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A fundamental question of evolutionary biology is, why are some animals conspicuously

colored? This question may be addressed from both a proximate (genetic and

ontogenetic) and ultimate (adaptive value and evolutionary origins) perspective, and

integrating these perspectives can provide further insights. Over the last few decades

we have made great advances in understanding the causes of conspicuous coloration

in terrestrial systems, e.g., birds and butterflies, but we still know relatively little about

the causes of conspicuous, “poster” coloration in coral reef fishes. Of all coral reef

fishes, the clownfish Amphiprion percula, is perhaps the most conspicuously colored,

possessing a bright orange body with three iridescent white bars bordered with pitch

black. Here, we review what is known about the proximate and ultimate causes of

the conspicuous coloration of clownfishes Amphiprion sp.: coloration has a heritable

genetic basis; coloration is influenced by development and environment; coloration has

multiple plausible signaling functions; there is a phylogenetic component to coloration.

Subsequently, to provide new insights into the genetic mechanisms and potential

functions of A. percula coloration we (i) generate the first de novo transcriptome

for this species, (ii) conduct differential gene expression analyses across different

colored epidermal tissues, and (iii) conduct gene ontology (GO) enrichment analyses

to characterize function of these differentially expressed genes. BUSCO indicated that

transcriptome assembly was successful and many genes were found to be differentially

expressed between epidermal tissues of different colors. In orange tissue, relative to

white and black, many GO terms associated with muscle were over-represented. In white

tissue, relative to orange and black tissue, there were very few over- or under-represented

GO terms. In black tissue, relative to orange and white, many GO terms related to

immune function were over-represented, supporting the hypothesis that black (melanin)

coloration may serve a protective function. Overall, this study presents the assembly of

the A. percula transcriptome, and represents a first step in an integrative investigation

of the proximate and ultimate causes of conspicuous coloration of this iconic coral reef

fish.
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INTRODUCTION

Conspicuous coloration is widespread throughout the animal
kingdom, yet represents an evolutionary paradox because high
visibility should increase predation risk (Ruxton et al., 2004).
Decades of research on coloration, however, has produced
compelling insights into both the proximate (genetic and
ontogenetic; Hoekstra et al., 2006; Rosenblum et al., 2010; Reed
et al., 2011; Gallant et al., 2014; Kunte et al., 2014) and the
ultimate (Guilford, 1988; Alatalo and Mappes, 1996; Joron and
Mallet, 1998; Sherratt and Beatty, 2003; Dale et al., 2015; adaptive
value and evolutionary origins) causes of animal coloration
(Hill and McGraw, 2006a,b; Hubbard et al., 2010; Kronforst
et al., 2012; Cuthill et al., 2017; Endler and Mappes, 2017).
The vast majority of work on color pattern formation has been
conducted in terrestrial systems, despite the fact that some
marine groups, e.g., coral reef fishes (Longley, 1917; Lorenz,
1962), express a tremendous diversity of color pattern variation
paralleling that of the most diverse terrestrial groups. Among
the coral reef fishes, the clownfishes of the genus Amphiprion
are perhaps the best known and most conspicuously colored
(Figure 1).

Considering the proximate causes of variation in Amphiprion
coloration, various lines of evidence indicate it has a heritable
genetic basis. First, substantial interspecific variation in color
pattern exists among the 29 species (Allen, 1972; Fautin and
Allen, 1992; Froese and Pauly, 2018): the coloration of the
body and fins ranges from yellow to orange, pink to red,
brown to black; the fish have zero to three distinct white bars
on the body, that can reflect UV (Buston, unpublished data).
Second, hybrids, found in the wild and produced in the lab,
have intermediate or unusual color patterns (Marliave, 1985;

FIGURE 1 | Photo of the clown anemonefish Amphiprion percula, illustrating

the conspicuous orange, white and black coloration of the genus. In fishes,

chromatophores, containing either colored droplets (xanthophores and

erythrophores) reflecting organelles (iridophores) or pigment granules

(melanophores), are responsible for skin coloration. In Amphiprion, the orange

color is carotenoid based, the white color (which also reflects in the UV) is likely

a structural color based on intracellular stacks of guanine crystals, and the

black color is melanin based. Coloration of other members of the genus can

be seen on FishBase (Froese and Pauly, 2018). [http://www.fishbase.org/

identification/SpeciesList.php?genus=Amphiprion].

Litsios and Salamin, 2014; Pedersen, 2014a; Dibattista et al., 2015;
Gainsford et al., 2015; Balamurugan et al., 2017). Third, there
is substantial intraspecific variation in color pattern associated
with genetic divergence among populations (A. clarkii, Moyer,
1976; Bell et al., 1982; A. melanopus, Drew et al., 2008). Finally,
unusual color patterns arising spontaneously via mutation can
be artificially selected in the lab (Pedersen, 2014b; Talbot,
2014).

Developmental color variation also occurs in Amphiprion
(Fautin and Allen, 1992). In A. percula, larval settlers are
pinkish in color with a single white bar, and only acquire the
conspicuous orange coloration, with three white bars, bordered
with black, once the fish have successfully recruited to a group
(Buston, personal observation). In A. percula and A. ocellaris,
the development of the white bars is influenced by diet and
stocking density (Avella et al., 2007; Chambel et al., 2015); in
A. ocellaris, dietary carotenoids influence orange hue, saturation
and brightness (Tanaka et al., 1992; Yasir and Qin, 2010; Ho
et al., 2014; also A. frenatus, Hekimoglu et al., 2017), as does
the light environment in which the fish are kept (Yasir and
Qin, 2009a,b); in multiple species (A. chrysopterus, A. clarkii, A.
percula, A. polymnus) a varying combination of island location,
depth, anemone species, anemone size, and social rank are
associated with variation in melanism (Moyer, 1976; Militz et al.,
2016).

The ultimate causes of coloration in Amphiprion are less clear
because there have been no explicit tests of alternative hypotheses
for the adaptive value of the color pattern traits, e.g., quality,
attractiveness, strategy, genetic compatibility, kinship, individual
identity or presence (Dale, 2006). It is possible, however, to
gain some preliminary insights by considering signal properties
(Dale, 2006). In A. percula, the pinkish color of settlers may
be a dishonest signal of presence (i.e., camouflage) to residents
(McDonald, 1993; Buston, 2003a). In A. clarkii and others,
the differences in coloration associated with social rank may
be a signal of reproductive strategy, either female vs. male or
breeder vs. non-breeder (Moyer, 1976; Fautin and Allen, 1997;
Militz et al., 2016). In A. percula and A. ocellaris, the highly
variable orange, black and white patterning may be a signal
of individual identity to other group members (Fricke, 1973;
Nelson et al., 1994; Dale et al., 2001; Buston, 2003b; Tibbetts,
2004).

Finally, turning to consider the evolutionary origins of the
various components of the color pattern, close inspection of
the clownfish phylogeny reveals a likely phylogenetic component
(Litsios et al., 2014; Rolland et al., 2018). Within the genus there
are two main clades which separated 11–12 million years ago
(MYA): a smaller clade that is bright orange with three white
bars (A. percula and others); a larger clade that is dominated by
species with two white bars (A. clarkii and others). Within the
larger clade there are three other small clades of note: the first,
which diverged 5–6 MYA, tends to have one or zero wide white
bars (A. melanopus and others); the second, which also diverged
around 5–6 MYA, tends to be more pinkish in color with one or
zero narrow white bars and a dorsal white stripe (A. perideraion
and others); the third, which diverged 2–3MYA, tends to bemore
blotchy in its color patterns (A. polymnus and A. sebae).
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In sum, the clownfishes of the genus Amphiprion present a
wonderful opportunity to investigate the proximate and ultimate
causes of coloration in coral reef fishes. This opportunity
is enhanced by the recent development of transcriptomic
(Amphiprion bicinctus, Casas et al., 2016) and genomic
(Amphiprion frenatus, Marcionetti et al., 2018; Amphiprion
ocellaris, Tan et al., 2018) resources for the genus. Here,
we used a combination of RNA sequencing, transcriptome
annotation, differential gene expression analyses and gene
ontology enrichment analyses to (i) generate a de novo
transcriptome for A. percula, (ii) identify over-represented genes
associated with orange, white, and black epidermal tissues, and
(iii) identify potential functions of those genes in A. percula.
We found patterns consistent with over-representation of GO
terms associated with muscles in orange regions, as well as over-
representation of GO terms involved in immune response in
black regions. While our results, by design, represent only a
preliminary assessment of color-specific gene expression in the
epidermis ofAmphiprion, they represent a first step in identifying
the genetic mechanisms underlying color pattern formation in
this iconic group of coral reef fishes.

MATERIALS AND METHODS

Source Population
All work was conducted with the approval of Boston University
IACUC. Research was carried out at Boston University (Boston,
MA). Clownfish used in the study, Amphiprion percula, all
originated from wild populations in Papua New Guinea and were
supplied by Quality Marine and Sea Dwelling Creatures. At the
time of sampling all individuals had fully developed white bars,
bordered with black and all individuals were non-reproductive—
A. percula is a sequential, protandrous hermaphrodite and all
individuals start out as non-reproductive, then transition to male
and female in their lifetime. Experimental fish were housed in
1 L tanks, which were part of a larger re-circulating saltwater
aquarium system. Flow through each tank was approximately 9
L/h ± 0.5 L. Abiotic conditions were maintained as constant as
possible: pH = 8.1 ± 0.1, temperature = 26.1 ± 0.6◦C, salinity
= 32 ± 0.5 ppt with ambient light. Water samples were tested
every 2 weeks for nitrate, nitrite, and ammonia (Salifert test
kits, Amsterdam, The Netherlands; Red Sea test kits). These
measurements were 0 ppm for the entirety of the experiment.

Sequencing
In 2015, epidermal tissue samples were taken from nine, cold-
anesthetized,A. percula. From each individual, nine samples were
taken: three different colored epidermal tissues (orange, black,
white) from three different body positions (anterior, middle,
posterior; see Figure 1). This procedure yielded 81 samples in
total (9 individuals × 3 colors × 3 positions). Samples were
immediately submerged in RNAlater for preservation. Samples of
the same color, from all body positions and all individuals, were
later pooled, yielding three libraries for RNA-sequencing: orange,
white, black. In an ideal world, we would have kept these samples
separate, maximizing our sample size and enabling us to examine
variation within and among individuals, but funding constraints

prevented us from adopting this strategy. Pooling tissue samples
by color reduced our sample size and meant that we could not
examine variation within and among individuals, but enabled
us to investigate patterns of gene expression in different colored
epidermal tissues against multiple backgrounds in a cost effective
manner.

Following preservation, RNase-free microcentrifuge tubes
with 1ml of TRIzol Reagent (Invitrogen) were used for RNA
isolation. Samples were homogenized, followed by a 5-min
incubation period at room temperature. Phase separation was
carried out with 0.2ml of chloroform and centrifugation at
12,000 g for 15min at 4◦C (following Casas et al., 2016). Ethanol
(200 proof) was added in equal volume to each sample, and
samples were loaded onto a Purelink RNA minikit column (Life
Technologies), washed three times, and eluted into 50 µl of
RNase-free water. Each total RNA sample was then treated with
DNAse followed by a final clean up using Qiagen’s RNeasy Plus
kit. An Agilent Bioanaylzer 2100 in conjunction with flurometry
(Qubit) were used to assess total RNA quality and concentration.
All samples scored an RNA integrity number (RIN) of at least
eight and were used for library construction.

From the chosen samples, Dynabeads Oligo (dT) kit (Life
Technologies) was used to isolate Poly-A mRNA from 1 to
3 µg of total RNA. Following mRNA capture, 2 × 100 bp
RNAseq libraries were created using NEBNext Ultra library
prep kits (New England Biolabs). 12 PCR cycles were used
for library enrichment. Libraries were quality checked using
KAPA’s library quantification kit on the Bioanalyzer 2100 (with
DNA 1000 chips). Using these results, individually-barcoded
mRNA sequence libraries were multiplexed in equal proportion
(10 nM) and sequenced across four lanes of Illumina’s HiSeq 2000
platform on rapid run mode. All sequencing was performed at
Tufts Genomics.

Transcriptome Assembly, Assessment and
Annotation
For transcriptome assembly purposes, all sequencing data were
pooled, yielding over 289 million PE reads. Read quality was
assessed using FastQC and raw reads were quality filtered and
trimmed at the first base with mean quality score (Q-score) <

20. Sequence adaptors were removed using trimmomatic, leading
and trailing bases with a Phred quality score below 3 were
trimmed and each sequence was scanned with a 4 bp sliding
window and trimmed when average Phred quality dropped below
15, resulting sequences<36 bp were discarded and the remaining
reads were then normalized in silico using the normalize_reads
function in the Trinity bioinformatics pipeline (Haas et al., 2013).
Trinity 2.2.0 (Grabherr et al., 2011) with bowtie v1.2.0 (Langmead
et al., 2009) was used to construct the de novo transcriptome on
Boston University’s Shared Computing Cluster with a 100 Gb
memory node and 12 cores.

The resulting transcriptome assembly was trimmed with a
custom perl script to remove contigs under 500 base pairs.
Ribosomal RNA contamination was controlled by finding
sequences exhibiting significant nucleotide similarity (BLASTN,
e-value ≤ 1 × 10−8) to the SILVA LSU and SSU rRNA databases
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(http://www.arb-silva.de/). A total of 288 contigs from the
A. percula transcriptome, each of which matched an identifiable
rRNA, were identified and removed from the transcriptome.
BUSCO was then used to evaluate transcriptome completeness.
BUSCO detects the presence of single-copy orthologs universal
to all Actinopterygii (ray-finned fishes) as an overall measure
of transcriptome quality. The ortholog dataset was provided by
BUSCO (Simão et al., 2015) and BUSCO v3, augustus v3.2.3,
hmmer v3.1b2 and blast+ v2.6.0 were used. Contigs were
then annotated by BLAST sequence homology searches against
UniProt and Swiss-Prot NCBI NR protein databases, using an e-
value cutoff of e−5 and annotated sequences were then assigned
to Gene Ontology (GO) categories (Blake et al., 2015). The
annotation pipeline used here is described in detail at: https://
github.com/z0on/annotatingTranscriptomes.

Read Mapping, Differential Analysis and
GO Enrichment
Across the three RNA tissue libraries, raw reads ranged from
114 to 143 million PE reads (Table 1). Fastx_toolkit removed
Illumina TruSeq adapters and poly(A)+ tails. Sequences <20 bp
in length with <90% of bases having quality cutoff scores >20
were trimmed. Resulting filtered reads (R1 and unpaired reads
only) were then mapped to the de novo A. percula transcriptome
described above using bowtie 2.3.2 (Langmead and Salzberg,
2012). Raw counts were then used as input into differential
expression analyses (Supplemental Table 1).

Differential gene expression analyses were performed using
edgeR v3.20.8 (Robinson et al., 2010) in R v3.4.1 (R Development
Core Team., 2008). Three unique pairwise comparisons were
carried out between the three tissue color libraries: orange vs.
white, orange vs. black, white vs. black). Using edgeR, samples
were used to create a DGEList object. Normalization factors
to scale library sizes were acquired using the calcNormFactors
function. Next, the exactTest function was used with a large
dispersion value of 0.4, as no biological replicate libraries were
available to control for variation (Chen et al., 2017). We used
EdgeR’s suggested large dispersion values since larger dispersion
values minimize the ability to detect differentially expressed
genes and the typical value for the common biological coefficient
of variation (BCV; square-root-dispersion) for outbred human
populations has been found to be 0.4 (Robinson et al., 2010).
That is, we chose a large dispersion value as a conservative
measure, being aware of the limitations of our sampling strategy.

Data were then compiled into tables of normalized counts,
log fold change, log counts per million, p-values, and false
discovery rate- adjusted p-values for each pairwise comparison
(Supplemental Tables 2–4).

Given the limitations of our sampling strategy, no specific
candidate genes or metabolic pathways were explored. Rather,
p-values resulting from the exactTest function were used to
implement a standard “GO enrichment” analysis, based on
ranking of signed log p-values (Dixon et al., 2015; Wright
et al., 2015; https://github.com/z0on/GO_MWU). Results were
plotted in nine separate dendrograms, each representing one
of three GO domains [biological processes (BP), cellular
component (CC), molecular function (MF)] for one of the
three pairwise comparisons. Using data acquired from GO
enrichment, GO categories that were significantly enriched
at a p-value < 0.1 were noted and recorded. Given the
limitations, only GO categories that were consistently up or
down regulated in both pairwise comparisons were considered
significantly enriched. These categories were then explored for
common trends and functions, and grouped together in “GO
subdomains” using their biological relatedness as explained
by the Gene Ontology Consortium’s definition for each term
(Blake et al., 2015; http://www.geneontology.org/page/ontology-
documentation). We treat these results as plausible hypotheses
for future investigation.

RESULTS

Amphiprion percula Transcriptome
To compare gene expression between tissue colors, a de novo
transcriptome was constructed. Trimmomatic quality trimmed
the reads before assembly and 97.13% of both read pairs
survived, in 0.89% of instances only forward reads survived
and in 0.00% of instances did only reverse reads survive. In
all, 1.99% of read pairs were dropped. Sequencing produced a
total of 389 million paired reads after adapter trimming and
quality filtering. The preliminary transcriptome held a total of
217,325 transcripts which were manually trimmed to remove
contigs under 500 base pairs. The resulting transcriptome had a
mean GC content of 45.91% and produced 88,074 contigs with
an average length of 1,517.56 bp (N50 =1,969) and a median
contig length of 1,119. These contigs corresponded to 18,618
unique isogroups, of which 12,062 had gene annotations when
searched against NCBI’s nr database. Furthermore, 12,153 of
these isogroups had GO annotations. Of the 4,584 Benchmarking

TABLE 1 | Summary of RNA libraries, including the tissue color, raw 100 bp paired-end reads (“PE Reads”), trimmed reads, proportion of reads surviving quality control,

mapped reads and the proportion of reads that mapped to the Amphiprion percula transcriptome.

Tissue color Reads

Raw PE reads (106) Trimmed reads (106) Proportion surviving Mapped (106) Proportion mapped

Black 114.9 96.1 0.84 83.0 0.86

Orange 130.7 114.2 0.87 94.8 0.832

White 143.8 126.7 0.88 108.3 0.86

Total 389.4 337.0 286.1
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Universal Single-Copy Orthologs (BUSCOs) for Actinopterygii,
70% were complete, and a further 15.4% were fragmented,
suggesting that the de novo assembly was relatively successful
(Supplemental Figure 1). All raw reads are archived in the
National Center for Biotechnology Information (NCBI) Short
Read Archive (SRA) under accession number PRJNA471968,
with transcriptome assembly and annotation files available at
http://sites.bu.edu/davieslab/data-code/.

Preliminary Investigation of Differential
Gene Expression and GO Enrichment
For individual tissue RNA libraries, raw reads ranged from
114 to 143 million reads (Table 1). After quality control with
fastx_toolkit and fastq_quality_filter this number was reduced
to 96–126 million reads. Reads that successfully mapped to the
de novo transcriptome ranged from 83 to 108 million for each
library (Table 1). Out of 18,618 isogroups, edgeR’s analysis of
pairwise comparisons found 327 (1.76%) differentially expressed
genes (DEGs; p= 0.1) in the orange vs. white tissue comparison,
374 DEGs (2.01%) in the black vs. white tissue comparison, and
320 DEGs (1.72%) in the orange vs. black tissue comparison.
EdgeR results can be found in Supplemental Tables 2–4.

In orange epidermal tissue, Gene Ontology (GO) enrichment
analysis revealed, an over-representation of GO terms associated
with muscle in all three GO domains: “biological process”
(BP), “Molecular Function” (MF), and “cellular component”
(CC) (Supplemental Figures 2–7). This enrichment was most
abundant in CC (Supplemental Figures 3, 6). The terms
included striated muscle contraction (GO:0006941), structural
constituent of muscle (GO:0008307), and myosin filament
(GO:0032982) (Figure 3).

In white tissue, there were few enriched GO categories,
but all fell under the “cellular component” domain
(Supplemental Figures 3, 9). Several dealt with the extracellular
matrix: proteinaceous extracellular matrix (GO:0005578) and
extracellular matrix (GO:0031012) and all of these categories
dealing with extracellular matrix were underrepresented
(Figure 3).

In black epidermal tissue, many GO terms dealing with
immunity (immune function, response to wounding/stress),
were over-represented in BP (Supplemental Figures 5, 8;
Figure 2). These included GO terms associated with generalized
immune function such as positive regulation of immune response
(GO:0050778), and response to wounding (GO:0009611), and
terms associated with leukocyte movement such as positive
regulation of leukocyte migration (GO:0002687), regulation
of leukocyte chemotaxis (GO:0002688), and lymphocyte
migration (GO:0072676) (Figure 2). Inflammatory response
genes, including positive regulation of inflammatory response
(GO:0050729), regulation of inflammatory response to antigenic
stimulus (GO:0002861), as well as genes related to wounding,
response to wounding (GO:0009611), were also over-represented
in BP (Figure 2). A small number of terms dealing with
immunity were also over-represented in MF in black tissue
(Supplemental Figures 7, 10) and the majority of these dealt
with cytokine function, including cytokine receptor activity
(GO:0004896), and chemokine receptor binding (GO:0042379)

(Figure 4). No genes were enriched in CC in black tissue
(Supplemental Figures 6, 9).

DISCUSSION

While typically attributed to aposematism (i.e.,-warning
coloration), the evolution of bold, striking colors can arise
via many other mechanisms, including those related to
signaling (e.g., individual identity, social status, behavioral
strategy, etc; Tibbetts et al., 2017). Differentiating among these
competing hypotheses is complex, however, and requires detailed
knowledge of the underlying genetic mechanisms responsible
for color-pattern variation at multiple levels of organizations
(e.g., individual, population, species). Here we assembled
and annotated the first de novo reference transcriptome for
the clownfish Amphiprion percula, characterized patterns of
differential gene expression across colored epidermal tissue, and
conducted GO enrichment analysis to characterize evidence of
functional differences among differentially colored epidermal
tissues as a first step toward elucidating the molecular basis of
color pattern formation in Amphiprion.

Several lines of evidence indicate that our de novo
transcriptome is robust. First, although our Trinity assembly
produced a large number of contigs initially, filtering for contigs
longer than 500 bp dramatically reduced this number and
resulted in a N50 contig length approaching 2 kb, typical of full
length ESTs in vertebrates (Fong et al., 2013). Additionally, these
filtered contigs represent∼18K unique isogroups corresponding
closely to typical estimates of gene number in vertebrates
(Prachumwat and Li, 2008; Howe et al., 2013). Benchmarking
against single-copy vertebrate genes found evidence for 85%
of known orthologs, which is typical of other successful
transcriptome assemblies (Simão et al., 2015; Theissinger et al.,
2016). For comparison, the recently completed Amphiprion
bicinctus transcriptome (Casas et al., 2016), which was derived
from brain and gonadal tissues, found evidence for completeness
of 95.6% of core eukaryotic genes but looked at a smaller gene set
(CEGs, n = 248), had a median contig length of 603 bp, and an
N50 value approximately 25% smaller (N 50–1,563 bp) than our
assembly. Taken together, these statistics strongly suggest that
the transcriptome produced here was robust.

Our gene expression analyses, using the reference
transcriptome, revealed striking differences among colored
epidermal tissues. However, because we pooled samples from
multiple individuals, our sample size is limited and these results
are best viewed as preliminary. Despite this caveat, the strong
differences in observed levels of expression across tissue samples
is interesting for two reasons. First, pooling tissue samples from
different body regions and different individuals by epidermal
tissue color is expected to increase the variance in background
gene expression within each pool, making it less likely to detect
differences between color types. This suggests that differences
between color types may have biological significance, enabling us
to generate some plausible hypotheses regarding their function
that will require more rigorous testing in the future. Second,
variation in patterns of gene expression among epidermal tissue
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FIGURE 2 | Gene ontology (GO) categories significantly enriched for both pairwise color comparisons for each epidermal tissue by “biological process” (BP) using

Mann-Whitney U tests based on ranking of signed log p-values computed using EdgeR. Results indicate the GO domain (BP), the subdomains discussed in text

(“immunity” and “muscle”), the specific GO terms, and enrichment direction observed consistently in each epidermal tissue color.

colors suggests that coloration is actively maintained in adults
and not simply the result of differences in gene regulation during
development.

In orange epidermal tissue, we observed many over-
represented GO terms associated with muscle (Figures 2–4).
Previous research has shown that smooth muscle proteins
are a cellular component of the chromatophores that are

responsible for fish skin coloration and suggested that they may
control the movement of intracellular bodies (melanophores,
xanthophores, and erythrophores) within the chromatophore
(Meyer-Rochow et al., 2001). The over-representation of
muscle related GO terms in orange tissue might suggest
greater motility control of the intracellular bodies in this
skin type (Li et al., 2015), which might facilitate changes
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FIGURE 3 | Gene ontology (GO) categories significantly enriched for both pairwise color comparisons for each epidermal tissue by “cellular component” (CC) using

Mann-Whitney U tests based on ranking of signed log p-values computed using EdgeR. Results indicate the GO domain (CC), the subdomains discussed in text

(“muscle” and “extracellular matrix”), the specific GO terms, and enrichment direction observed consistently in each epidermal tissue color.

in orange coloration. This may explain how A. percula are
able to rapidly adjust their orange coloration in response
to light intensity and background color (Yasir and Qin,
2009a,b).

In white epidermal tissue, we detected few over- or under-
represented GO terms, consistent with the relative paucity of
knowledge regarding the genetic basis of structural coloration in
vertebrates (Hubbard et al., 2010). The few GO terms that were
consistently enriched were associated with cellular components

and within this GO ontology several GO terms associated with
extracellular matrix were consistently underrepresented in white
tissue (Figure 3). It seems plausible that these over- and under-
represented categories might be related to the formation of
the white/UV structural color, which is formed by stacks of
intracellular guanine crystals in other fishes (Levy-Lior et al.,
2010; Zhao et al., 2012; Gur et al., 2015).

In black epidermal tissue, we observed an over-representation
of many GO terms associated with immune function:
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FIGURE 4 | Gene ontology (GO) categories significantly enriched for both pairwise color comparisons for each epidermal tissue by “molecular function” (MF) using

Mann-Whitney U tests based on ranking of signed log p-values computed using EdgeR. Results indicate the GO domain (MF), the subdomains discussed in text

(“immunity” and “muscle”), the specific GO terms, and enrichment direction observed consistently in each epidermal tissue color.

leukocyte/lymphocyte movement, cytokines, inflammation,
immune response, and wounding response (Figures 2, 4).
Upregulation of immune defense in melanic tissue is consistent
with previous research: in invertebrates, melanin has been shown
to act in defense reactions and wound healing (Sugumaran, 2002;
McGraw, 2005); in vertebrates, melanocytes and melanosomes
are known to inhibit skin infection by microorganisms, and
melanin may play a role in the regulation of immunological
cytokines (Mackintosh, 2001). This raises the question of
why A. percula exhibit black, melanin-based pigments and
its associated up-regulation of immune system function?
Some insights may be gained by examining the distribution of
melanistic A. percula in nature. Militz et al. (2016) found that
melanistic A. percula are much more frequent in the gigantic
sea anemone Stichodactyla gigantea when compared to the
magnificent sea anemone Heteractis magnifica. S. gigantea is a
more aggressive anemone that can sting badly and remove skin
from fingers (Buston personal observation). It seems plausible
that melanin pigments and associated up-regulation of immune
defense may facilitate wound-healing and allow A. percula to
tolerate these aggressive host anemones.

In conclusion, here we have reviewed the proximate and
ultimate causes of conspicuous coloration in clownfishes of the

genus Amphiprion. The conspicuous coloration of this genus
(i) has a heritable genetic basis, (ii) exhibits developmental
and environmental plasticity, (iii) has multiple plausible
signaling functions, and (iv) exhibits a strong phylogenetic
component. By generating a de novo transcriptome for
A. percula, conducting differential gene expression analyses
and GO enrichment analyses, we have revealed an over-
representation of transcripts associated with immune function
associated with melanin pigments, a pattern previously observed
in many other vertebrates and invertebrates. Relating this
to what is known about the distribution of melanistic
morphs in the wild, suggests that melanism may serve a
protective function when these fishes are associated with
more noxious anemones. This study represents a first step
in an integrative investigation of the proximate and ultimate
causes of conspicuous coloration of these iconic coral reef
fishes.
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