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Polar marine ecosystems are characterized by low water temperatures, sea ice cover,

and extreme annual variation in solar irradiance and primary productivity. A review of the

available information from the Arctic suggests that mixotrophy (i.e., the combination of

photosynthetic and phagotrophic modes of nutrition in one cell) is wide spread among

plankton. In the central Arctic Ocean (AO) in summer, mixotrophic flagellates such as

Micromonas and Dinobryon can account for much of bacterivory. Planktonic ciliates

with acquired phototrophy form the bulk of microzooplankton biomass in both the ultra-

oligotrophic deep basins of AO and its productive shelf seas. With the exception of

the diatom bloom in the marginal ice zone, mixotrophic ciliates often dominate total

chlorophyll in the mixed layer in summer taking advantage of the 24-h insolation. Their

relatively high growth rates at low temperatures indicate that they are an important

component of primary and secondary production. The key Arctic copepod species

preferentially feed on chloroplast-bearing ciliates, which form an important link in the

planktonic food web. The limited available year round data indicate that mixotrophic

plankton persist in the water column during the long polar winter when irradiance is low

or absent and ice cover further reduces light penetration. These observations suggest

that at high latitudes an alternative food web based on mixotrophy may dominate the

pelagic lower food web during much of the year.
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INTRODUCTION

Mixotrophy, defined as the combination of phagotrophy and photosynthesis in an individual
cell, is increasingly recognized as an important trophic mode among planktonic protists, both
“phytoplankton” and “microzooplankton,” in the global ocean (reviewed in Caron, 2017; Leles et al.,
2017; Selosse et al., 2017; Stoecker et al., 2017) but in polar waters mixotrophy has not received
much attention. In fact, this mixed mode of nutrition is so wide-spread that the above dichotomy
may be no longer suitable for an accurate description of the role of unicellular eukaryotes in
the ocean (Flynn et al., 2013). Ecosystem models that include mixotrophy indicate that this
trophic mode has profound effects on biogeochemical cycling, including increasing carbon fixation,
decreasing loss of dissolved organic carbon and increasing vertical carbon flux (Mitra et al.,
2014; Ward and Follows, 2016). Mixotrophy also influences the structure and function of food
webs. Modeling indicates that mixotrophy can increase mean organism size and trophic transfer,
potentially resulting in increased production at upper levels in the food web (Mitra et al., 2014;
Ward and Follows, 2016).
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It is particularly important to understand the effects of
mixotrophy in the Arctic because its marine environment is
changing rapidly. The Arctic Ocean may have lost over 50%
of its sea ice volume (Kwok and Rothrock, 2009), with the
largest decreases in the Barents, Kara, and Siberian sectors,
particularly over the continental shelf (Pabi et al., 2008). In
just 12 years, the open-water growing season has increased by
45 days, promoting a pan-Arctic 20% increase in net primary
production (Brown and Arrigo, 2012). Climate change is causing
a patchwork of altered environmental conditions in the Arctic.
Decreases in sea ice thickness, extensions in the length of the ice
free season, increased water temperatures, and freshening have
led to increased stratification in some seas, whereas increased
mixing due to storms have been observed in other areas (Metfies
et al., 2016; Blais et al., 2017; Oziel et al., 2017). Although the
rising trend in primary production (Slagstad et al., 2011) may
be hindered by stronger stratification and nutrient limitation in
offshore areas (Ardyna et al., 2011, 2017; Brown and Arrigo,
2012), these changes are expected to bolster the pelagic system
at the expense of the benthic components, with profound
impacts on trophic structure and carbon fluxes (Wassmann and
Reigstad, 2011). Recent studies in the Arctic indicate that a major
portion of pelagic primary production is channeled to the higher
trophic levels through unicellular grazers such as ciliates and
dinoflagellates (Olson and Strom, 2002; Verity et al., 2002; Calbet
et al., 2011b; Sherr et al., 2013; Stoecker et al., 2014; Franzè
and Lavrentyev, 2017). This warrants investigation of the effects
of climate change on microbial plankton as even minor effects
at the base of food webs could be amplified through trophic
chains (Sarmento et al., 2010). Given the rapid changes in Arctic
ecosystems, it is increasingly important to determine the trophic
modes of plankton in Arctic seas and predict how trophic modes
may change with the environment and how this may affect
ecosystem processes.

The Objectives and Material
Few attempts have been made to directly examine the
physiological rates of mixotrophic plankton in the Arctic due
to logistical and methodological constraints (Putt, 1990; Sanders
and Gast, 2012; Franzè and Lavrentyev, 2014). Nevertheless,
there is evidence in the literature that mixotrophic plankton
play an important role(s) in the Arctic marine ecosystems. Our
objectives are to review existing data, identify data gaps, and
present hypotheses about the roles of mixotrophy in Arctic Seas
and how these may be altered due to changes in the physical
environment.

In this review we primarily focus on the following contrasting
regions of the Arctic: the deep oligotrophic Canada Basin of the
Arctic Ocean, the relatively shallow and productive Barents and
Kara shelf seas, and the main entrance for the Atlantic water
into the Arctic Ocean, the Fram Strait (Figure 1). In addition we
consider data from the productive shelf of the sub-Arctic Bering
Sea, which has been subjected to similar climatic changes as the
Arctic shelf seas (Hunt and Megrey, 2005). Each of the above
polar regions is unique in terms of bathymetry, circulation, sea-
ice cover, and food webs (Carmack and Wassmann, 2006). Thus,
they are ideally suited for a pan-Arctic comparison.

FIGURE 1 | Map of the Arctic Ocean showing the main study locations:

A, Fram Strait; B, Barents Sea; C, Kara Sea; D, Bering Sea; E, Canada Basin.

REVIEW

Evidence for Mixotrophy Among Arctic
Plankton
Although mixotrophy among planktonic protists is well
documented in temperate and tropical waters, less is known
about mixotrophy in Arctic seas. Phagotrophy by phytoflagellates
is usually underestimated, particularly in remote locations such
as the Arctic, where field experiments are logistically difficult
or which are difficult to sample in all seasons. Ingestion of
prey by small, pigmented cells is difficult to detect and is often
underestimated, even in experimental studies designed to
measure it (Anderson et al., 2017). Ciliates with plastids are
more readily distinguished from heterotrophs than phagotrophic
phytoflagellates from strict autotrophs. Measurements of feeding
and photosynthesis in both mixotrophic flagellates and ciliates
are rare. However, there are ample reasons to hypothesize
that mixotrophy is common among Arctic plankton. Below
we list mixotrophic flagellate and ciliate taxa reported from
Arctic Seas and provide evidence that the taxa are mixotrophic.
The evidence for mixotrophy ranges from observation of food
vacuoles or plastids in preserved specimens to field or laboratory
measurements of feeding and photosynthesis. For some species
the evidence is very limited, whereas other species have been
studied intensively. For well-studied species, we have included
only a few key references.

Chrysophyta
Arctic plankton assemblages include nanoplanktonic
chrysophytes such as Ochromonas spp. that are often
bacterivorous as well as photosynthetic (Estep et al., 1986;
Andersson et al., 1989; Keller et al., 1994). The colonial
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chrysophyte, Dinobryon balticum, is a common component of
the microplankton in Arctic and sub-Arctic seas (Table 1) and
is often associated with low irradiance and the deep chlorophyll
maximum (DCM) layer (McKenzie et al., 1995). The colonies are
a significant contributor to particle flux during summer in the
Barents Sea (Olli et al., 2002) and probably other coastal Arctic
seas. Although D. balticum has plastids and requires light, this
species supplements it nutrition with bacterivory (McKenzie
et al., 1995).

Cryptophyta
Cryptophytes are another algal group often associated with low
light conditions and that are known to contribute to bacterivory
(Table 1). In phytoplankton investigations and in situ studies of
phagotrophy by algae, cryptophytes have rarely been identified
to species. Teleaulax amphioxeia, a widespread species found
in temperate and Arctic waters (Table 1) has been shown to be
mixotrophic (Yoo et al., 2017).

Haptophyta (Prymnesiophyta)
Althoughmany haptophytes aremixotrophic and often dominate
the mixotrophic phytoplankton assemblage in temperate waters
(Unrein et al., 2014), the dominant haptophyte in Arctic waters,
Phaeocystis pouchetii, is yet to be shown to be phagotrophic.
Another photosynthetic prymnesiophyte genus found in Arctic
water is Chrysochromulina (Table 1). At low irradiances, feeding
can enhance growth in some Chrysochromulina species (Hansen
and Hjorth, 2002).

Chlorophyta
A well-documented case of mixotrophy among Arctic
chlorophyte flagellates is bacterivory by Micromonas sp.
This picoplankton-sized member of the Prasinophyceae is
widely distributed and abundant in the Arctic (Not et al., 2005).
During autumn, when the Beaufort Sea and Canada Basin were
highly oligotrophic, photosynthetic picoflagellates numerically
dominated the phytoplankton and accounted for as much or
sometimes more bacterivory than heterotrophic flagellates
(Sanders and Gast, 2012). Genetic analysis indicated that
Micromonas was a common and probably abundant component
of the picoflagellate assemblage (Sanders and Gast, 2012). In
laboratory experiments with a culture of Arctic Micromonas,
McKie-Krisberg and Sanders (2014) observed the greatest
bacterivory under conditions of high light and inorganic nutrient
limitation, conditions similar to the oligotrophic polar seas in
summer.

Dinophyta
Dinoflagellates possess feeding structures that allow them to
consume prey of equal to or greater than their own cell size. Most
plastidic dinoflagellates are probably mixotrophic (reviewed
in Jeong et al., 2010; Hansen, 2011). Mixotrophic as well as
heterotrophic dinoflagellates are common in the Arctic (Table 1).
Nanoplanktonic dinoflagellates have often been overlooked, but
they appear to be important components of the polar plankton.
For example, plastidic nano-sized gymnodiniids formed 55–85%
of total dinoflagellate abundance in the Barents Sea (Franzè
and Lavrentyev, 2017). Among the small size mixotrophic
dinoflagellates are Karlodinium and small Gymnodinium-like

spp. Some taxa, like Karlodinium, can ingest prey most of the
time although inorganic nutrient limitation often stimulates
feeding (Li et al., 1999, 2000; Calbet et al., 2011a). A small
photosynthetic dinoflagellate that occurs in the Arctic as well
as in temperate low salinity waters is Heterocapsa rotundata
(Table 1). In temperate waters it blooms in winter and is
stimulated to feed by light limitation (Millette et al., 2017).
H. rotundata may be an important mixotrophic alga in low
salinity, turbid waters, such as the coastal Beaufort Sea and Kara
Sea. Among the larger thecate photosynthetic dinoflagellates,
many species have been observed to capture and digest prey
about their own size or larger, including diatoms, other flagellates,
and ciliates (reviewed in Hansen, 2011). This group includes
Alexandrium and Tripos (formerly Ceratium) spp. that have
been observed in the Arctic (Table 1). Mixotrophic Dinophysis
spp. prey on ciliates and obtain their plastids from ingestion of
photosyntheticMesodinium spp. (Park et al., 2006; Hansen, 2011)
and are reported in Arctic Seas (Table 1).

Ciliophora
Phagotrophic protists that feed on phytoplankton can also be
mixotrophic due to acquired phototrophy; among marine ciliates
this usually involves sequestration of plastids and sometimes
other organelles from their algal prey (reviewed in Stoecker
et al., 2009). In field studies, presence of plastids in ciliates
is easier to recognize than phagotrophy in phytoplankton.
Epifluorescence microscopy is used to detect the chlorophyll
(plastids) in fresh or aldehyde fixed samples that have been
stored under conditions (refrigeration and darkness) that
minimize chlorophyll degradation. However, many field studies
of microzooplankton rely solely on acid Lugol’s fixed samples.
Thus, mixotrophy among the ciliates often is overlooked.

Among the oligotrich ciliates, plastid-retention is a species-
specific attribute. In investigations that lack data from
epifluorescence microscopy, the presence of certain species
is a good indicator of mixotrophy among the oligotrichs. Laboea
strobila, a very distinctive plastid-retaining species, several
plastidic Strombidium spp. and Tontonia spp. which always seem
to be plastidic, are reported from many Arctic Seas (Table 2). In
addition, several plastidic prostomatid and haptorid ciliates such
as Askenasia, Cyclotrichium, Didinium, Prorodon, and Urotricha
occur in ice-covered waters and open waters of the Barents Sea
and Kara Sea (Lavrentyev, 2012; Franzè and Lavrentyev, 2014,
2017). In field studies in which epifluorescence microscopy is
utilized, plastid-retaining oligotrichs usually comprise 30–40%
of the oligotrich assemblage in the euphotic zone (Stoecker
et al., 2017), but in the Arctic they often dominate the ciliate
assemblage (Table 3).

Contributions of mixotrophic ciliates to chlorophyll are
highly variable even in ecosystems in which they are abundant
(Table 3), partially because of the large variations in total
chlorophyll a. Putt (1990) estimated that mixotrophic ciliates
contributed ∼15% of the total chlorophyll a at 2m in the
Barents Sea. In the deep chlorophyll maximum (DCM) of
the Barents Sea, Franzè and Lavrentyev (2017) estimated
that mixotrophic ciliates (predominantly plastidic oligotrichs)
contributed between 0.5 and 46% of the chlorophyll a.
The contribution of mixotrophs to ciliate abundance and
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TABLE 1 | Common mixotrophic flagellates in the Arctic.

Taxa Arctic regions Evidence for mixotrophy

CHRYSOPHYTA

Ochromonas crenata, Ochromonas

marina, Ochromonas sp.

Barents Sea (Olli et al., 2002; Franzè and Lavrentyev,

2017); Kongsfjorden, Svalbard (Iversen and Seuthe,

2011)

Ingestion of prey (Estep et al., 1986; Andersson et al.,

1989); Ingestion of fluorescently labeled bacteria (Keller

et al., 1994)

Dinobryon balticum Barents Sea (Olli et al., 2002; Rat’kova and Wassmann,

2002); Kongsfjorden, Svalvard (Keck et al., 1999; Iversen

and Seuthe, 2011); Beaufort Sea (Ardyna et al., 2017);

Arctic Ocean NW of Svalbard (Johnsen et al., 2018)

Ingestion of beads (McKenzie et al., 1995)

CRYPTOPHYTA

Kongsfjorden, Svalvard (Iversen and Seuthe, 2011); SE

Bering Sea (Olson and Strom, 2002); Beaufort Sea

(Ardyna et al., 2017); Barents Sea (Rat’kova and

Wassmann, 2002; Franzè and Lavrentyev, 2017); Arctic

Ocean NW of Svalbard (Johnsen et al., 2018)

Ingestion of beads by Geminigera cryophilia

(McKie-Krisberg et al., 2015); Ingestion of prey by

Teleaulax amphioxeia (Yoo et al., 2017); Ingestion of

bacteria (Unrein et al., 2007, 2014)

HAPTOPHYTA

Chrysochromulina spp. Beaufort Sea (Ardyna et al., 2017) Ingestion of prey (Jones et al., 1993)

CHLOROPHYTA

Pyramimonas spp. Beaufort Sea (Estrada et al., 2009; Ardyna et al., 2017);

Arctic Ocean NW of Svalbard (Johnsen et al., 2018)

Ingestion of beads by P. tychotreta (McKie-Krisberg

et al., 2015)

Micromonas spp. Barents Sea (Not et al., 2005; Franzè and Lavrentyev,

2017); Beaufort Sea (Estrada et al., 2009); Beaufort Sea

& Canada Basin (Sanders and Gast, 2012); Central

Arctic Ocean, Fram Strait (Metfies et al., 2016)

Ingestion of fluorescently labeled bacteria and beads

(Sanders and Gast, 2012); Ingestion of beads

(McKie-Krisberg and Sanders, 2014)

DINOPHYTA

Alexandrium tamarense Chukchi Sea (Yokoi et al., 2016) Ingestion of small phytoplankton (Jeong et al., 2005);

Ingestion of Skeletonema costatum (Yoo et al., 2009)

Dinophysis acuminata, D. norvegica Kongsfjorden, Svalbard (Seuthe et al., 2011a); Barents

Sea (Franzè and Lavrentyev, 2014, 2017)

Photosynthetic Dinophysis spp. obtain plastids and other

organelles from ciliate prey (reviewed in Hansen, 2011;

Stoecker et al., 2017)

Heterocapsa triquetra, H. rotundata Beaufort Sea (Ardyna et al., 2017) H. triquetra, ingestion of bacteria (Legrand et al., 1998);

H. triquetra & H. rotundata ingestion of prey (Jeong

et al., 2005); H. rotundata ingestion of beads & bacteria

(Millette et al., 2017)

Karlodinium veneficum (syn. Karlodinium

micrum, Gyrodinium galatheanum)

Kongfjorden, Svalbard (Seuthe et al., 2011a) Ingestion of cryptophytes (Li et al., 1999, 2000; Calbet

et al., 2011a)

Prorocentrum minimum Chukchi Sea (Yokoi et al., 2016) Ingestion of cryptophytes (Johnson, 2015)

Tripos arcticus (syn. Ceratium arcticum, C.

longipes), Tripos fusus (syn. C. fusus),

Tripos macroceros (syn. C. macroceros)

Kongsfjorden, svalbard (Seuthe et al., 2011a); Barents

Sea (Franzè and Lavrentyev, 2014, 2017); Kara Sea

(Lavrentyev, 2012)

T. arcticus, observation of food vacuoles with ingested

prey (Jacobson and Anderson, 1996)

total chlorophyll a peaked at the Polar Front primarily
due to populations of the large mixotrophic oligotrichs L.
strobila, Strombidium conicum, and S. wulffi (Figure 2). In the
productive eastern Bering Sea during summer, mixotrophic
ciliates abundance (also predominantly plastid oligotrichs) and
their estimated contribution to total chlorophyll a was also very
variable. The contribution of mixotrophs to ciliate abundance
was relatively low at stations near the shelf edge and in
upwelling around the Pribilof Islands. However, mixotrophic
ciliate abundance was greatest and estimated contribution of
ciliates to total chlorophyll was often 50% or more in highly
stratified waters in the middle of the northern shelf (Stoecker
et al., 2014). Similarly, in the shallow waters of the Kara Sea,
mixotrophic ciliates were responsible for up to 46% of total
chlorophyll a (Lavrentyev, 2012). In the western Fram Strait,
mixotrophic oligotrichs formed a spring bloom in themixed layer

within the Atlantic Drift (>200µg C L−1, Lavrentyev and Franzè,
2017); this is the highest ciliate biomass recorded so far in the
Arctic.

The above estimates of mixotrophic contributions are
conservative. Mixotrophic chlorophyll a content was calculated
based on ciliate volume (Montagnes et al., 1994), assuming that
the volume to chlorophyll a relationship is similar to that in
autotrophic plankton (Dolan and Perez, 2000). The chlorophyll
a cellular quota calculated based on these assumptions for S.
conicum (30,000 µm3, 55 pg chlorophyll cell−1) was similar to
that measured directly in the Barents Sea (48 pg chlorophyll a
cell−1, Putt, 1990). However, oligotrich chlorophyll a content
can be much higher (Stoecker et al., 1988; McManus et al.,
2012). Laboratory and field studies have demonstrated that
plastidic ciliates graze on pico- and nano-phytoplankton, can
have about the same biovolume specific chlorophyll a content
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TABLE 2 | Common mixotrophic ciliates in the Arctic.

Ciliophora Arctic regions Evidence for mixotrophy

Laboea strobila Iceland/Greenland Seas & N. Svalbard/Barents Sea (Putt,

1990); Greenland Sea (Möller et al., 2006); W. Arctic Ocean

(Lovejoy et al., 2002, 2007; Sherr et al., 2009); East Siberian

Sea & Chukchi Sea (Jiang et al., 2015); Disko Bay, Greenland

(Levinsen et al., 2000a); Eastern Bering Sea (Olson and

Strom, 2002; Strom and Fredrickson, 2008; Stoecker et al.,

2014); Barents Sea (Rat’kova and Wassmann, 2002; Franzè

and Lavrentyev, 2014, 2017); Kara Sea (Lavrentyev, 2012)

Detection of plastids with epifluorescence microscopy,

measurement of chlorophyll a /ciliate (Putt, 1990);

Measurement of chlorophyll a/ciliate and photosynthesis in

cultures (Stoecker et al., 1988); Detection of plastids with

epifluorescence microscopy (Franzè and Lavrentyev, 2014)

Mesodinium rubrum/M. major (syn.

Myrionecta rubra)

Iceland/Greenland Seas & N Svalbard/Barents Sea (Putt,

1990); Barents Sea (Hansen et al., 1996; Rat’kova and

Wassmann, 2002; Franzè and Lavrentyev, 2014, 2017); East

Siberian Sea & Chukchi Sea (Jiang et al., 2015); Disko Bay,

Greenland (Levinsen et al., 2000a); NW Fram Strait (Seuthe

et al., 2011b); Barents Sea & Bering Sea (Johnson et al.,

2016), Kongfjorden, Svalbard (Seuthe et al., 2011a), Kara Sea

(Lavrentyev, 2012)

Growth, photosynthesis and feeding experiments with

cultures (Gustafson et al., 2000; Park et al., 2007; Smith and

Hansen, 2007).

Strombidium acutum East Siberian Sea & Chukchi Sea (Jiang et al., 2015) Measurement of chlorophyll a/ciliate and photosynthesis in

cultures (Stoecker et al., 1988/1989)

Strombidium capitatum East Siberian Sea & Chukchi Sea (Jiang et al., 2015) Measurement of chlorophyll a/ciliate and photosynthesis in

cultures (Stoecker et al., 1988/1989)

Strombidium conicum NW Fram Strait (Seuthe et al., 2011b); Barents Sea (Franzè

and Lavrentyev, 2014, 2017); Kongsfjorden, Svalbard (Seuthe

et al., 2011a); Kara Sea (Lavrentyev, 2012)

Measurement of chlorophyll a/ciliate and photosynthesis in

cultures (Stoecker et al., 1988/1989); Detection of plastids

with epifluorescence microscopy (Franzè and Lavrentyev,

2017)

Strombidium wulffi Kongsfjorden, Svalbard (Seuthe et al., 2011a); Barents Sea

(Franzè and Lavrentyev, 2017)

Detection of plastids with epifluorescence microscopy (Franzè

and Lavrentyev, 2017)

Strombidium spp. A and B Iceland/Greenland Seas & N Svalbard/Barents Sea (Putt,

1990)

Detection of plastids with epifluorescence microscopy,

measurement of chlorophyll a/ciliate and photosynthesis

(Putt, 1990)

Tontonia spp. East Siberian Sea & Chukchi Sea (Jiang et al., 2015);

Iceland/Greenland Seas & N Svalbard/Barents Sea (Putt,

1990); Chukchi Sea (Yokoi et al., 2016); Kongsfjorden,

Svalbard (Seuthe et al., 2011a); Barents Sea (Franzè and

Lavrentyev, 2014)

Detection of plastids with epifluorescence microscopy,

measurement of chlorophyll a /ciliate (Putt, 1990). Many (all?)

Tontonia spp. have plastids (reviewed in Stoecker et al.,

2009).

as their phytoplankton prey and are photosynthetic (reviewed
in Stoecker et al., 2009, 2017). One of the few field studies in
which chlorophyll a content and photosynthesis were measured
in oligotrichs from natural assemblages was conducted by Putt
(1990) in Arctic seas. In Strombidium sp. “A,” carbon: chlorophyll
ratios varied from 87 to 103 and in L. strobila from 200 to 232. In
Strombidium sp. “A,” light saturated photosynthetic rates (Pmax)
averaged 2.1 pg C (pg chlorophyll a)−1h−1,which was equivalent
∼2.8% of body carbon h−1 (Putt, 1990; Table 3).

The “red” ciliates Mesodinium rubrum and M. major are
important mixotrophic ciliates in coastal and upwelling waters
globally (Johnson et al., 2016). In Arctic waters they are a
common component of the microplankton (Table 2). M. major
was described as a separate species from M. rubrum relatively
recently (Garcia-Cuetos et al., 2012) so in Table 2 we refer to
them together. In some cases, red Mesodinium are responsible
for dense blooms in the Arctic (Johnson et al., 2016). In
contrast with the plastid retaining oligotrichs, that can retain
plastids from several algal taxa (reviewed in Stoecker et al., 2009;
McManus et al., 2012), the red Mesodinium spp. are specialized
and primarily retain plastids, nuclei and other cell components
from phycoerythrin-containing cryptophytes in the Teleaulax

and Plagioselmis species complex (Johnson et al., 2016). The
metabolism ofM. rubrum/M. major is primarily photosynthetic,
although polar strains are capable of survival in the dark for
long periods (Johnson and Stoecker, 2005). M. rubrum is often
considered to be more a component of the phytoplankton than
the microzooplantkon because of their high chlorophyll content,
high rates of photosynthesis and ability to form blooms (reviewed
in Crawford, 1989). In the Arctic, as elsewhere, red Mesodinium
spp. are routinely a significant component of the protist plankton
in meso- and eutrophic waters, particularly under low light
conditions which also favor their cryptophyte prey. Blooms are
usually associated with fronts or upwelling events and can be
“hotspots” of primary and secondary production which influence
biogeochemical cycling (Herfort et al., 2012).

Factors Influencing Mixotrophy in the
Arctic
Although there have been fewer studies of mixotrophy in the
Arctic than in temperate seas, the environmental conditions in
the Arctic should often favor mixotrophs over strict heterotrophs
or autotrophs. Mixotrophy is advantageous in environments
in which resource availability is highly variable and/or does
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TABLE 3 | Relative contributions of mixotrophic ciliates to ciliate abundance, biomass, and total chlorophyll a (chl a) in the Arctic during summer.

Location % Ciliate Abundance % Ciliate Biomass % Total chlorophyll a References

Iceland/Greenland Seas Meso-Avg. 6%

PO-Avg. 52%

Avg. 63% of aloricate

ciliates

Estimated 4% Putt, 1990

Barents Sea/N. Svarbard Meso-Avg. 25%

PO-Avg. 40%

Avg. 59% of aloricate

ciliates

Estimated 15% Putt, 1990

Disko Bay, Greenland Range 45–85% of

oligotrich ciliates

ND ND Levinsen et al., 2000a

Barents Sea Range 22–73% of total

ciliates

Avg. 54% (Range

12–93%) of total ciliates

Estimated range, DCM

(0.5–46%)

Franzè and Lavrentyev,

2017

Pechora (SE Barents) & Kara

Seas

Avg. 48% (Range

30–60%) of total ciliates

Avg. 69% (Range

47–91%) of total ciliates

Estimated 22% (Range

7–46%) mixed layer

Lavrentyev, 2012

Eastern Fram Strait and AO

Eurasian Basin slope north of

Svalbard

Avg. 25% (Range

12–49%) of total ciliates

Avg. 71% (Range

40–99%) of total ciliates

ND Lavrentyev and Franzè,

2017

Eastern Bering Sea Range 68–75% on

shelf

∼65% Variable; Estimated

>50% at some stations

on middle shelf

Stoecker et al., 2014

Meso, Mesodinium rubrum/major; PO, plastidic oligotrich ciliates; ND, no data; AO, the Arctic Ocean; DCM, deep chlorophyll maximum; MIZ, marginal ice zone; Avg., Average.

FIGURE 2 | Relative abundance and contribution to total chlorophyll a of

mixotrophic ciliates in the deep chlorophyll layer along the latitudinal gradient in

the Barents Sea (modified from Franzè and Lavrentyev, 2017). Vertical

bars,standard deviation; asterisks denote significant difference (p < 0.05)

based on ANOVA and Fisher LSD test. Mix N, relative abundance of

mixotrophic ciliates; Mix Chl, estimated contribution of mixotrophic ciliates to

total chlorophyll a.

not support balanced growth (reviewed in Mitra et al., 2016;
Stoecker et al., 2017). Mixotrophic strategies vary among
planktonic protists (Mitra et al., 2016). For example, many
small phytoflagellates and photosynthetic dinoflagellates can
grow as strict autotrophs, using light and dissolved inorganic
nutrients for growth, but nitrogen (N), phosphorus (P), and
iron limitation or skewed N:P ratios induce or increase
phagotrophy (Maranger et al., 1998; Li et al., 2000; Smalley
et al., 2003). Less well-known are marine phytoflagellates and
photosynthetic dinoflagellates that are stimulated to feed by light
or carbon limitation. A freshwater mixotrophic Ochromonas
sp. (chrysophyte) primarily obtains carbon and nitrogen from
ingestion of bacteria and only assimilates inorganic nutrients
to appreciable degree when bacterial abundances are very

low (Terrado et al., 2017). The same strategy may occur in
some marine Ochromonas spp. However, at least one marine
Ochromonas sp. is primarily photosynthetic and is stimulated
to feed by low light and low nutrients (Keller et al., 1994).
In the marine dinoflagellate H. rotundata, light limitation
stimulates ingestion of bacteria (Millette et al., 2017) but it
is unclear how common this response is in photosynthetic
dinoflagellates. Interaction of light and inorganic nutrient
availability is important in regulating the relative contributions
of phototrophy and phagotrophy to survival and growth in most
mixotrophic flagellates. For example, species-specific responses
of both photosynthesis and feeding to light and nutrients were
observed in cultured Antarctic mixotrophic flagellates (McKie-
Krisberg et al., 2015).

Among the microzooplankton with acquired phototrophy
(which in the Arctic plankton, is primarily mixotrophic ciliates),
most use photosynthesis as a carbon and energy supplement
(reviewed in Stoecker et al., 2009). Except in the case of M.
rubrum, which has nitrate reductase, most plastidic ciliates obtain
most of their nitrogen from food. In the plastidic oligotrichs,
photosynthate is used primarily to cover respiratory demands for
carbon and thus can increase survival times during starvation
and, particularly when prey are limiting, increase gross growth
efficiency and growth rate (McManus et al., 2012; reviewed in
Stoecker et al., 2017).

Environmental parameters, including temperature, inorganic
nutrient availability, and light availability are all expected
to influence mixotrophy among both “phytoplankton” and
“microzooplankton” mixotrophs in Arctic Seas.

Temperature
Sub-zero sea temperatures typical for the Arctic Ocean may be
conducive to mixotrophy, particularly among microzooplankton
such as ciliates, because photosynthetic plankton are thought to
be less constrained by low temperatures than their heterotrophic
consumers (Rose and Caron, 2007). The latitudinal trends in
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mixotrophic ciliate growth rates in the Barents Sea seem to
support this idea (Franzè and Lavrentyev, 2014). However,
mixotrophic ciliates also peaked at relatively warm summer
temperatures in the Kara (Lavrentyev, 2012) and Bering
Seas (Stoecker et al., 2014). In the Fram Strait the highest
concentration of ciliates in the Arctic was found in the Atlantic
drift warm core (Lavrentyev and Franzè, 2017).

Little information is available on latitudinal or temperature
gradients in mixotrophy among phytoflagellates. Laboratory
experiments with a freshwater mixotrophic flagellate suggest that
some mixotrophs become more heterotrophic with increases in
temperature (Wilken et al., 2013). However, it is not clear that
this is a general response among mixotrophic flagellates.

Oligotrophy
Oligotrophic conditions favor bacterivorous pico- and
nanoplankton in tropical and temperate seas (Zubkov and
Tarran, 2008; Hartmann et al., 2012; Mitra et al., 2016). In
temperate seas, mixotrophic flagellates are often most abundant
during summer stratification which can result in inorganic
nutrient limitation of phytoplankton growth in the surface
mixed layer (Mitra et al., 2014). Oligotrophic conditions are
common during the ice-free season in some parts of the Arctic
including the central Arctic Ocean, Beaufort Sea and parts of the
Amundsen Sea.

Seasonally low phytoplankton biomass and small
phytoplankton cell size can, in turn, select for mixotrophic
oligotrich ciliates over strictly heterotrophic microzooplankton
(Mitra et al., 2016). In large ciliates, photosynthetic carbon could
cover a significant fraction of their metabolism (reviewed in
Stoecker et al., 2009, 2017) due to relatively low volume-specific
respiration rates (Dolan and Perez, 2000). The Barents Sea
Polar Front, where the relative abundance of mixotrophic
ciliates peaked, has relatively low phytoplankton biomass in
summer compared to receding ice edges and does not stimulate
phytoplankton productivity in summer (Reigstad et al., 2011;
Erga et al., 2014). However, large mixotrophic oligotrichs are
not restricted to oligotrophic conditions in the Arctic. Laboea
strobila was abundant under phytoplankton bloom conditions in
the Bering Sea (Olson and Strom, 2002), Kara Sea (Lavrentyev,
2012), and the Fram Straight (Lavrentyev and Franzè, 2017). In
the Gulf of Ob,M. rubrum reached its maximum of 75 µg C L−1

at total chlorophyll a >17 µg L during a cyanobacterial bloom
(Lavrentyev, 2012). Mixotrophs contributed up to 46% of total
chlorophyll a in the deep chlorophyll maximum (DCM) at the
pycnocline in the Barents Sea, where phytoplankton accumulate
in summer (Franzè and Lavrentyev, 2017).

Light
In contrast to temperate and especially low latitudes, the Arctic
is characterized by extremes in solar irradiance. During the
polar day, 24-h insolation may favor mixotrophic metabolism
over strictly heterotrophic metabolism in planktonic protists.
For example, given the same prey concentration, a mixotrophic
oligotrich grew faster under luxury light (McManus et al., 2012).
The combination of high irradiance and low inorganic nutrients
stimulates phagotrophy in many mixotrophic flagellates

and dinoflagellates (reviewed in Stoecker et al., 2017). The
proportion of phagotrophic and autotrophic-derived carbon in a
mixotrophic dinoflagellate diet changed dynamically in response
to light conditions and food availability (Riisgaard and Hansen,
2009). Mixotrophic ciliate abundance often peaks in the upper
part of the mixed layer (Putt, 1990; Rat’kova and Wassmann,
2002; Lavrentyev, 2012; Franzè and Lavrentyev, 2014; Jiang et al.,
2015). Some mixotrophic ciliates and dinoflagellates can migrate
between prey or nutrient rich deep chlorophyll maximum layers
and well-lit surface waters (Crawford and Lindholm, 1997; Ji and
Franks, 2007).

During winter and in/under sea-ice, prolonged dark or
low irradiance may also favor mixotrophic phytoplankton over
strict autotrophs. Many mixotrophic phytoflagellates and some
dinoflagellates use phagotrophy to supplement carbon budgets
when light limited (Czypionka et al., 2011; McKie-Krisberg et al.,
2015; Millette et al., 2017). Phagotrophy has been hypothesized
to be an important mechanism supporting survival and limited
growth of phytoflagellates during the polar winter (Zhang et al.,
2003).

Although mixotrophy would not appear to be an advantage
in ciliates during the dark polar winter, the plastidic ciliates L.
strobila and M. rubrum persist under the ice in West Greenland
(Levinsen et al., 2000a). The advantages of mixotrophy during
the summer may outweigh the disadvantages of obtaining and
maintaining chloroplasts during the winter. Levinsen et al.
(2000a) suggested that mixotrophic ciliates survive long periods
of darkness due to reduced metabolic demands at low winter
temperatures. During the polar winter, photo-degradation is
non-existent or minimal, which may contribute to long survival
times of plastids in the ciliates. Although mixotrophic oligotrichs
have been thought to require both algal prey and light (reviewed
in Stoecker et al., 2017), under winter conditions some species
may be able to survive and grow as heterotrophs. McManus
et al. (2012) observed that a temperate mixotrophic ciliate could
grow for several weeks in the dark when supplied with a small
dinoflagellate as food, although the dinoflagellate did not support
good growth of the ciliate in the light.

Role of Mixotrophy in the Pelagic Food
Webs
Mixotrophy has important consequences for primary and
secondary production and transfer of carbon to upper levels
in Arctic planktonic food webs. Major differences between
an Arctic food web with mixotrophy and the microbial loop
sensu Azam et al. (1983) are conceptualized in Figure 3.
In the traditional microbial loop, bacteria are consumed by
heterotrophic nanoflagllates, which are then consumed by larger
grazers such as ciliates. Most carbon collected by bacteria is
respired in the subsequent trophic steps. In the mixotrophic
microbial loop bacteria are consumed by both photosynthetic
(exemplified by mixotrophic Micromonas) and heterotrophic
nanoflagellates. The flagellates then become food for ciliates,
which in addition to phagotrophy also use functional chloroplasts
acquired from their photosynthetic prey. Thus, at each trophic
step, energy dissipated through respiration is partially or
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FIGURE 3 | Conceptual model of Arctic food web with mixotrophy. Yellow

arrows indicate flow of energy from the sun to photosynthetic organisms

(autotrophs and mixotrophs); Gray arrows indicate flow of carbon to

heterotrophs; Green arrows indicate major pathways of carbon flow to or from

mixotrophs. HCIL, Strictly heterotrophic ciliates; MCIL, Mixotrophic ciliates;

HNF, Heterotrophic nanoflagellates; DOC, Dissolved organic carbon; HDIN,

Heterotrophic dinoflagellates.

completely replaced by solar energy. This is particularly
important under oligotrophic conditions, when inorganic
nutrient supply limits primary production. With mixotrophy
among the photosynthetic plankton, primary production at the
base of the food web can be enhanced (Zubkov and Tarran, 2008;
Mitra et al., 2014). Studies in freshwater ecosystems indicate
that mixotrophy can stabilize the stoichiometry (C:N:P) of the
primary producers, which may in turn stabilize the efficiency of
trophic transfer to secondary producers under varying nutrient
regimes (Moorthi et al., 2017). Another benefit may be enhanced
survival of plastidic ciliates and flagellates in a physiologically
active state during the polar winter (Levinsen et al., 2000a; Zhang
et al., 2003).When light becomes available, mixotrophic plankton
can rapidly respond with high growth rates despite low sea
temperatures (Franzè and Lavrentyev, 2014).

Laboratory studies indicate that plastidic oligotrichs ingest
and digest phytoplankton and, at least in temperate waters
under moderate light intensities, derive much of their carbon,
and probably almost all of their nitrogen and phosphorus
from phagotrophy (Stoecker et al., 1988; McManus et al.,
2012; Schoener and McManus, 2012). Particularly under
prey limitation, photosynthesis can increase their gross
growth efficiency (McManus et al., 2012) probably because
photosynthesis can cover all or part of their respiratory demand
for carbon in the light (Stoecker and Michaels, 1991). In the food

web with mixotrophy, the sun’s energy is directly transferred to
relatively large size microzooplankton (the mixotrophic ciliates)
as well as to traditional phytoplankton (such as diatoms and
phytoflagellates). This augments microzooplankton production,
which is important because microzooplankton are a large
component of the diet of large size Arctic copepods, such
as Calanus spp. (Campbell et al., 2009; Saiz et al., 2013).
Mixotrophic ciliates in particular are a preferred prey of
copepods (Levinsen et al., 2000b; Dutz and Peters, 2008). Such
mixotrophic interactions have the potential to temporarily
sustain mesozooplankton under low phytoplankton biomass
conditions such as occur pre- and post-bloom inmany polar seas.
Modeling indicates that mixotrophy has the potential to increase
food web transfer efficiencies, help retain inorganic nutrients
(nitrogen and phosphorous) in the upper water column, and
enhance transfer of carbon to larger size organisms (Mitra et al.,
2014; Ward and Follows, 2016).

Potential Significance of Mixotrophy in the
Changing Arctic
Below we outline three specific examples in which mixotrophs
may be affected by changing climate and or how this could affect
Arctic ecosystems now and in the future:

1. McMinn and Martin (2013) have suggested that
phytoplankton will need to survive the same period of
seasonal darkness, but at higher temperatures in the future,
thus exhausting stored metabolic resources more quickly.
In dark survival, phagotrophic phytoflagellates can have an
advantage over diatoms (Zhang et al., 2003; Millette et al.,
2017). This could result in changes in the composition of
spring blooms, with an increase in phytoflagellates over
diatoms.

2. Some areas of the Arctic are becoming more oligotrophic
due to increased stratification. For example, offshore areas in
the Western Arctic Ocean are becoming more oligotrophic.
These changes have already resulted in the phytoplankton
composition shift toward small sized-taxa in the Canada
Basin (Li et al., 2009). Under such conditions, the presence
of mixotrophy among photosynthetic flagellates and ciliates
may moderate the negative climate change impacts on energy
transfer to higher trophic levels and on particle flux out of
surface waters (Figure 3).

3. Mixotrophy can facilitate blooms of unpalatable or harmful
algae (Burkholder et al., 2008). Incursions of warmer waters,
containing potentially bloom-forming, harmful species,
already occur in the Arctic. Toxic Alexandrium, Dinophysis,
Karlodinium, and Chrysochromulina spp. are all mixotrophic
taxa that often proliferate in highly stratified or freshened
waters and have been reported from the Arctic (Table 1).

To understand plankton dynamics in a changing Arctic
environment, we obviously need information on the magnitude
and spatial distribution of the physical and chemical changes.
To understand and predict how these changes will alter
the structure and function of Arctic planktonic food webs,
we need information about alterations near the base of
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the food web, among the microbial plankton (bacteria and
protists) because these changes will affect higher trophic levels
through prey availability, palatability and size and alterations
to biogeochemical cycles. In the Arctic, as elsewhere in
aquatic food webs, many planktonic protists are not strict
autotrophs or heterotrophs and this can have profound effects
primary production and secondary production. We need to
incorporate mixotrophy into our thinking, into our work
on cruises and laboratory studies of Arctic “phytoplankton”
and “microzooplankton,” and into models of Arctic marine
ecosystems.

CONCLUSIONS AND QUESTIONS FOR
FUTURE RESEARCH

In summary, many mixotrophic flagellates are found in Arctic
waters, but there is only one reported field investigation (Sanders
and Gast, 2012) of mixotrophy from Arctic Seas. Most of
the data on Arctic phytoplankton relate to bloom-forming
diatom species and Phaeocystis pouchetti but little data exist
on the distribution and abundance of potentially mixotrophic
phytoflagellate taxa. Mixotrophy by taxa that are traditionally
categorized as “phytoplankton” has been overlooked in most
Arctic seas where it may be particularly important in oligotrophic
waters during summer and in light limiting conditions for
phytoplankton growth year round. Under-ice phytoplankton
blooms appear to be increasing in the Arctic (Arrigo et al.,
2014); mixotrophs as well as diatoms may be a component of
some of these blooms. Field investigations in the Antarctic have
shown that mixotrophic flagellates are an important component
of sea-ice algal assemblages (Moorthi et al., 2009) but the role of
mixotrophs in this habitat in the Arctic appears to be unexplored.

An important task for future research is to determine
if mixotrophy among flagellates is widespread in the Arctic
and its role in planktonic food webs. For example, in
the study by Sanders and Gast (2012), Micromonas and
other mixotrophic flagellates preferred inert beads over the
commonly used fluorescently labeled bacteria. In real life,
they may consume a variety of prokaryotic and eukaryotic
microorganisms. Genomic techniques for identification and
quantification of populations will need to be combined with
innovative measurements of both feeding and photosynthesis
to accomplish this task (Anderson et al., 2017; Terrado
et al., 2017). The degree of mixotrophy in protists (i.e.,
phagotrophy vs. photosynthesis) can be difficult to establish and
its investigation requires novel approaches, involving both field
and laboratory experiments. One important question is the effect
of warming water temperatures and stratification on the balance
between heterotrophy and autotrophy both within species
and within assemblages of phytoplankton. Will mixotrophic
flagellates increase in dominance because they can survive winter
darkness better than strictly autotrophic phytoplankton at higher
temperatures? Will stronger stratification and oligotrophy in
summer in some regions increasingly favor mixotrophs over
strictly autotrophic phytoplankton? How will this influence
zooplankton populations and higher trophic levels?

Mixotrophic ciliates are undoubtedly a major component
of pelagic food webs across the Arctic and surprisingly, also
a major component of photosynthetic biomass. The routine
methods of chlorophyll a collection need to be revised in the
light of recent data showing the importance of green ciliates
in total photosynthetic biomass. Specifically, vacuum filtration

through membrane filters may result in significant losses of
mixotrophic chlorophyll as fragile plankton cells are destroyed

and release their cellular content to the filtrate. We still know
little about the physiological ecology of mixotrophs in polar

waters and a number of important questions remain to be

answered. Is high mixotrophic ciliate biomass linked to blooms
of particular types of phytoplankton as a source of nutrients and

plastids? Are Micromonas sp. and other mixotrophic flagellates
such as cryptophytes the primary prey and source of plastids
for ciliates? This appears to be true for Mesodinium spp. which
consume certain cryptophytes (Johnson et al., 2016), but is it true
for plastid-retaining oligotrichs as well? Micromonas is a good
source of plastids for at least some species of plastid-retaining
oligotichs (Stoecker et al., 1988/1989). How does seasonal 24-h
light or darkness influence their survival and growth? What

effects domixotrophs have on primary and secondary production
in the Arctic? How does mixotrophy among protistan prey
influence trophic transfer efficiencies to macrozooplankton and
fish? Does a mixotrophic microbial food web, starting with
small mixotrophic flagellates that are in turn consumed large

mixotrophic ciliates, support zooplankton production during
most of the year? To answer these questions will take a
variety of approaches: field sampling to quantify populations
of mixotrophic and non-mixotrophic planktonic protists,
laboratory and field experiments to determine the contributions

of phagotrophy and photosynthesis to the metabolism and
growth of Arctic mixotrophs, experimental manipulations to
determine the effects of temperature, irradiance, and inorganic
nutrient concentrations and ratios on the balance of heterotrophy

and autotrophy within mixotrophs as well as the contribution of
strict heterotrophs, strict autotrophs and mixotrophs to plankton
assemblages. Modeling will be necessary to understand the
effects of mixotrophy on food webs and biogeochemical cycling
in Arctic planktonic ecosystems and to predict what effects
climate change might have on mixotrophs and their roles in
Arctic Seas.
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