucleotide barcode) were mixed with nuclease-free water to a
reaction volume of 50 µL. PCR reaction conditions were as
follows: initial denaturation of 15min at 95◦C, followed by
15 cycles of 95◦C for 20 s, 62◦C for 30 s, 72◦C for 30 s, and
a final extension step of 72◦C for 7min. Final PCR products
were purified using Agencourt AMPure XP Beads (Beckman
Coulter Inc., CA, USA) and pooled in equimolar amounts. Before
sequencing, the quality, and concentration of the amplicon
pool were assessed by agarose gel electrophoresis and a Qubit
3.0 Fluorometer, respectively. The final amplicon library was
sequenced at the Norwegian Sequencing Centre (Oslo, Norway)
using their MiSeq platform (MiSeq Reagent Kit v2, Illumina,
CA, USA). All Illumina sequencing data is available at the
European Nucleotide Archive (ENA) under study accession
number PRJEB25031.

16S rRNA Gene Sequence Analysis
Illumina Paired-end sequence data was processed using different
bioinformatic tools incorporated on a QIIME-processing
platform (Caporaso et al., 2011a). In short, FASTQ files were
quality end-trimmed at a phred quality score ≥ 24 using
Trimmomatic (Bolger et al., 2014) and merged using PANDAseq
(Masella et al., 2012), while all reads <200 bp were removed. A
total of 1,916,574 sequences were retrieved across 18 samples
and two sequencing controls. Those sequences were used to
select prokaryotic OTUs at a sequence similarity threshold of
97%, using a de novo uclust (Edgar, 2010) OTU clustering
method and taxonomy assigned using the Silva 111 reference
database (Quast et al., 2013). After removal of singletons and
unassigned OTUs, sequences were rarefied to 10,000 reads per
sample, with a total of 15,513 unique OTUs at 97% sequence
identity. Rarefaction curves were calculated using QIIME’s alpha
rarefaction script and showed that sequencing coverage was
sufficiently high, as samples approached an asymptote. The
phylogenetic data was then used to calculate relative abundance
at different taxonomical levels. When combined with absolute
bacterial abundance data from flow cytometer measurements,
the absolute abundance of taxa can be calculated. For this the
bacterial abundance in cells per mL is multiplied with the relative
abundance of the taxa of interest.

Indicator OTU Analysis
Calculations to identify indicator OTUs associated with the
treatment of tDOM addition were performed using the
“indicspecies” package (De Cáceres and Legendre, 2009) included
in the statistical software R 3.2.3 (R Development Core Team,
2012) and the script “otu_category_significance.py” within the
QIIME-processing platform (Caporaso et al., 2011a). Both tools
can be used to assess statistically significant differences between
OTU abundances and defined groups. We defined groups
according to the experimental strategy in tDOM treatment and
control. The analysis included only samples after 2 days of the

Frontiers in Marine Science | www.frontiersin.org 4 August 2018 | Volume 5 | Article 263

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Müller et al. Bacterial Response to tDOM Input

experiment when abundances of Pseudoalteromonas sequences,
an artifact of the experimental set-up, were greatly reduced.

Statistical Analysis
The statistical power of the experimental design is evaluated
in detail in the Supplementary Material. The significance of
changes in relative abundance of certain taxa can be calculated
by comparing the slopes of regression analysis of treatment and
control incubations. Correlations between bacterial abundance
and community composition were calculated using the Pearson
correlation coefficient (Pearson‘s r) and were carried out using
GraphPad Prism v 6.01 for Windows (GraphPad Software, CA,
USA).

Calculations to Estimate Bacterial and HNF
Carbon Turnover
Calculations of carbon turnover are based on measurements of
abundance and growth efficiency values for bacteria (B) and
HNF (HNF) from literature. First carbon accumulation (CA) was
calculated from the difference in cell abundance over time (1A)
and values of fixed carbon content per cell for bacteria (0.02 pg
C per cell; Lee and Fuhrman, 1987) and HNF (3.8 pg C per cell;
Børsheim and Bratbak, 1987) from literature (1). The release of
carbon as CO2 via respiration (R) is further calculated from the
estimated CA values and expected growth efficiency of bacteria
(10%; Kritzberg et al., 2010; Middelboe et al., 2012; Paulsen et al.,
2017) and HNF (30%; Fenchel, 1982) (2).

CAB

[

µg C
]

= 1AB∗2∗10
−8

µg C

CAHNF

[

µg C
]

= 1AHNF∗3.8∗10
−6

µg C (1)

RB

[

µg CCO2

]

=

(

CAB

0.1

)

∗0.9

RHNF

[

µg CCO2

]

=

(

CAHNF

0.3

)

∗0.7 (2)

RESULTS

tDOM Effect on Bacterial Growth
During the 9-day incubation period the bacterial net-growth was
documented (Figure 2). The initial fjord water contained 8.13 ×
105 bacteria mL−1 and when mixed with either the aged tDOM-
solution (tDOM treatment) or 0.22µm filtered fjord water
(control), this concentration was diluted to an average abundance
of 4.32× 105 or 4.19× 105 mL−1, respectively (Figure 2A). After
a lag phase during the first 24 h, we observed net-growth in both
treatment and control. The bacterial abundance (BA) increased
at twice the rate in the tDOM treatment between day 1 and 4
and the BA was on average 24% higher in the tDOM treatment
than in the control during the first 4 days. After day 5, a different
pattern emerged.While bacteria continued to grow in the control
incubations reaching 4.32 × 106 mL−1 by day 9, we observed a
significant decline of 63% in BA from 1.76 × 106 mL−1 (5 d) to
6.51 × 105 mL−1 (9 d) in the incubations with tDOM addition
(Figure 2A).

The group of total bacteria was divided into three subgroups,
“LNA,” “HNA,” and “large bacteria” within the HNA group, to
investigate whether a specific group is connected to the increase
or decrease in BA (Figures 2B–D). The LNA group showed no
differences in abundance between treatment and control over

the 9 days and stayed overall stable, ranging between 1.78 ×

105 and 4.04 × 105 mL−1 (Figure 2B). In contrary, the HNA
group showed significant correlations (r = 0.99; p < 0.0001)
with the increase in BA, including the same differences between
treatment and control described earlier (Figure 2C). At day 3 we
observed a new group on the flow cytometer plots within the
HNA group, which we here term “large bacteria” (Figure 3). This
group was well-defined in tDOM treatments where it started with
low values of 1.5 × 104 mL−1 (day 2) and reached up to 1.36 ×

106 mL−1 at day 5, thereby contributing to more than 77% of the
BA (Figure 2D).

Virus abundance was on average one order of magnitude
higher than bacteria ranging from 2.58 × 106 mL−1 to 1.56 ×

107 mL−1 and followed the changes observed for BA in both
treatment and control (Figure 2E). Due to the pre-filtration of
the fjord water through 1.2µm GFC filters, the abundance of
small protists was substantially reduced from 600 mL−1 in the
fjord water to 16 ± 2 mL−1 in both treatment and control until
day 6 (Figure 2F). At day 9, the abundance of HNF reached
651 mL−1 in the incubation where tDOM was added, while it
remained low in the control (47 mL−1). Picophytoplankton were
additionally enumerated throughout the incubation period to
confirm that autotrophic production did not contribute to the
carbon pool. Abundances were reduced from 2,056mL−1 in fjord
water to <100 mL−1 at the beginning of the experiment and
remained low (<150 mL−1).

tDOM Effect on Community Composition
The fjord water used to set up the incubations was taken from
40m depth and was characterized as Atlantic water with a
salinity of 34.6 and temperature of 4◦C. The analysis of the
untreated Atlantic water showed a high abundance of the phylum
Proteobacteria (96.5%) (Figure 4A). Gammaproteopbacteria
were dominating (±76.2%), followed by Alphaproteobacteria
(±14.9%) and Betaproteobacteria (±3.0%). Due to the high
diversity within the different Proteobacteria classes, 40% of
all sequences at genus level were categorized as “Other”
(Figure 4A).

Community composition at the beginning of the experiment
was similar in the control and the tDOM treatment, with
around 30–50% of the sequences resembling the in situ fjord
community and all other sequences belonging to the genus
Pseudoalteromonas. Sequences belonging to this genus, possibly
introduced with the addition of 0.22µm filtered tDOM solution
and 0.22µm filtered fjord water, decreased within 4 days from
up to 70 to 4% in the treatment and from 30 to 3% in the
control incubations. With increasing incubation time, changes
could be attributed to the increase of certain genera.We observed
a substantial increase in relative abundance of Glaciecola,
Marinomonas, and Colwellia in the treatment experiments. In
the control incubations, it was predominantly Colwellia that
increased in relative abundance and to a lesser extend Glaciecola,
Marinomonas, and Psychromonas. Glaciecola increased from 1.5
to 47.1% on day 5 in the incubations where tDOM was added,
while the abundance in the controls increased only up to 7.9%.
A Simper analysis showed in agreement, that predominantly the
changes in Glaciecola relative abundance contributed, with up to
40% (at day 4), for the differences caused by the tDOM addition.
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FIGURE 2 | Flow cytometer counts over the course of the experiment in cells mL−1 of (A) Total bacteria; (B) low nucleic acid (LNA) containing bacteria; (C) high

nucleic acid (HNA) containing bacteria; (D) a group of large bacteria; (E) Virus; (F) and heterotrophic nanoflagellates (HNF). Treatment incubations with added tDOM

are illustrated as black circles and control incubations as open circles. The bacterial abundance of the untreated fjord sample and of the 0.2µm filtered tDOM-stock

solution is indicated as cross and triangle, respectively. The different lines represent the sample replicates, which declined over the course of the experiment

depending on the number of remaining bottles (e.g., eight at t0, four at day 3 and one at day 9).

FIGURE 3 | Flow cytometer plots of measurements from day 2 to 9 showing the changes in bacterial abundance and the subgroups within, illustrating the increase in

large bacteria in the tDOM treatment. HNA, High nucleic acid containing bacteria; LNA, Low nucleic acid containing bacteria.

We analyzed the effect of tDOM addition on the community
structure by combining the relative abundance of bacterial
community composition and absolute abundance of bacterial
counts obtained from sequencing data and flow cytometer
counts, respectively (Figure 4B). Using this estimation of
absolute species abundance, the Glaciecola abundance increased
two-fold within the first 12 h and 138-fold after 4 days relative to
the beginning (Figure 4B). At day 4, Glaciecola abundance was
90.6% higher in tDOM treatment incubations than in control

incubations. The abundance of Marinomonas increased 92-fold
after 5 days andwas up to 93.8% higher in incubations with added
tDOM than in controls (Figure 4B). Both genera, Glaciecola
and Marinomonas, showed significant (p = 0.006 and p =

0.018) responses due to the addition of tDOM. Only in the
tDOM treatment incubations Glaciecola abundance significantly
correlated (r=0.77; p=0.03) with the abundance of large bacteria
(Figure S1). In the control incubations it was only Colwellia
abundance that correlated significantly (r = 0.83; p = 0.01) with
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FIGURE 4 | (A) Bacterial community composition derived from 16S rRNA sequencing data showing the relative abundance of the 20 most abundant taxa at genus

level in the fjord sample from 40m depth and during the 9 days of incubation in the control and treatment incubations where tDOM was added. Taxa comprising <1%

of the total number of sequences within a sample were summarized as “Other.” (B) Calculated absolute abundance of the most abundant genera in control and

treatment incubations, based on absolute bacterial abundance measured on the flow cytometer and phylogenetic relative abundance.

the abundance of large bacteria. This genus however showed
no significant difference in abundance between treatment and
control. In the first days until day 3, the abundance was up to
three times higher in the tDOM treatment than the control. This
changed on day 4, when abundance in the control incubation was
twice as high as in the treatment.

The observed changes for the different genera are based
on cumulative abundances of several OTUs which were
taxonomically assigned to these genera and grouped accordingly.
In order to identify whether all or just some OTUs within each
genus are causing the observed changes between treatment and
controls, we performed an indicator OTU analysis (Figure 5).
This analysis identified the OTUs that significantly contributed
to the differences between tDOM treatment and control. Out
of the 20 most significant OTUs, seven were significantly more
abundant in incubations with tDOM addition and 13 OTUs
had a significant higher abundance in control incubations.
Taxonomically, the great majority of OTUs (19/20) belonged
to the class of Gammaproteobacteria and within that class to
genera includingGlaciecola,Marinomonas, Colwellia, Balneatrix,
SAR92, and Psychromonas. The overall most abundant OTU
(33%) belonged to the genus Glaciecola and was at day
3 seven times more abundant in the tDOM treatment
than the control incubations. Of all genera, Glaciecola was
the genus with the highest number of OTUs (85%) that
were positively associated with incubations where tDOM was
added. Other genera, like Colwellia, with an overall high

abundance had a more equal distribution of OTUs, which
were higher in abundance in either treatment or control.
66% of Colwellia OTUs were significantly more abundant in
control incubations and 33% more abundant in treatment
incubations.

The results in this study are based on an experimental setup
using an un-replicated sampling strategy. Using this strategy
improves the probability of identifying trends in community
composition change, and reduces the chance of making a type-
2-error (finding a pattern that is not there) compared to a
replicate sampling strategy. The statistical power of the results
obtained from the incubation experiments is evaluated in the
Supplementary Material (Figures S3, S4).

DISCUSSION

Climate model predictions suggest a 30% increase of terrestrial
run-off into the Arctic Ocean by the end of the century (Lehner
et al., 2012). The tDOM in this run-off is originating from
thawing Arctic soil and is modified during the transport into
the Arctic Ocean (Lobbes et al., 2000; Serreze et al., 2000; Feng
et al., 2013; Fichot et al., 2013; Holmes et al., 2013). It is uncertain
how this will affect the marine microbial life and in particular the
coastal communities. Our results indicated increased bacterial
abundance (Figure 2), enlarged cell sizes (Figure 3) and changes
in the community composition (Figure 4) as an immediate
(within 3 days) response to tDOM addition. Together, this
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FIGURE 5 | (A) The 20 most significant OTUs, identified by an indicator OTU analysis, contributing to the differences in community composition between control and

treatment incubations. Relative abundance differences are visualized as 2-fold change from day1 until day 9. (B) Relative abundance (average values from d1 to d9) of

the 20 most significant indicator OTUs visualized in the same order as in (A).

suggests that in the future the activity, the physiology and the
structure of the fjord microbial community might be affected by
increased tDOM rich run-off.

In Situ Microbial Community Composition
Environmental conditions in the Arctic are highly affected
by seasonality. In accordance, seasonal changes in microbial
community composition have been reported for different parts
of the Arctic Oceans, i.e., the increase of Gammaproteobacteria,
in association to phytoplankton bloom dynamics and increased
concentrations of dissolved organic matter in the summer
months (Alonso-Sáez et al., 2008; Buchan et al., 2014; El-
Swais et al., 2015; Wilson et al., 2017). The fjord water used
for our incubation experiments, taken in June, was indicative
for a post-bloom situation, with high relative abundance of
the phylum Proteobacteria (96.5%) and in particular the class
Gammaproteobacteria, with up to 76.1% of all proteobacterial
reads (Figure 4), similar to reports from other studies (Piquet
et al., 2010; Zeng et al., 2013). The largest contributor
was the genus Balneatrix (30.9%), known to be associated
with phytoplankton blooms and observed in other Arctic
fjords (Nikrad et al., 2014; Paulsen et al., 2017). Other
dominant taxa within the Gammaproteobacteria, such as SAR92
(10%) and OM182 (13%), are commonly associated with
rather oligotrophic conditions (Cho and Giovannoni, 2004).
Surprisingly, Bacteroidetes, commonly found in summer coastal
Arctic communities, comprised only 0.3% in our samples
(Nikrad et al., 2012; Sipler et al., 2017a). The low abundance

of Betaproteobacteria, which comprised, with up to 3%, only a
small proportion of all proteobacterial reads is characteristic for
Atlantic water masses (Cottrell and Kirchman, 2003; Garneau
et al., 2006).

tDOM Addition Induced Changes in
Bacterial Community Composition
The large initial relative abundance of Pseudoalteromonas
was likely an experimental artifact and rapidly decreased in
abundance under both experimental conditions. Changes in
community composition due to tDOM addition were already
measurable after 12 h of incubation, for example the doubling
of Glaciecola relative abundance (Figure 4). Glaciecola also
increased in abundance in control incubations (4171% increase
from t0 until d4), confirming both that this taxa is part
of the in situ microbial community and able to grow using
in situ carbon sources. The fact that Glaciecola grew faster
and to a higher abundance in the treatment incubations
(10781% increase from t0 until d4) indicates that this genus
has the potential to degrade the introduced complex tDOM
compounds. Other growth experiments with Glaciecola revealed
both general phylotypes, capable of degrading a broad range
of carbon compounds and specialized phylotypes, capable of
degrading only specific carbon sources (Gómez-Consarnau et al.,
2012).

Besides Glaciecola, Marinomonas, and Colwellia, two taxa
known to degrade complex organic matter, also increased in
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abundance in the tDOM treatment incubations. Marinomonas
and Colwellia had, similar to Glaciecola, low starting abundances
and increased in both treatment and control incubations,
with a stronger response under tDOM addition. It has been
shown that a member of the genus Marinomonas is capable of
catalyzing ring cleavage of aromatic compounds and correlates
with lignocellulosic carbon uptake (Chandra and Chowdhary,
2015; Gontikaki et al., 2015). Also Colwellia has been considered
to produce extracellular enzymes for the breakdown of high
molecular-weight organic compounds (Huston et al., 2004;
Methé et al., 2005). Glaciecola and Colwellia have also recently
been shown to increase in abundance under the presence
of tDOM derived from Arctic rivers (Sipler et al., 2017a).
Interestingly, it was a different Glaciecola OTU that was
dominating in their dataset. This OTU was also found in
our data set, but is only one of the least abundant Glaciecola
OTUs. It remains unclear whether this difference is caused by
substrate specificity or simply which OTU is most abundant at
in situ conditions. Sipler and colleagues used seven times higher
DOC concentrations (400–500µM) than in their control to
stimulate a community response, while the DOC concentrations
(128µM) in our study were only 1.5 times higher than in
the control incubations. Pulses of tDOM released via Arctic
rivers can reach the DOC concentrations used by Sipler and
colleagues (Benner et al., 2005), but at our sampling site in
Kongsfjorden the DOC concentration is on average 109µM
(Zhu et al., 2016). Despite the relatively small increase in
tDOM concentration in our study, we here stimulated faster
growth of certain taxa than the change reported by Sipler and
colleagues. This might be due to the fact that our incubations
were conducted in the dark and therefore inhibited phototrophic
processes.

OTU Specific Response to tDOM Addition
and “the Bottle Effect”
We detected a significantly stronger increase of the genera
Glaciecola and Marinomonas in incubations where we added
tDOM compared to control incubations. The other genus found
to increase, Colwellia, showed no significant difference between
treatment and control. This is reflected in the differential
response we observed at the taxonomic level of OTUs (Figure 5).
Several OTUs were positively affected by tDOM addition and
became more abundant during incubation, whereas other OTUs
of the same genus decreased upon tDOM addition (Figure 5).
This non-coherent tendency was found for all genera and
indicates that strains within the same genus might have different
functional roles. This was also observed by Sipler and colleagues,
where they identified so called sentinels of increasing tDOM,
OTUs that increased in abundance due to tDOM addition, while
they did not identified genera where all OTUs were affected by
the tDOM addition.

We compared changes in relative OTU abundance between
treatment and control to differentiate between potential effects
due to the tDOM input and effects caused by the experimental
set-up, the so called “bottle effects.” The increase of a number
of Colwellia OTUs was similar in both control and treatment

incubations and is therefore likely to be attributed to the
bottle effect, which is a well-known inherent concern in
incubations studies (Lee and Fuhrman, 1991; Massana et al.,
2001; Stewart et al., 2012). Several studies have suggested a
combination of factors, including biofilm formation and the
binding of nutrients, cells or carbon to the surface of the
incubation container, as potential cause of bottle effects (Fogg
and Calvario-Martinez, 1989; Fletcher, 1996; Eilers et al., 2000).
It appears that the bottle effect predominantly leads to an
increase in Gammaproteobacteria taxa, as documented in our
and other studies (Eilers et al., 2000; Stewart et al., 2012;
Dinasquet et al., 2013; Herlemann et al., 2014). While the
bottle effect in the study from Stewart and colleagues and in
our study can be attributed to an increase in Colwelliaceae,
different families, such as Moraxellaceae (Herlemann et al.,
2014), Pseudoalteromonadaceae (Dinasquet et al., 2013), or
Oceanospirillaceae (Sipler et al., 2017a) were affected in
other studies. This suggests that several different types of
Gammaproteobacteria can benefit from a bottle effect and that
the starting community composition might be the determining
factor.

tDOM Effects on the Coastal Microbial
Food Web
The increase of Gammaproteobacteria, in particular of taxa
belonging to the order Alteromonadales includingGlaciecola and
Colwellia, has also been observed during marine phytoplankton
spring blooms in lower latitudes (Tada et al., 2011; Teeling
et al., 2012) and in the Arctic Ocean (Bano and Hollibaugh,
2002; Wilson et al., 2017). This suggests that they can rapidly
proliferate in response to new carbon sources, including
phytoplankton-derived organic carbon or tDOM as indicated in
our study. A strong grazing pressure by bacterivorous protists
has been shown to particularly affect Gammaproteobacteria
of the order Alteromonadales (Beardsley et al., 2003; Allers
et al., 2007). These studies demonstrated selective grazing on
large metabolically active bacteria by heterotrophic flagellate
grazers. Size-selective predator-prey interactions have also been
shown for Glaciecola, that first became abundant upon rapid
utilization of phytoplankton derived DOM and subsequently
declined in their abundance due to grazing (von Scheibner
et al., 2017). It was suggested that once abundant, Glaciecola
became a target for size selective predation by protists, including
heterotrophic nanoflagellates (HNF) due to their above-average
cell size.

We also observed an increase in Glaciecola abundance
upon tDOM addition, which correlated with the appearance
of above-average large bacteria measured via flow cytometry
(Figure 3 and Figure S1). Toward the end of the experiment,
Glaciecola abundance declined by 84%, while at the same
time the abundance of HNF increased substantially (from 32
to 651 cells mL−1). Interestingly, in the control incubations
where Glaciecola abundance stayed low, HNF abundance
remained unchanged at a low level and did not increase
toward the end. This suggests that after Glaciecola, fueled by
the tDOM addition, increased in abundance, size-selective
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HNF caused the decline in Glaciecola abundance. The specific
predator-prey relation between Glaciecola and HNF might
be an important link in the microbial food web of Arctic
fjord systems, with cascading effects on higher trophic
levels, including ciliates, copepods and up to the top level
predators.

This link has also consequences for the coastal carbon budget.
We calculated carbon turnover assuming a bacterial biomass of
0.02 pg per cell (Lee and Fuhrman, 1987) and a 10% growth
efficiency for bacteria (Kritzberg et al., 2010; Middelboe et al.,
2012; Paulsen et al., 2017). From day 2 to 4, bacterial growth
resulted in the release of 188 µg C-CO2 L−1 in the tDOM
treatment compared to 41µg C-CO2 L−1 in the control. Based on
these calculations, 30% of the added tDOMwas already processed
by the bacteria within 4 days. Since the increase in bacterial
abundance after day 4 in the control incubations most likely
was caused by the bottle effect, carbon turnover for the later
period was not considered as representative for an in situ fjord
community carbon turnover. The grazing and subsequent growth
of HNF in the tDOM treatment caused a further transition of the
bacterial biomass. The carbon turnover by HNF was calculated
assuming a biomass of 3.8 pg (Børsheim and Bratbak, 1987) and
30% growth efficiency for HNF (Fenchel, 1982). The increase
of HNF from day 5 to day 9 resulted in the incorporation of 2
µg C L−1 as biomass and an additional release of 6 µg C-CO2

L−1. Both the initial growth of Glaciecola and the subsequent
grazing by HNF will thus affect the carbon turnover in Arctic
coastal ecosystems with increased tDOM inputs. Based on our
study design, we cannot fully predict such effects, but we can
document that the addition of tDOM affected not only bacteria,
but indirectly also the organisms grazing on bacteria. To our
knowledge we here provide the first results on the effects of
permafrost-derived tDOM input on fjordmicrobial communities
and to understand the interactions at higher trophic levels, it is

necessary to conduct further experiments with tDOM additions
at larger scales, including more members of the marine food web.
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