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This work presents two new methods to estimate oceanic alkalinity (AT), dissolved

inorganic carbon (CT), pH, and pCO2 from temperature, salinity, oxygen, and

geolocation data. “CANYON-B” is a Bayesian neural network mapping that accurately

reproduces GLODAPv2 bottle data and the biogeochemical relations contained therein.

“CONTENT” combines and refines the four carbonate system variables to be consistent

with carbonate chemistry. Both methods come with a robust uncertainty estimate

that incorporates information from the local conditions. They are validated against

independent GO-SHIP bottle and sensor data, and compare favorably to other

state-of-the-art mapping methods. As “dynamic climatologies” they show comparable

performance to classical climatologies on large scales but a much better representation

on smaller scales (40–120 d, 500–1,500 km) compared to in situ data. The limits of these

mappings are explored with pCO2 estimation in surface waters, i.e., at the edge of the

domain with high intrinsic variability. In highly productive areas, there is a tendency for

pCO2 overestimation due to decoupling of the O2 and C cycles by air-sea gas exchange,

but global surface pCO2 estimates are unbiased compared to a monthly climatology.

CANYON-B and CONTENT are highly useful as transfer functions between components

of the ocean observing system (GO-SHIP repeat hydrography, BGC-Argo, underway

observations) and permit the synergistic use of these highly complementary systems,

both in spatial/temporal coverage and number of observations. Through easily and

robotically-accessible observations they allow densification of more difficult-to-observe

variables (e.g., 15 times denser AT and CT compared to direct measurements). At

the same time, they give access to the complete carbonate system. This potential

is demonstrated by an observation-based global analysis of the Revelle buffer factor,
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which shows a significant, high latitude-intensified increase between+0.1 and+0.4 units

per decade. This shows the utility that such transfer functions with realistic uncertainty

estimates provide to ocean biogeochemistry and global climate change research. In

addition, CANYON-B provides robust and accurate estimates of nitrate, phosphate, and

silicate. Matlab and R code are available at https://github.com/HCBScienceProducts/.

Keywords: carbon cycle, GLODAP, marine carbonate system, surface pCO2 climatology, Revelle buffer factor

increase, machine learning, nutrient estimation

INTRODUCTION

The ocean absorbs about 25% of the annual anthropogenic
carbon dioxide (CO2) emissions (Le Quéré et al., 2018),
moderating the rate and severity of climate change. Such massive
input of CO2 generates sweeping changes in the chemistry of
the carbon system, including an increase in the concentration
of dissolved inorganic carbon (CT) and bicarbonate (HCO−

3 ) as
well as a decrease in pH and in the concentration of carbonate
(CO2−

3 ). These changes are collectively referred to as “ocean
acidification.” The pH of ocean surface water has decreased by
0.1 units since the beginning of the industrial era, corresponding
to a 26% increase in hydrogen ion concentration, and the total
decrease by 2100 will range from 0.14 to 0.4 units depending
on emission scenario (Gattuso et al., 2015). These changes are,
however, quite variable regionally and with depth (Orr et al.,
2005). Elucidating the biological, ecological, biogeochemical, and
socioeconomic consequences of ocean acidification (Kroeker
et al., 2013; Gattuso et al., 2014) therefore requires a fine
resolution of ocean CO2 data in space and time.

Until recently, there was no reliable sensor to assess the
chemistry of the carbonate system and discrete samples collected
by ships were therefore needed. Two databases compile these
historical data. The Global Ocean Data Analysis Project version
2 (GLODAPv2, Key et al., 2015; Olsen et al., 2016) provides
a quality-controlled, internally consistent data product for the
world ocean that includes key variables of the carbonate system
such as CT and total alkalinity (AT). The Surface Ocean CO2

Atlas (SOCAT, Bakker et al., 2016) provides quality-controlled
data of the CO2 fugacity for the global surface ocean and
coastal seas. These data collection and harmonization efforts are
tremendously useful to the modeling community (e.g., Eyring
et al., 2016) and the marine carbon cycle research community at
large. However, these efforts also show the numerous limitations
to date: data are sparse in many regions, few data are available
for the ocean interior, the temporal resolution is low with much
fewer data in the 1970s and 1980s than today, and observations
are biased toward the summer months of both hemispheres
(about 4 times more profiles in GLODAPv2 during the three
summer months than during the three winter months; Figure 1).

There is a need to circumvent such observational gaps,
and multiple efforts are dedicated to improve the geographical,
vertical, and temporal coverage of carbonate data. However,
it is unlikely that discrete sampling will increase considerably
considering the cost of ship time and the size and remoteness
of areas that are undersampled. Autonomous platforms such as

gliders and profiling floats have great potential and are increasing
in numbers but, to date, only pH can be measured on those
platforms operationally (Johnson et al., 2016). AT derived from
empirical relationships with salinity (S), temperature (T), oxygen
(O2), pressure (P), and location (e.g., Carter et al., 2018) can
serve as the second variable required to resolve the carbonate
system (e.g., Williams et al., 2017). Other approaches have used
multiple linear regression models to determine relevant variables
(e.g., Juranek et al., 2009, 2011) and to derive surface ocean pH
(e.g., Lauvset et al., 2015). However, such methods have a domain
of application that is restricted geographically, vertically, or in
variable-space.

Here we build on the CANYON (CArbonate system and
Nutrients concentration from hYdrological properties and
Oxygen using a Neural-network) approach of Sauzède et al.
(2017), and re-develop, based on GLODAPv2 data, more robust
neural networks, “CANYON-B,” that include a local uncertainty
estimate as key element. Contrary to common views of data
based on temporal or spatial interpolation (e.g., for climatologies,
Lauvset et al., 2016), the work presented here takes a variable-
interrelation view. It thus provides mappings from one set of
variables (i.e., temperature, salinity, oxygen, pressure, location,
and time), which are easy to measure autonomously and
accurately, to another set of variables (e.g., nitrate, phosphate,
silicate, or the four carbonate system variables AT, CT, pH,
and pCO2), which are more difficult or expensive to measure.
Implicitly, water mass properties, biogeochemical relations, and
their regional anomalies are incorporated into the neural network
mappings. From the same inputs, CANYON-B provides all
four carbonate system variables at once, including a local error
estimate for each parameter.

We develop a second method, CONTENT, which combines
all four carbonate system variables to give a consistent state
of the carbonate system, i.e., the four variables jointly agree
with carbonate chemistry. Using carbonate system calculations
within the overdetermined system, we improve accuracy for
each individual variable, and add a contribution to the
local uncertainty estimate based on the consistency of these
calculations.

We validate CANYON-B and CONTENT against bottle data
from both a GLODAPv2 subset not used for neural network
development and recent GO-SHIP cruises not included in
GLODAPv2, as well as against Argo profiles of sensor data for
pCO2 and pH. Moreover, we explore the boundaries of such
mappings by discussing surface pCO2 estimates compared to 6
underway pCO2 cruises where calibrated O2 data were available,
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FIGURE 1 | Spatial and temporal coverage of quality-controlled O2 profiles built from Argo-O2 profiles and hydrographic stations. (Top): Number of months covered

by float-based or shipboard observations (assembled in GLODAPv2 or in WOD13, only using stations deeper than 250m) for the entire period since 1945 per 1◦ x 1◦

bin. (Bottom, left to right): Annual, seasonal, and latitudinal distribution of profiles from all three sources (55 623 Argo-O2, 31 980 GLODAPv2 O2, and 383 465

WOD13 O2 profiles). The number of GLODAPv2 O2 profiles has been multiplied by a factor of 2 for visibility.

and surface pCO2 derived from profiling float pH data, as well
as surface seasonality. Finally, the potential of such mappings is
explored (1) by illustrating how they can be used to combine
different observing systems on the global scale, e.g., using O2

data collections from theWorldOceanDatabase (WOD13, Boyer
et al., 2013; accessed Mar 6, 2018), GLODAPv2 or Argo to
complement SOCAT data, (2) by showing how they can serve as
transfer functions and go beyond existing data, e.g., for carbon
variable densification or to estimate realistic depth profiles of
pCO2 from solely Argo-O2 data, and (3) by demonstrating
the potential of giving access to the full carbonate system, in
order to easily derive ocean carbonate chemistry like the global
distribution of the Revelle factor based on observations.

The same CANYON-B approach is used to develop robust

mappings for the inorganic macronutrients nitrate, phosphate,

and silicate [hereafter NO−
3 or simply NO3, PO

3−
4 or simply

PO4, and Si(OH)4]. The macronutrients are essential for

oceanic primary production (Falkowski et al., 1998) and limit
phytoplankton growth in large parts of the ocean (Moore et al.,
2013). Their distribution is governed by the interplay of physical
(e.g., horizontal advection or mixing) and biological processes
(nutrient assimilation at the surface and remineralization at
depth), and can be used to infer information about the biological
carbon pump through its correlation with new production
and nutrient limitation (e.g., Koeve, 2001). However, nutrient
observations are still mostly relying on research cruise bottle
data and thus limited and expensive to acquire. A commercial
sensor that can be mounted on robotic platforms exists only for

nitrate (e.g., Johnson et al., 2013), and even then reference data
or mappings as presented here are required to calibrate its data
(Johnson et al., 2017). The estimation of nutrient distributions
including robust, local uncertainties through, e.g., CANYON-
B, thus remains of strong interest to assess nutrient supply
mechanisms, biogeochemical cycling, or impacts of climate
change. However, the remainder of this manuscript focusses on
the carbonate system. The CANYON-B approach for NO3, PO4,
and Si(OH)4 is nonetheless as thoroughly validated as for the four
carbonate system variables. Corresponding Matlab and R code
are available at https://github.com/HCBScienceProducts/.

DATA AND METHODS

CANYON-B to Provide Robust Variable
Estimates With an Appropriate Local
Uncertainty
CANYON yields estimates of macronutrient concentrations
[NO−

3 , PO
3−
4 , Si(OH)4], AT, CT, pHT, and pCO2 as a function of

simple input variables (P, T, S, O2, latitude, longitude, and the day
of the year, as well as year ofmeasurement for CT, pHT, and pCO2

to account for the anthropogenic perturbation). In CANYON, a
single neural network estimates each variable and the variable’s
uncertainty is based on a unique, globally uniform value derived
from the validation data set.

Plain feed-forward neural networks such as used for
CANYON are often “incapable of correctly assessing the
uncertainty in the training data and so make overly confident

Frontiers in Marine Science | www.frontiersin.org 3 September 2018 | Volume 5 | Article 328

https://github.com/HCBScienceProducts/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Bittig et al. Robust Estimation of CO2 Variables and Nutrients

decisions about the prediction” (Blundell et al., 2015). Moreover,
the globally constant uncertainty does not reflect reality.
Uncertainty likely differs between deep ocean and surface
predictions due to the intrinsically different variability. To
overcome this and other shortcomings, we used a Bayesian
approach to develop new neural network mappings (i.e.,
“CANYON-B”), modified the training approach, and improved
the uncertainty estimation.

Training Modifications From CANYON
The input normalizations of longitude used trigonometric
functions, sin(lon) and cos(lon), to account for the circular globe
(Sauzède et al., 2017). There were two unwelcome effects, (1)
a change of 1◦ E/W had a different magnitude depending on
longitude as the gradient of sine/cosine is not constant, and
(2) in the vicinity of the maxima and minima of sine/cosine,
the sin(lon)/cos(lon) input lost all their explanatory potential
as the gradient approached zero. These nodes were located
at 0◦, 90◦ E, 180◦, and 90◦ W, matching Eastern boundary
systems in the South Atlantic (e.g., Benguela current) as well as
the South Pacific (e.g., Humboldt current) and transected the
central/Eastern Pacific and Indian ocean. We changed the input
normalizations to

|1−mod(lon− 110◦, 360◦)/180◦| and

|1−mod(lon− 20◦, 360◦)/180◦|, (1)

which displays a steady gradient at all longitudes but for the
single-point nodes, which are moved to 20◦ E, 110◦ E, 160◦ W,
and 70◦ W (compare Lauvset et al., 2016) in order to coincide as
much as possible with large landmasses instead of ocean basins.
Moreover, the distance of Bering Strait, the separation between
North Pacific and Arctic Ocean, was artificially increased to avoid
too similar a representation in the neural networks, that is, a
spill-over of information between the two basins that are only
marginally connected through the very shallow Bering Strait.
This was achieved by compressing the latitude input inside the
Arctic for all locations west of the Lomonosov Ridge in the
Amerasian and Canada basin. The “length” of Bering Strait was
thus increased from ∼2◦ to 11◦. These modifications helped to
give a more equal influence to the lon inputs (following Bach
et al., 2015; data not shown) and to improve predictions in the
subploar North Pacific.

The day of the year was removed as an input variable, as the
underlying GLODAPv2 bottle data are not adequately seasonally
resolved in most areas. In regions where seasonal resolution and
variations exist, they can be represented by other, co-varying
inputs such as temperature. In addition, we use a decimal year as
year input for the CO2 variables (01 Jul. 2005 is 2005.5), whereas
CANYON used only an integer year causing Jan. 2005 and Dec.
2005 to be more similar than Dec. 2005 and Jan. 2006.

Finally, we adopted a stepwise training approach: Each
network topology was first trained on a climatological dataset
(Lauvset et al., 2016) and then on GLODAPv2. The weights of the
climatological networks were used to initialize the weights for the
subsequent networks. This provides adequate starting points for
the network training on the potentially scarcely distributed bottle

data in multidimensional variable space. As the climatology
covers a large portion of the domain on which CANYON-
B is used, this stepwise procedure should avoid unreasonable
predictions.

Carter et al. (2018) discuss changes in ocean pHmeasurement
practices over time (pH calculated from AT and CT,
spectrophotometric pH measurements with impure or purified
dyes) that led to inhomogeneities in pH data compilations.
They applied a range of corrections and thus created the most
consistent pH data product presently available. We therefore use
their data product for training. Note that for CANYON-B the
pH data product was adjusted to be in line with pH calculations
from AT and CT (Carter et al., 2018). As in Sauzède et al. (2017),
pCO2 was calculated from AT and CT.

Otherwise we follow a similar approach as for CANYON:
Networks are fully connected feed-forward multi-layer
perceptrons, consisting of two hidden layers with tanh activation
functions and one linear output layer. We systematically tested
network topologies up to 60 neurons in total, with the number
of neurons in the second layer not exceeding the first layer, and
with a maximum of 45 neurons in the first layer. 20% of the
data were set aside for validation and the remaining 80% used
for training. A split of this 80% into learning or testing set (and
re-shuffling for the next training epoch) for cross-validation was
no longer needed (see below). Training of the neural networks
was done using the Adam optimizer with variable learning rate
(Kingma and Ba, 2014). Individual networks were assessed and
combined into an ensemble as described below.

Bayesian Neural Network Framework for CANYON-B
ABayesian treatment introduces probability distributions instead
of single, fixed values at all stages of a model, i.e., neural
network weights, regularization parameters, but also input and
output variables (Bishop, 1995; MacKay, 1995). This comes at
the expense of computational cost, which has become tractable
thanks to variational approximations and sampling methods
that avoid the need to always treat and integrate over the full
distributions (e.g., Hinton et al., 2012; Blundell et al., 2015; Wen
et al., 2018).

Advantages of a Bayesian approach are that (1) regularization
(balance between accuracy and overfitting) comes naturally, (2)
the values of regularization coefficients can be selected using
only the training data without the need for cross-validation,
(3) confidence intervals can be assigned to the predictions of a
network, and (4) different models can be compared and assigned
a “model evidence” using only the training data (from Bishop,
1995). This allows objective comparison between networks and
network architectures, penalizing overly flexible and overly
complex models (“Occam’s razor”) (e.g., MacKay, 1992a,b).

The output of a Bayesian neural network comes with
a “most-probable” value and an uncertainty on this value.
Applying the Bayesian approach on a higher level, several neural
networks can be combined to build a “committee of neural
networks”. Committees have the advantage of showing improved
generalization behavior and that the spread of predictions
between members of the committee provides a contribution
to the estimated prediction uncertainty in addition to those

Frontiers in Marine Science | www.frontiersin.org 4 September 2018 | Volume 5 | Article 328

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Bittig et al. Robust Estimation of CO2 Variables and Nutrients

identified already, leading to more accurate estimation of
uncertainty (Bishop, 1995).

For CANYON-B, we use the evidence to build a committee
as a weighted average of networks with output yC and yi’s,
respectively,

yC =
∑N

i=1
wEvi · yi, (2)

where wEvi are the respective weights based on the networks’
evidences (Thodberg, 1996).We used themodels with the highest
evidence for the committee and stopped the series at the network
with weight wEvN+1 , which would contribute less than 2% to
the total weighted sum. N varies between 22 (for AT) and 33
individual networks (for NO3).

CANYON-B Local Uncertainty Estimation
Training of an individual Bayesian neural network provides one
uncertainty estimate with a contribution from the intrinsic noise
of the target data, σnoisei , and one arising from the distributions
of the network weights and their respective weight uncertainty,
σWUi . Both are weighted following Equation (2) to yield σnoise

and σWU, respectively. The weighted standard deviation of the
committee mean,

σCU =

√

√

√

√

√

∑N
i=1 wEvi ·

(

yi − yC
)2

∑N
i=1 wEvi −

∑N
i=1 w

2
Evi

∑N
i=1 wEvi

, (3)

provides the committee uncertainty, σCU, which together with
σnoise and σWU yield the Bayesian neural network uncertainty,
σNN:

σNN =

√

σ
2
noise + σ

2
WU + σ

2
CU . (4)

The estimated CANYON-B output uncertainty then is

σ
CANYON−B =

√

σ2meas + σ
2
NN +

∑n

j=1

(

Uj · αj
)2
, (5)

where σmeas is the measurement uncertainty of the respective
data product used for training. We use 6 µmol kg−1 AT, 4
µmol kg−1 CT, 0.005 pH, 2% NO−

3 , 2% PO3−
4 , and 2% Si(OH)4

(Olsen et al., 2016). For pCO2, σmeas follows the calculation
uncertainty of pCO2 from AT and CT (ca. 5% pCO2). For
pH, we follow Orr et al. (submitted manuscript) and add a
systematic 0.01 pH uncertainty related to “the activity coefficient
of Cl− in the buffer solutions that are used as pH standards”.
U j are the n uncertainties for the neural network inputs and αj

the input sensitivities. Only the input uncertainties of pressure,
temperature, salinity, and oxygen are considered (i.e., n= 4) with
default uncertainties of 0.5 dbar, 0.005 ◦C, 0.005, and 1% of theO2

value, respectively. Note that 1% O2 is a rather optimistic value
and appropriate for Winkler-based bottle samples, but probably
too small for most O2 sensor data.

The calculation of the weight uncertainty σWU represents
more than 90% of the CANYON-B computation time. As σWU

is typically similarly distributed and of smaller magnitude than
σCU, we parameterize σWU by σCU for practical purposes. Note
that σ

CANYON−B is a local value, mostly due to σCU but also due
to αj. For the nutrients, σmeas varies locally, too.

Carbonate System Calculations
Thermodynamic calculations within the carbonate system used
the carbonic acid dissociation constants of Lueker et al. (2000),
the hydrogen fluoride dissociation constant of Pérez and Fraga
(1987), the dissociation constant for bisulphate of Dickson
(1990), and Uppström (1974) for the ratio of total boron to
salinity. Phosphate and silicate alkalinity were included, either
directly where nutrients had been measured (GLODAPv2) or
indirectly through their CANYON-B estimates. These constants
were used for consistency with the calculations performed in
GLODAPv2 and the best practice guide for CO2 (Dickson et al.,
2007). Calculations were done by CO2SYS-MATLAB v2.0 (Lewis
and Wallace, 1998; van Heuven et al., 2011; Orr et al., submitted
manuscript). Hydrostatic pressure effects on pCO2 solubility
were neglected and pCO2 is given at 1 atm pressure and in situ
temperature. The uncertainty associated with the calculations
was estimated by CO2SYS-MATLAB’s “errors” function (Orr
et al., submitted manuscript), taking the uncertainty of the input
as well as of the equilibrium constants into account (Table 1).

CONTENT to Ensure Consistency Between
the Carbonate System Variables
With all four carbonate system variables AT, CT, pHT, as
well as pCO2 available along with an estimate of their
respective uncertainties, one obtains a fully characterized and
overdetermined carbonate system. By comparing the direct
variable estimate with the ones calculated from any two other
carbonate system variables, one can refine the estimate of the
given variable. This combination yields an estimate for each of
the four variables that is internally consistent with the state of the
CO2 system (due to the internal consistency of carbonate system
calculations, Millero, 2007).

At the same time, the mismatch between the different
estimates provides an indication of how consistent the carbonate
system is described (details below). To highlight this duality, we
call our approach CONTENT for “CONsisTency EstimatioN and
amounT.”

CONTENT is a priori independent of the source of the
variable estimate and could combine different observation
techniques, MLRs, or neural network mappings, as well as
different sets of carbonate system equilibrium constants. For the
CONTENT presented here, we use CANYON-B, which provides
AT, CT, pHT, and pCO2 from the same inputs along with a local
estimate of their respective uncertainties, as well as the set of
constants as described above.

CONTENT Calculation
Here we describe the CONTENT calculation using pCO2 as the
variable of interest. The calculation of CONTENT AT, CT, or pH
is analogous. There is a direct pCO2 estimate and three indirect
estimates calculated from the pairs AT/CT, pH/AT, and pH/CT

(Figure 2). The CONTENT pCO2 estimate, pCOCONTENT
2 , is the

weighted sum of these,

xCONTENT =
∑4

i=1
wi · xi with x = AT, CT, pH, or pCO2

(6)
where xi = pCO2,i is one of the four pCO2 estimates, either
directly fromCANYON-B or indirectly based on the calculations.
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TABLE 1 | Median uncertainties of CANYON-B AT, CT, pH, and pCO2 (σCANYON−B) as well as indirect carbonate system calculations (σcalculation) for all GLODAPv2 O2

data as input.

Variable AT / µmol kg−1 CT / µmol kg−1 pHT pCO2

σ
CANYON−B 8.8 8.8 0.018 8.2%

(33µatm at 400µatm)

σ
calculation of the indirect estimates

(median uncertainty from all

GLODAPv2 O2 data)

pCO2/CT 16.3 pCO2/AT 14.3 AT/CT 0.034 AT/CT 8.3%

(33µatm at 400µatm)

pH/CT 11.3 pH/AT 11.0 pCO2/CT 0.035 pH/AT 4.7%

(19µatm at 400µatm)

pCO2/pH 213.8 pCO2/pH 203.2 pCO2/AT 0.033 pH/CT 4.4%

(18µatm at 400µatm)

σ
CONTENT
min

(

≤ σ
CONTENT

)

7.1 6.9 0.015 3.7%

(15µatm at 400µatm)

These uncertainties are calculated point-by-point and are used for the CONTENT weights (Equation 7) and uncertainty estimation (σCONTENT
min , Equation 9). As both the uncertainty of

the carbonate system pCO2 calculations as well as the uncertainty of CANYON-B pCO2 increase nearly proportionally with pCO2, we chose to provide a relative σ in % for pCO2 rather

than an absolute σ in µatm.

The weights, wi, are determined from the uncertainty σi of the
individual CANYON-B estimate or the calculations, respectively.

wi =

1
σ
2
i

∑4
i=1

1
σ
2
i

(7)

Orr et al., (submitted manuscript) provide functions that allow
the on-line calculation of the CO2 calculation’s uncertainty
(including the uncertainty of the input variables as well as the
equilibrium constants) for a suite of CO2 system calculation
tools. Thus for CONTENT, σi is dependent on and reflects the
local conditions both for the direct CANYON-B estimate as well
as for the indirect, calculated values. Table 1 gives average values
of σi for the GLODAPv2 O2 data set.

Since CONTENT combines four variables (from CANYON-
B) with additional constraints (those of the CO2 system), its
results tend to be more tightly constrained than the individual
estimates (using only one CANYON-B). However, its meaning
may have shifted: Whereas CANYON-B and similar mapping
techniques provide a best estimate of the measured variable,
CONTENT provides an estimate of the variable that is as
consistent as possible with measurements of the complete
carbonate system, given the constraints of today’s knowledge of
the carbonate system equilibrium constants.

CONTENT Local Uncertainty Estimation
The uncertainty of the CONTENT estimate (σCONTENT;
Equation 8) can be calculated from the uncertainty of the inputs
to the weighted mean (i.e., of the direct CANYON-B and the
three calculated estimates; seeTable 1 and Equations 7, 9) and the
mismatch of these four estimates with respect to their weighted
mean (Equation 10):

σ
CONTENT = σ

CONTENT
min + σ

CONTENT
mean (8)

with

σ
CONTENT
min =

√

∑4

i=1

∑4

j=1
wi· wj · Cov(xi, xj)

where Cov (xi, xi) = σ
2
i (9)

and

σ
CONTENT
mean =

√

√

√

√

√

∑4
i=1 wi ·

(

xi − xCONTENT
)2

∑4
i=1 wi −

∑4
i=1 w

2
i

∑4
i=1 wi

(10)

where σ
CONTENT
min is the standard deviation propagated from the

uncertainty of the terms of the weighted mean (Equation 6),
σ
CONTENT
mean is the standard deviation associated with the weighted

mean due to disagreements, and Cov(xi, xj) is the covariance
between estimate xi and xj. For i = j, Cov(xi, xj) is equal to the
variance σ

2
i .

A priori, each of the four variable estimates is independent
as each of them originates from the individual CANYON-B
training and estimation for the individual variable. However,
they are parameterized by the same set of inputs and, as such,
correlations can exist between CANYON-B variables and also
between the direct CANYON-B estimate and the three calculated,
indirect estimates used for CONTENT. These correlations
manifest themselves in non-zero covariance terms Cov(xi, xj)

for i 6= j. They increase σ
CONTENT
min by ca. 20% compared to a

complete independence [i.e., Cov
(

xi, xj
)

= 0 for i 6= j], e.g., if
independently measured data were used.

σ
CONTENT
min provides an improvement by using 4 instead of

just 1 estimate (Equation 9), while σ
CONTENT
mean gives a measure

of the consistency of the estimates (Equation 10). σ
CONTENT
min is

thus a lower bound on the CONTENT uncertainty σ
CONTENT.

If all four variable estimates give the same value, the local
state of the carbonate system is described consistently by the
four CANYON-B estimates. In that case, σCONTENTmean approaches
zero (and σ

CONTENT is close to σ
CONTENT
min ; Figure 2, left).

However, a disagreement between the four variable estimates
(i.e., a large σ

CONTENT
mean ; a σ

CONTENT that is much larger than
σ
CONTENT
min ) indicates that the individually-trained CANYON-B

carbon system variables do not yield a consistent state of the
carbonate system (Figure 2, right). Like σ

CANYON−B, σCONTENT
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FIGURE 2 | Conceptual illustration of CONTENT. For each carbonate system parameter, CANYON-B provides one direct estimate (black) and three calculated,

indirect estimates (gray). (Left) The four estimates (with associated uncertainty distribution) are consistent and support each other to give the CONTENT estimate

(red). The CONTENT uncertainty is smaller than any of the input uncertainties (σCONTENT ≈ σ
CONTENT
inputs ; σ

CONTENT
mean ≈ 0). (Right) The four parameter estimates are

inconsistent (centered around different values). The additional contribution to CONTENT’s uncertainty by the mismatch of the four independent estimates provides an

uncertainty that adjusts to the local conditions.

provides an uncertainty that is adapted to the local conditions,
and additionally includes the carbonate system description’s
consistency.

CONTENT Training Data Density Indicator
Apart from σ

CONTENT/σCONTENTmean , a second quality marker for
CONTENT is obtained from the density of the underlying
GLODAPv2 training data. For any parameterization, regions
with high data coverage tend to be more robustly parameterized
than regions with fewer data. This holds also for the combination
of neural network estimates.

As a first guess to assess the data density that went into
the CONTENT estimate, we use the number of cruises in
GLODAPv2 with carbonate system observations within a box of
±20◦ of the geolocation and within ±30 days of the respective
day of the year.

The number of stations could have been used instead but
distance/density of stations per cruise can vary considerably.
Furthermore, adjacent stations tend to be strongly correlated,
while different cruises are independent, which provide a
better indicator. Other indicators are easily derivable from the
GLODAPv2 dataset (Key et al., 2015; Olsen et al., 2016).

Validation and Comparison Data
Metrics
We use three bulk metrics that are applied on the data collections
detailed below:

(1) The bias, 1, of estimated minus reference value,
(2) the (local or global) uncertainty, σ, provided by the method

for these conditions, and

(3) the ratio between (absolute) bias, |1|, and uncertainty, σ,
with a cutoff of 1, i.e., whether the uncertainty is adapted for
the local bias.

GLODAPv2 Validation Data and Post-GLODAPv2

GO-SHIP Cruise Data
We use the 20% of GLODAPv2 data set aside for validation to
assess the neural network training success of CANYON-B. For
pCO2, we compare the neural network results both against pCO2

calculated from AT and CT (as for the training) and against
pCO2 calculated from combinations of AT, CT, and pH (as with
CONTENT). The same data are used to compare CANYON-B
results with CONTENT, CANYON (Sauzède et al., 2017), and
LIR (locally interpolated regressions, Carter et al., 2018) results.
They are assessed by the metrics above. For LIR and CANYON,
part of the 20% CANYON-B validation data may have been used
for training/algorithm development so their results might be too
optimistic, but we believe them to be nonetheless in a realistic
range.

Since the completion of the GLODAPv2 collection, a number
of GO-SHIP repeat hydrography cruises were completed. Their
data are likely of as high a quality as possible (albeit not yet made
internally consistent) and they provide a completely independent
validation set. As pCO2 is not a measured variable, it was
calculated from the combinations of AT, CT, and pH to arrive at
the most likely value of pCO2 given carbonate system constraints
(i.e., comparable to the CONTENT approach). In total, this
validation set encompasses 19 cruises between 2012 and 2017
that cover all ocean basins. As part of these cruises has been
included in the pH dataset of Carter et al. (2018), only the 6 more
recent cruises (18MF20120601, 29AH20120622, 320620170703,
320620170820, 49NZ20121128, 49NZ20130106) were used for
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the pH comparison. Cruise 49NZ20111220 was excluded as there
seems to be a low pH bias (order of−0.020 to−0.015).

Surface Underway Observations of pCO2

While surface underway observations of pCO2 (by research or
voluntary observing ships) are comparatively abundant and feed
the majority of the data compiled in SOCAT unfortunately only
very few obtain O2 data of high accuracy in parallel. This hinders
a direct comparison of surface pCO2 estimates with pCO2 data
on a global scale, so that we had to limit our comparison to the
six cruises described below.

As part of the OCEANET project, surface underway
measurements of several dissolved gases were performed
onboardR/V Polarstern on six transects across the Atlantic Ocean
in spring and autumn between 2008 and 2010. Cruises were either
between Bremerhaven/Germany and Capetown/South Africa
(ANT-XXV/1, ANT-XXVII/1) or Bremerhaven/Germany and
Punta Arenas/Chile (ANT-XXIV/4, ANT-XXV/5, ANT-XXVI/1,
and ANT-XXVI/4), with Apr./May cruises heading north and
Oct./Nov. cruises heading south.

Surface O2 was measured using a fully submerged oxygen
optode (Aanderaa Data Instruments AS, Bergen, Norway; models
3830 or 3835) in a thermally insulated flow-through box (50 or
80 L volume). Seawater was continuously pumped through the
box from the ship’s keel intake (at 11 dbar) with a flow rate of
∼12 L min−1. Optodes were laboratory multi-point calibrated
and sensor drift between deployments was checked against in-situ
bottle observations.

The pCO2 measurements were done using different
instruments, all of them following the same principle where
water is led through a gas-water equilibrator with subsequent
measurement of the xCO2 in the dried, seawater-equilibrated air.
During all cruises, an infrared sensor was used for CO2 detection
(either LI-6262 or LI-7000, LI-COR Biosciences, Lincoln, NE)
which was calibrated every 3–4 h using three non-zero standard
gases between 200 and 700 ppm, traceable to WMO scale. After
each calibration run, atmospheric air was measured for∼10min.
The sea surface temperature (SST) and sea surface salinity (SSS)
were recorded by the ship’s thermosalinograph (SBE21, Seabird,
Bellevue, WA). Atmospheric pressure was taken from the ship’s
weather station that is maintained by the German weather
service. The data reduction for all cruises included the correction
to SST and was done following the recommendations given in
Dickson et al. (2007) and Pierrot et al. (2009). As an additional
reference, discrete water samples were taken up to four times a
day during all cruises. The samples were analyzed for CT and AT

in the laboratory at GEOMAR, Kiel.
For the first cruise, ANTXXIV/4, water was pumped to the

instruments using the ships rotary pump (installed at a depth of
11m). A custom-built underway pCO2 system with a combined
laminar flow/bubble equilibrator was used, which is described
in detail in Körtzinger et al. (1996). The resulting accuracy was
estimated to be±3µatm.

For the second cruise, ANTXXV/1, water was drawn from two
different inlet points (5 and 11m) using a membrane pump. The
infrared analyzer was coupled to a small (0.5 L) equilibrator. Due
to the different inlets and resulting different intake temperatures,

the dataset was treated carefully for the different settings. The
resulting accuracy is±5µatm.

For the remaining cruises, ANTXXV/5 – ANTXXII/1, water
was pumped to the instruments using the ships rotary pump
(installed at a depth of 11m). A commercially available pCO2

instrument was used (GO, General Oceanics, Miami, FL) which
uses a shower head equilibrator and is described in Pierrot et al.
(2009). The resulting accuracy was estimated to be±2µatm.

pCO2/O2 Profiling Float Observations
To date, only one experimental Argo-type float was deployed
with a pCO2 sensor (Fiedler et al., 2013), so opportunities for an
on-platform, depth profile validation of pCO2 are very limited.
Nonetheless, this float provides a unique data set since it was
recovered and redeployed several times, thus providing insight
into sensor drift thereby allowing drift and other corrections.

A HydroC pCO2 sensor (Kongsberg Maritime Contros
GmbH, Kiel, Germany) and a battery/buoyancy container were
mounted on the float’s side. Profile data were acquired on the
float’s ascent. Details about the float, the pCO2 sensor, and data
treatment can be found in Fiedler et al. (2013) and Fietzek
et al. (2013), respectively. In addition, its O2 optode data were
recalculated according to most recent knowledge, including drift
behavior, pressure compensation, response time correction, and
in-air calibration (Bittig et al., 2018). The float was deployed four
times (D4–D7) between Nov. 2010 and Jun. 2011 near the Cape
Verde Ocean Observatory (CVOO) in the eastern tropical North
Atlantic. It performed a total of 123 profiles (111 with pCO2 data)
between 200 dbar and the surface.

The float was lost and could not be recovered at the end of
deployment D7, which means that only low-resolution HydroC
data transmitted by satellite are available. This limits the potential
of post-correction of the pCO2 data, notably the sensor’s time lag
correction (see Fiedler et al., 2013, for details), and so we group
D4 – D6 separately from D7.

Fiedler et al. (2013) give a sensor accuracy for profile data
of 10–15µatm when compared to pCO2 calculated from in-situ
samples of CT and AT in areas of low gradients.

pH/O2 Profiling Float Observations
At present, ISFET-based pH sensors (Johnson et al., 2016) are
the only operationally available carbonate system sensors that
can be used on floats. Such observations provide important
insight into the state of the carbonate system. As part of the
SOCCOM (Southern Ocean Carbon and Climate Observations
and Modeling) project, several BGC-Argo floats with pH sensors
were deployed in the Southern Ocean (e.g., Johnson et al., 2017).
Williams et al. (2017) used data from these floats in combination
with an MLR-based estimate of AT to estimate surface pCO2

in the Southern Ocean with a relative standard uncertainty of
2.7% (11 at 400µatm). The floats used are WMO 5904395 in
the South Pacific subtropical zone, 5904396 in the South Pacific
subantarctic zone, 5904469 in the South Atlantic polar antarctic
zone, and 5904468 in the South Atlantic seasonal sea ice zone (see
Figure 7 for float location).
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Transfer Data Set of Quality-Controlled O2

Profiles
Quality-controlled and calibrated data of O2 profile data

were compiled using both shipboard hydrographic stations

(WOD13 and GLODAPv2) as well as Argo-O2 profiles accessed
from various sources. WOD13 data are Northern hemisphere-

and coastal ocean-focused, while GLODAPv2 O2 profiles

have a globally balanced distribution (Figure 1). Ship-based
observations cover mostly the decades before 2010, and are

strongly biased toward summer in both hemispheres while Argo-

O2 float data have a focus on the Southern Ocean and the

subpolar North Atlantic. They are mostly limited to the last
decade and they are seasonally unbiased.

In order to exclude coastal/shelf stations we used all O2

profiles from WOD13 after Jan 1, 1945 that sampled to at least
a depth of 250m. Data were additionally quality controlled for
reasonable ranges of T, S, and O2, which leaves a total of 383 465
profiles between Sep 4, 1945, and Apr 21, 2017.

From GLODAPv2, only those data were used where salinity

and oxygen had both a good primary QC (WOCE-type flag 2

meaning “acceptable”) as well as where they had been made

internally consistent by a crossover analysis (secondary QC flag

1). In the Mediterranean, only one zonal repeat hydrography

section exists that does not intersect with any other sections,
which prevents a crossover analysis there. Therefore, the second

condition was relaxed (secondary QC flag 0) for the two cruises

in GLODAPv2 across the Mediterranean. Moreover, there had to

be at least 5 samples per profile. These criteria matched to 31 980

profiles from 521 cruises between Jul. 24, 1972, andMay 20, 2013.

For Argo, a total of 262 floats with adjusted and quality

controlled O2 data were obtained from the Argo Global Data
Assembly Centre (GDAC) at Coriolis (ftp.ifremer.fr/ifremer/

argo/) on May 15, 2018 (Argo, 2000). They encompass 38 622
CTD-O2 profiles between Feb. 24, 2005, and May 14, 2018.
In addition, calibrated data of 84 Argo-O2 floats deployed

by the University of Washington (http://runt.ocean.washington.
edu/o2/) were included in the transfer data set. This excludes
floats with a calibration accuracy estimate larger than 5 µmol

kg−1 as well as floats covered by SOCCOM, which are already
included in the GDAC data. This adds a total of 14 347 profiles
between Oct. 26, 2005, and Aug. 24, 2015. Moreover, data from
2 floats consisting of 401 calibrated O2 profiles between Sep.

27, 2013 and Dec. 6, 2016, (see Bittig and Körtzinger, 2017) as

well as from 12 floats deployed as part of the remOcean project

with 2 253 profiles (Oct. 24, 2012–Apr. 13, 2018) were added.
The Argo-O2 data set contains 360 individual floats with 55
623 calibrated profiles (Feb. 24, 2005–May 14, 2018) with global

coverage and a focus on the Southern Ocean and the North
Atlantic.

For comparison, there are 13 916 profiles with concurrent AT

and CT observations in GLODAPv2 within the three decades it

covers. The GLODAPv2 O2 data set encompasses 31 980 profiles

for the same period, which represents already a densification by
a factor of 2.3. The complete transfer data set contains about
470 000 O2 profiles distributed over 7 decades, i.e., an average

densification by a factor of 15. The number of GLODAPv2
NO3 profiles is 27 277, i.e., the transfer data set represents a
densification of 7.4.

Revelle Factor R
The Revelle factor, R, characterizes the capacity of the carbonate
system to take up more CO2. In detail, it relates the relative
change in pCO2 to the associated relative change in CT.

R =

1pCO2
pCO2

1CT
CT

Egleston et al. (2010) provide an explicit formula to calculate R
from the state of the carbonate system, given by the combination
of any two carbonate system variables. A higher R means that a
larger change in pCO2 is needed to actually result in a respective
change in the ocean’s carbon content CT, i.e., the oceans CO2

uptake capacity is lower.
With CONTENT, we can derive CT and AT from any Argo-O2

profile or any other set of CTD-O2 data, thus largely expanding
the number of R estimates compared to using carbonate system
data alone.

DATASET RESULTS AND ANALYSIS

Intercomparability of
CANYON/CANYON-B/CONTENT/LIR
Table 2 gives a summary of the performance of CANYON,
CANYON-B, CONTENT, and LIR on the combined 20%
GLODAPv2 validation bottle data and the post-training/-
GLODAPv2 cruise bottle data (see section Assessment of
CANYON-B and CONTENT for detailed results). The metrics
shown here can be used as global average statistics.

It should be stressed that similar global (bulk) statistics
between methods do not imply that they give the same result.
E.g., the NO3 bias for CANYON-B and LIR, or the AT bias for
CANYON and LIR show almost identical distribution (Table 2,
Figure 4). Nonetheless, the difference between both estimates
has a root-mean-square error (rmse) of 0.53 µmol kg−1 NO3

and 8.7 µmol kg−1 AT. This is in the same order of magnitude
as the rmse of the bias 1 to the reference data, i.e., global
bulk statistics can be the same, but their estimates still are
quite different, which is important to consider when choosing
a particular estimation method. If there is no particular reason
to favor a given method, it is probably wise to average different
approaches, e.g., a neural network mapping (CANYON-B or
CONTENT) with a regression method (e.g., LIR).

Assessment of CANYON-B and CONTENT
GLODAPv2 and Post-GLODAPv2 Validation Data to

Assess Training Success and Generalization Skill
The distributions of 1, σ, and the fraction where |1| > σ that
resulted from the comparison with the GLODAPv2 validation
data set are given in Figure 3 against depth for each of the 7
CANYON-B variables [NO3, PO4, Si(OH)4, pCO2, AT, CT, and
pH] with their median as well as 10/90th percentiles. For pCO2,
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TABLE 2 | Global statistics of the performance of CANYON (Sauzède et al., 2017), CANYON-B, CONTENT, and LIR (Carter et al., 2018; version 2.0.1) on the combined

20% validation GLODAPv2 bottle data and the post-training/-GLODAPv2 cruise bottle data: Bias 1 with root-mean-square error (rmse) as well as 10/50/90th percentiles,

estimated uncertainty σ with 10/50/90th percentiles, and fraction of bias exceeding uncertainty in % for underestimation, overestimation, and the sum of both (– / + /
∑

),

respectively.

Variable Method Bias 1 Bias 1 Uncertainty σ |1| > σ / %

rmse 10 / 50 / 90th 10 / 50 / 90th – / + /
∑

NO3 / µmol kg−1 CANYON 0.93 −0.82 / −0.02 / +0.80 0.95 / 1.10 / 1.21 6.8 / 6.8 / 13.6

CANYON-B 0.68 −0.55 / +0.00 / +0.57 0.82 / 0.99 / 1.11 3.9 / 4.2 / 8.2

LIR 0.84 −0.58 / +0.00 / +0.63 1.07 / 1.32 / 1.36 3.0 / 3.7 / 6.7

PO4 / µmol kg−1 CANYON 0.066 −0.060 / +0.002 / +0.066 0.068 / 0.078 / 0.086 7.1 / 8.1 / 15.2

CANYON-B 0.051 −0.044 / +0.002 / +0.052 0.059 / 0.071 / 0.080 4.6 / 5.9 / 10.5

Si(OH)4 / µmol kg−1 CANYON 3.4 −2.7 / +0.3 / +3.3 3.0 / 3.2 / 4.3 6.8 / 8.6 / 15.4

CANYON-B 2.3 −1.9 / +0.1 / +2.0 2.4 / 2.8 / 3.9 4.4 / 4.2 / 8.5

AT/ µmol kg−1 CANYON 7.3 −5.9 / +0.3 / +6.5 9.5 / 9.5 / 9.6 3.7 / 4.4 / 8.0

CANYON-B 6.3 −4.7 / +0.2 / +4.9 8.7 / 8.9 / 9.3 2.4 / 2.3 / 4.7

CONTENT 6.2 −5.5 / −0.5 / +4.1 7.9 / 9.3 / 12.3 2.5 / 1.4 / 3.9

LIR 9.9 −5.5 / +0.6 / +6.6 4.5 / 6.0 / 8.8 9.1 / 11.2 / 20.3

CT/ µmol kg−1 CANYON 9.0 −7.8 / −0.2 / +7.2 11.3 / 11.3 / 11.4 5.2 / 4.8 / 10.0

CANYON-B 7.1 −6.0 / −0.2 / +5.0 8.6 / 8.8 / 10.3 3.7 / 3.3 / 7.0

CONTENT 6.9 −4.7 / +0.6 / +5.9 7.7 / 9.1 / 11.8 2.6 / 3.3 / 6.0

pH CANYON* 0.019 −0.011 / +0.006 / +0.023 0.022 / 0.022 / 0.022 3.5 / 11.2 / 14.7

CANYON-B 0.013 −0.012 / −0.000 / +0.012 0.018 / 0.018 / 0.019 3.8 / 4.5 / 8.3

CONTENT 0.013 −0.009 / +0.002 / +0.015 0.017 / 0.019 / 0.023 2.5 / 5.4 / 7.9

LIR 0.016 −0.016 / −0.003 / +0.013 0.015 / 0.020 / 0.021 7.0 / 5.6 / 12.6

pCO2f(CT,AT,pH)/ µatm CANYON 23 −29 / −6 / +13 30 / 40 / 70 3.9 / 1.3 / 5.1

CANYON-B 20 −24 / −4 / +10 29 / 41 / 81 1.9 / 0.6 / 2.4

CONTENT 15 −14 / +1 / +14 17 / 22 / 40 3.5 / 3.4 / 6.8

*CANYON pH was trained on a not homogenized pH data set.

we give the distribution against pCO2 calculated from AT and
CT (48 k samples) as well as against pCO2 calculated from the
combination of AT, CT, and concurrent pH where available (9.5 k
samples for the validation set) to account for the conceptual
difference between CANYON-B and CONTENT. Apart from
pH, biases are in general comparable between all methods, i.e.,
their median is close to zero and 10/90th percentiles are of similar
size. The percentiles of CANYON-B are slightly smaller than
those for CANYON. In addition, CANYON CT seems to have
a small negative bias in deep waters. For all variables but pCO2,
CANYON-B has a lower uncertainty σ than CANYON as well as
a smaller fraction of bias exceeding uncertainty, resulting from a
better co-location of high/low uncertainties with high/low biases.
In particular, the increase in bias toward the surface (upper 500–
1,000 dbar) seen for all methods is accompanied by a higher
local uncertainty for CANYON-B and CONTENT, leading to a
smaller exceedance fraction compared to CANYON. In addition,
CANYON Si(OH)4 shows a considerable increase in |1| > σ in
intermediate waters, i.e., a higher fraction of data with high bias
that is not accompanied by an elevated uncertainty. LIR estimates
of NO3, pH, and AT show a comparable bias to CANYON-
B and CONTENT. However, their uncertainty is of a different

character and shows a stronger decrease with depth. For NO3,
LIR uncertainties are higher than CANYON-B uncertainties
above 4,000 dbar, while for pH they intersect around 1,500 dbar.
Except for very deep pH (>4,000 dbar), the two methods show
a comparable |1| > σ distribution for NO3 and pH. However,
LIR AT uncertainties are with up to a factor of 2 smaller than
CANYON-B or CONTENT uncertainties below 2,000 dbar. This
comes at the cost of a fraction |1| > σ that is an order of
magnitude higher for LIR AT. Finally, the bias of pCO2 calculated
from AT and CT is smallest for CANYON-B and CANYON
estimates, while CONTENT estimates match pCO2 calculated
from the combination of AT, CT, and pH. In both cases, predicted
CONTENT pCO2 uncertainties are about half the CANYON-
B and CANYON uncertainties. At the same time, the fraction
of |1| > σ associated with the smaller CONTENT pCO2 σ is
about an order of magnitude higher than their CANYON-B and
CANYON counterparts for the pCO2 = f(AT, CT) validation set,
which is reduced to about a factor of 5 higher for the pCO2 =

f(AT, CT, pH) validation set.
As a second, independent data set we use data from those

recent GO-SHIP cruises that have not been included in the
GLODAPv2- or Carter et al. (2018)-based training data. Since
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FIGURE 3 | Performance of CANYON (brown), CANYON-B (green), CONTENT (blue), and LIR (purple) on the GLODAPv2 validation data set of the CANYON-B

training. Panels for each variable give the bias 1 to validation data, the estimated uncertainty σ, and the fraction of bias exceeding uncertainty against depth. Thick

lines give the median, thin lines the 10/90th percentiles, and pale-colored dots the data. There are two panels for pCO2, one for comparison against pCO2 calculated

from measured AT and CT, and one for pCO2 calculated from the combination of AT, CT, and pH. Estimates between methods are unbiased (but for pH) and mostly

differ in their uncertainty estimate and whether the uncertainty is appropriate under the given conditions (ratio 1 to σ).

most of these cruises measured AT, CT, and pH, the reference
pCO2 has been calculated from their combination and thus
reflects the most likely pCO2 derived from internally consistent
carbonate system calculations (Figure 4). The nutrient estimates
for CANYON-B, CANYON, and LIR (only NO3) are unbiased,
while CANYON-B shows the smallest standard deviation in1. In
addition, predicted σ is smallest for CANYON-B, and CANYON-
B and LIR show the smallest fraction of |1| > σ. Estimates
of AT, CT, and pH are unbiased for all methods except for
CANYON pH, as the training data were a mixture of calculated
and spectrophotometric pH. At the same time CONTENT biases
show the smallest standard deviation, followed by CANYON-
B. The uncertainty distribution of CONTENT is considerably
wider (i.e., less peaked) than for CANYON-B or CANYON,
and CANYON-B and CONTENT shows a smaller predicted
σ than CANYON. At the same time, CONTENT shows the
smallest |1| > σ fraction, followed by CANYON-B, with an
improvement of at least a factor of 2 compared to CANYON.
LIR’s pH uncertainty estimation is comparable to CONTENT’s,
however, LIR shows a twice as high fraction of |1| > σ. LIR’s
AT uncertainty, in contrast, is considerably smaller than for
all other methods, but at the same time the fraction of bias
exceeding uncertainty is almost an order of magnitude higher.
pCO2 estimates from CANYON and CANYON-B (based on
calculations from AT and CT) are slightly biased low by −9 and
−7µatm, respectively, while CONTENT is unbiased to reference

pCO2 (calculated from the combinations of AT, CT, and pH)
and shows the smallest standard deviation in 1. The pCO2

uncertainty estimate of CONTENT is about half the size of
CANYON-B’s or CANYON’s (median 23 vs. 43 and 42µatm,
respectively). While CANYON-B shows the smallest fraction of
1 > σ, CONTENT’s halved σ elevates its |1| > σ fraction only
by a small amount (factor 2 or 2%).

Generally the CANYON-B neural networks are more robust
than their CANYON counterparts. This is not entirely surprising,
as CANYON-B uses an ensemble of neural networks for
each variable (compared to a single “best-performing” one
for CANYON) as well as other techniques to better assess
uncertainty of the models (Blundell et al., 2015; Gal and
Ghahramani, 2016). Their bulk mean biases are comparable and
close to zero. The crucial difference lies in (1) in a higher fraction
of correct estimates in the right place and (2) better knowing
when this may not be the case, i.e., having a more realistic,
adapted uncertainty: With a CANYON-B uncertainty that is in
general smaller than for CANYON, the fraction of validation data
that are inside these bounds is at least as high as for CANYON,
but mostly larger (Figures 3, 4). This is a clear performance gain
of CANYON-B.

The difference of CONTENT with respect to CANYON-B is
that it regards the entire carbonate system, not just one of its
variables. This is most prominently reflected in the distribution
of σ

CONTENT, which shows the broadest (i.e., least peaked) of
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FIGURE 4 | Performance of CANYON (brown), CANYON-B (green), CONTENT (blue), and LIR (purple) on recent GO-SHIP data that have not been part of the

GLODAPv2 training, for NO3, PO4, SiOH4 (left column) and AT, CT, pH, and pCO2 (right column). pH data have been converted to be consistent with “calculated pH”

(see Carter et al., 2018) and pCO2 was calculated from the combination of AT, CT, and pH. Left panels show the bias 1 distribution (with statistics), right panels the

uncertainty σ distribution (with statistics), and the map the spatial data distribution.

all uncertainty distributions (Figure 4). In addition, elevated
σ
CONTENT levels follow oceanographic features such as fronts or

particular current systems (e.g., Figure 11), which increases our
confidence. Through σ

CONTENT
mean , it incorporates the consistency

of the entire carbonate system. In consequence, the CONTENT
estimates are probably better suited for calculations on the
CO2 system (within the limits of today’s carbonate system

characterization; e.g., Orr et al., submitted manuscript) than
estimates by the other methods, which focus on reproducing
an individual variable. At the same time, σ

CONTENT
mean tends to

be a small contribution to σ
CONTENT (e.g., Figures 7, 8), i.e.,

CANYON-B’s CO2 variables are approximately coherent to start
with (which had not been the case with CANYON; data not
shown).
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A particular note should be made on pH data. Carter
et al. (2018) describe inconsistencies between pH from different
observation methods, which have also been present in the
original GLODAPv2 pH training data of Sauzède et al. (2017).
Thus, CANYON pH suffers from these inconsistencies and gives
biased pH (Figures 3, 4). But also LIR and CANYON-B, while
being unbiased for NO3 and AT, give slightly different pH
estimates despite using the same homogenized pH data set of
Carter et al. (2018). Their difference is that the LIR mapping
was done with pH in line with “purified spectrophotometric
pH,” which was then converted to “calculated pH” for our
comparison, while the training of CANYON-B was done with the
“purified spectrophotometric pH” observations converted to be
in line with “calculated pH” before the neural network mapping.
CONTENT pH results are also slightly offset to both LIR and
CANYON-B (Figures 3, 4).

This indicates that there are still some unresolved issues
in homogenizing and correcting different pH observation
techniques, but also that such a homogenization must be
accompanied by assuring that it fits with our (re-characterized)
understanding of the oceanic carbonate system. It appears that
calculations that involve pH made consistent with “calculated
pH” (following Carter et al., 2018) still don’t lead to fully
consistent results for pH. This is underlined by the comparison
of validation results for CANYON-B and CONTENT pCO2

(Figures 3, 4). pH plays a key role in reducing the CONTENT
uncertainty for pCO2 (see also Orr et al., submitted manuscript).
In fact, both the AT/pH and CT/pH pairs give smaller pCO2

uncertainties than the direct CANYON-B pCO2 (Table 1),
despite our (measurement) pH uncertainty being already rather
conservative. The pH estimate thus has a major influence
on CONTENT pCO2. A bias in pH or systematic issues
with the carbonate system equilibrium constants would impact
CONTENT pCO2, for which we see a small offset to CANYON-
B pCO2 (order 5µatm). CANYON-B pCO2 is most consistent
with its training data, i.e., pCO2 calculated from AT and CT,
while CONTENT pCO2 is consistent with pCO2 calculated
from all carbonate system variables (Figure 3). These small
inconsistencies as well as the alignment of pH the different types
of observations are a pressing issue, which is hopefully resolved
soon.

pCO2 Profiling Float Data
The depth-time evolution of pCO2 float sensor data (Fiedler et al.,
2013) and CANYON-B or CONTENT pCO2 (Figure 5) give a
similar picture as for the bottle data: profile structure (e.g., 200
dbar to surface pCO2 gradient, location of the pCO2-cline) and
profile fine structure (e.g., small scale features below the mixed
layer/80 dbar) are visible at the anticipated locations.

For the three deployments D4–D6 combined, CONTENT
pCO2 shows negligible biases both at 200 dbar and at the
surface [Table 3; bias 1 of +1 ± 12µatm (1 std. of 1) and
+6 ± 9µatm, respectively]. CANYON-B shows a slightly more
negative difference (bias 1 of−9± 10µatm and+2± 10µatm,
respectively), as does CANYON (bias 1 of −9 ± 16µatm and
−8 ± 13µatm, respectively), which also has a larger spread
in its biases. Biases at 200 dbar for D7 vary strongly, from a

mean of +13µatm for CONTENT to −25µatm for CANYON.
At the surface, all three methods give a pCO2 for D7 that is
considerably smaller (−22 to −37µatm) than that obtained
from the float-transmitted data. Note that no post-deployment
calibration was possible for D7.

At 200 dbar, CANYON pCO2 shows an apparent seasonal
trend toward negative biases between Nov. and May, whereas no
clear trend is discernable for CANYON-B or CONTENT (data
not shown). At the surface, Feb./winter pCO2 seems to be slightly
overestimated by CANYON-B and CONTENT, whereas D7 data
in Jun. suggest a summer pCO2 underestimation.

The mean estimated pCO2 uncertainty σ of CONTENT,
CANYON-B, and CANYON for D4–D6 is 34, 57, and 54µatm
at 200 dbar and 22, 35, and 33µatm at the surface, respectively.
For only three out of the 99 profiles of D4–D6, the surface
bias exceeds the CONTENT uncertainty, while this is the case
for none of the profiles using CANYON-B 1 and σ, and one
profile using CANYON. The bias at 200 dbar does not exceed the
estimated uncertainty for any of the profiles (Table 3).

The sensor data show that the CANYON-B/CONTENT
mappings are able to reproduce fine structure features at the
anticipated locations for pCO2. With equilibrated pCO2 sensor
data, i.e., at 200 dbar and at the surface, the mean bias of
CANYON-B/CONTENT pCO2 is within the sensor accuracy for
profile data (Fiedler et al., 2013). The profiles tend to show a
low bias (order of −50µatm) in the lower parts of and below
the mixed layer (around 80–100 dbar) (Figure 5). This is the
region of strongest sub-mixed layer gradients, i.e., increasing
O2 and decreasing pCO2 toward the surface mixed layer, where
both the float’s O2 optode and HydroC pCO2 sensor receive the
strongest time lag correction. The absent or only small increase
of σ

CONTENT
mean around 80 dbar supports this notion that the low

bias is caused by the CO2/O2 sensor response rather than an
estimation effect (Figure 5).

As few pCO2 profile measurements exist and otherwise only
pH can be measured autonomously, this comparison is very
encouraging for the observation of the carbonate system depth
structure. It promises to help with estimation of entrainment
fluxes at the base of the mixed layer that affect the mixed layer
budget of CO2 (Levy et al., 2013).

pH Profiling Float Data and Derived pCO2 Profiles
Recently, the use of pH observations from Biogeochemical-Argo
floats to estimate surface (and water column) pCO2 has been
illustrated by Williams et al. (2017) using floats deployed in
the data-sparse Southern Ocean. We want to complement their
estimate with our CONTENT approach, which is shown in
Figure 6 for the same four floats in the Southern Ocean that
Williams et al. (2017) used.

For all four floats, both observed pH, which has been tuned to
an MLR-based pH estimate at 1,500 dbar depth (Williams et al.,
2016; Johnson et al., 2017), and CONTENT pH show the same
profile shape. They agree within the CONTENT uncertainty in
the entire water column below the surface mixed layer. The same
is true for the comparison of pH-derived pCO2 with CONTENT
pCO2.
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FIGURE 5 | pCO2 profiles (Left), depth-time evolution (Center), and difference between pCO2 estimate and in-situ pCO2 as well as uncertainty from an incoherent

carbonate system description (σCONTENTmean ; right) for all four deployments D4–D7 of the experimental pCO2 float with HydroC pCO2 sensor: HydroC pCO2 sensor

data (Top), CANYON-B pCO2 (Middle), and CONTENT pCO2 (Bottom). The profile fine structure is well reproduced and data gaps (May 2011) can be filled

adequately. The mid-profile increase in 1pCO2 is likely related to a mismatch in the time response and time lag corrections of the pCO2 (and O2) sensor in the

subsurface gradients. Surface variability of CANYON-B and CONTENT pCO2 is slightly smaller than sensor data, which fits to climatological observations (not shown).

In the upper 200 dbar and within the mixed layer, there
is an increase in the difference between the floats and the
neural network (compare Figure 3). For the two Pacific floats,
the 10/90th-percentiles of 1 still stay within the estimated

uncertainty σ. For the Atlantic float in the seasonal sea ice zone,
the majority of surface data show 1 < σ, too. However, there
is a considerable fraction of very high mixed layer pH /low
pCO2 observed by the float in austral summer, for which the
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TABLE 3 | Difference of CANYON, CANYON-B, and CONTENT pCO2 minus sensor pCO2 (in µatm) at the surface and at depth (mean 1 ± 1 std. of 1), estimated

uncertainty σ (in µatm), and number of profiles where the bias exceeds the uncertainty for the experimental pCO2 float (Fiedler et al., 2013).

Float deployment D4 – D6 D7*

Date(s) Nov 11 – Jan 5; Jan 30 – Feb 19; Mar 20 – May 09 May 27 – Jun 10

# Profiles 44; 16; 39 12

Mean 1 ± 1 std. of 1 Mean σ # Profiles |1| > σ Mean 1 ± 1 std. of 1 Mean σ # Profiles |1| > σ

Surface CANYON −8 ± 13 33 1/99 −22 ± 8 34 2/12

CANYON-B +2 ± 10 35 0/99 −37 ± 9 33 8/12

CONTENT +6 ± 9 22 3/99 −32 ± 9 22 10/12

200 dbar CANYON −9 ± 16 54 0/99 −25 ± 6 61 0/12

CANYON-B −9 ± 10 57 0/99 −2 ± 5 68 0/12

CONTENT +1 ± 12 34 0/99 +13 ± 6 42 0/12

*The float was lost during deployment D7 (i.e., limited post-corrections).

CONTENT estimates show a bias that exceeds the estimated
uncertainty. Float 5904469 in the Atlantic polar antarctic zone, in
contrast, is the only float that shows a systematic trend in surface
pH overestimation (order +0.025) and pCO2 underestimation
(order −20µatm) by CONTENT compared to the pH sensor
data. Interestingly, this coincides with a significant difference
between surface salinity and salinity at 1,500 dbar (where the pH
sensor data have been tuned) of almost 1 psu, which is not the
case for the other floats.

Surface Mixed Layer Performance
As shown in the previous section, surface or near-surface
estimations can show an increased bias, which is why this section
focusses on surface data comparisons to establish useful limits of
applicability, in particular for pCO2 estimates.

Surface data are more challenging to estimate due to their
higher variability and seasonality (compare the uneven seasonal
coverage of the training data; Figure 1). Another challenge is
surface air sea gas exchange. Oxygen is the prime predictor for
ocean biogeochemistry and thus for the nutrient and C cycle.
However, re-equilibration time scales for CO2 and O2 with the
atmosphere are quite different, with those for O2 being an order
of magnitude smaller than those for CO2 (Broecker and Peng,
1974). Surface air sea gas exchange can thus decouple C and
O2 cycling in the mixed layer, as has been observed previously
(e.g., Tortell et al., 2015), whereas in the interior ocean, carbon
remineralization is always accompanied by a change in O2. The
decoupling is particularly noticeable following intense blooms or
long bloom periods (i.e., with a strong accumulated CT/pCO2

drawdown). Here, O2 is much closer to equilibrium than the CO2

system, i.e., summertime CT/pCO2 drawdown is more persistent
than excess oxygen from biological production. In such cases,
CANYON-B/CONTENT do not have a suitable predictor for this
accumulated biological carbon imbalance (if it is not concurrent
with other predictor changes, e.g., a seasonal SST change). By
neglecting this accumulation effect due to the lack of a suitable
predictor, CT/pCO2 will be overestimated.

Essentially, CANYON-B and CONTENT have a clear focus
on water column and ocean interior variable estimation.

Nonetheless, they are still useful for surface applications, keeping
their limitations in mind. The comparison with in-situ data can
serve to identify insufficiently represented (i.e., undersampled or
uncommon) conditions. For surface applications, the mappings
should be used more as an aid/tool in data analysis, not
necessarily for correction of in-situ data (as is done with water
column data).

Surface pCO2 Derived From Profiling Float pH Data
Figure 7 shows the surface 1pCO2 estimated from two
climatologies (Takahashi et al., 2014; Landschützer et al., 2015a),
CANYON-B, CONTENT, and in-situ pH observations for the
four floats. The results are mixed.

For float 5904396 in the South Pacific subantarctic zone,
climatological, CANYON-B/CONTENT and Williams’ pCO2

show a consistent seasonal cycle. CANYON-B/CONTENT
surface pCO2 is slightly higher than the other approaches,
however, absolute differences to Williams pCO2 are comparable
with the two climatologies and within their uncertainty bounds.
In contrast, profile-to-profile variability is very similar between
CANYON-B/CONTENT and Williams’ pCO2. The CONTENT
uncertainty shows minima close to σ

CONTENT
min in austral summer

(Jan.), while it is elevated at the beginning of the deployment
(during austral winter). The other approaches show a steady σ

either by choice (CANYON-B) or by design (climatologies and
Williams).

For float 5904395 in the South Pacific subtropical zone,
CANYON-B/CONTENT and climatological surface pCO2 are
comparable (with only some disagreements for the first couple
of profiles). They match the seasonal cycle of Williams’ pCO2,
but show a smaller seasonal amplitude, i.e., they suggest near-
neutral summer conditions instead of a small CO2 source as
well as a slightly smaller winter CO2 sink than Williams’ pCO2.
Interestingly, CANYON-B σ is elevated during austral summer,
while the CONTENT uncertainty shows little variation. Both
floats in the South Pacific are in a region with very scarce training
data coverage (albeit seasonally equally distributed).

A similar picture is seen for float 5904468 in the South Atlantic
seasonal sea ice zone, where the temporal evolution between a
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FIGURE 6 | pH profile and derived pCO2 profile comparison for 4 SOCCOM Argo O2/pH floats and CONTENT. Thick and thin lines give the median and 10/90th

percentiles, respectively, while pale-colored dots represent the data. From left to right: pH profile of sensor pH (red) and CONTENT pH (blue); CONTENT pH difference

to sensor pH (blue) and CONTENT uncertainty estimate (black); pH-derived pCO2 profile (red) after Williams et al. (2017) and CONTENT pCO2 (blue); CONTENT

pCO2 difference to derived pCO2 (blue) and CONTENT uncertainty estimate (black); Salinity profile normalized to salinity at 1,500 dbar, the depth at which the pH

sensor is adjusted to an MLR-based pH. CONTENT and float-based/-derived pH and pCO2 agree within the CONTENT uncertainty but for the surface data of

5904469, where salinity is considerably different from at-depth salinity, and parts of 5904468, where biological pH increase / pCO2 drawdown is more intense than

estimated by CONTENT.
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FIGURE 7 | Estimates of surface pCO2 disequilibrium 1pCO2 for four selected floats in the Southern Ocean: Takahashi et al. (2014) climatology (purple),

Landschützer et al. (2015a) climatology (yellow), CANYON-B (green), CONTENT (blue), and pCO2 derived from float pH observations (Williams et al., 2017; red). The

shaded areas / error bars denote the uncertainty and black asterisks under-ice profiles (only 5904468). The right panels give the absolute difference |1| to the Williams

et al. (2017) estimate (thick lines) and the estimated uncertainty σ (shaded area) with the same color code. The gray histogram gives the seasonal coverage of cruises

with carbonate system observations in GLODAPv2 and the thin dashed blue line σ
CONTENT
min

.

summer surface CO2 sink and a winter surface CO2 source is
consistent between all three estimates. However, the amplitude
of the seasonal cycle for CANYON-B/CONTENT as well as
for the climatologies underestimates the float-based Williams
pCO2 data, so that differences to Williams’ surface pCO2 mostly
exceed estimated uncertainties. There is one peculiarity to note:
Late austral summer (ca. Mar.) surface pCO2 for CANYON-
B/CONTENT is close to atmospheric equilibrium (as is surface
O2; not shown), while both climatological pCO2 as well as pH-
basedWilliams pCO2 still show a marked pCO2 undersaturation.

Float 5904469 in the South Atlantic polar Antarctic
zone shows the largest disagreements between methods.
Climatological pCO2 gives near-neutral conditions year-round,
while CANYON-B and CONTENT show a negative surface
pCO2 disequilibrium and Williams’ approach show a positive
disequilibrium for most of the year. This disagreement (and
in particular underestimation of surface pCO2 by CONTENT
compared to Williams) has already been seen (Figure 6). Here
we see that it is primarily driven by austral winter differences
(where Williams’ pCO2 estimates are highest), while austral
summer data agree within the CONTENT (and CANYON-B)
uncertainty bounds. As for float 5904468, austral summer is
the period with the most training data. In contrast, the surface
uncertainties don’t show pronounced seasonal variability.

The two floats in the Pacific (5904395 and 5904396) operate
in an area with very scarce training data (Figures 1, 7).
Encouragingly, CANYON-B and CONTENT pCO2 nonetheless
give comparable results to Williams’ pCO2 and do not perform
worse than the two climatologies, which are climatologies
developed for the very purpose of estimating surface pCO2.
Such climatologies use plenty of surface pCO2 data for their
construction (but lack the depth dimension), whereas for the
neural networkmappings, surface data and dynamics are the very
boundary/limit of the domain. For 5904395 in the subtropical
zone, however, the seasonal cycle’s amplitude is somewhat
underestimated by all methods when taking Williams pCO2 as
reference.

This is seen, too, for 5904468 in the (Atlantic) seasonal sea ice
zone, where Williams’ pCO2 shows a strong seasonal amplitude
of ca. 135µatm, while CANYON-B pCO2, CONTENT pCO2

and the two climatologies show an attenuated amplitude of
ca. 75µatm. CANYON-B/CONTENT give estimates closer to
Williams’ pCO2 in the early season (i.e., austral spring/early
summer; Oct–Dec) while the climatologies are closer in the
late season (i.e., late summer; Jan–Mar), i.e., CANYON-
B/CONTENT with water mass predictors T, S, O2 give more
realistic results during the melting and early bloom period,
while the climatologies are better suited to capture the persistent
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undersaturated pCO2 levels late in the season (Figure 7), for
which CANYON-B/CONTENT lacks an adequate predictor due
to the different re-equilibration time scales of O2 and CO2.

Finally for float 5904469, large disagreements exist between
methods, which are puzzling to us. The Williams pCO2

estimate suggests a strong CO2 source during winter, which
was attributed to increased upwelling and entrainment of
circumpolar deep water (with high pCO2 and CT), or an increase
in pCO2 and CT of the upwelled waters (Williams et al., 2017).
CANYON-B and CONTENT, in contrast, suggest an almost year-
round considerable CO2 sink, while the climatologies indicate
near-neutral conditions. Given that CANYON-B/CONTENT
show rather good performance on interior ocean data (e.g.,
Figures 3, 4), we would expect an interior ocean signature
(from upwelling/entrainment) to be appropriately propagated to
surface waters and thus be somewhat reflected in the surface
predictions.

What’s different to the other floats is the strong salinity
difference between depth and surface. Salinity plays a role for
the potential difference between the ISFET pH probe and the
silver chloride reference electrode of the sensor, and is taken
into account in the calculation of pH (Johnson et al., 2016).
Moreover, sensor diagnostics don’t indicate any malfunction
of the probe (T. Maurer, J. Plant, K. Johnson, pers. comm.).
Still, the concurrence with the salinity depth-surface difference
lets us speculate whether the pH (and thus Williams’ pCO2)
differences might be due to a dynamic effect (i.e., “salinity time
response”)? On the other hand, CANYON-B/CONTENT depend
on the salinity input, too, i.e., the strong mismatch could be
caused by a systematic issue on surface CANYON-B/CONTENT
pH or pCO2, for which we do not have an indication
either.

As surface pCO2 estimates agree within their uncertainty
during austral summer (Jan.–Mar.) when training data and
other surface pCO2 observations are available for the area,
while disagreements peak during winter in the absence of
training/reference data, we may suspect both climatological
as well as CANYON-B/CONTENT surface predictions during
winter. Arguably, one would expect Williams’ pCO2, based on
(presumably accurate) pH observations together with a locally
tuned MLR for AT, to give the “best” result. At the same time
this illustrates a limit of the CONTENT coherence portion:While
for this float the CANYON-B CO2 variables are very coherent
throughout the deployment (i.e., σCONTENT is close to σ

CONTENT
min ;

Figure 7), they still could be wrong. In other words, the absence
of elevated σ

CONTENT does not guarantee that predictions are
accurate. The uncertainty estimate needs always to be combined
with a second quality indicator, the training data coverage.

These examples show that there is still considerable
uncertainty associated with estimating surface 1pCO2 in
the Southern Ocean, and consequently the direction and
magnitude of its CO2 source/sink status (e.g., Landschützer
et al., 2015b). In particular for frontal areas (e.g., Polar Antarctic
Zone) or rarely observed areas/conditions (e.g., austral winter),
disagreements between the methods can be significant. At the
same time, profile-to-profile (i.e., short-term) variability between
CONTENT pCO2 and Williams pCO2 are extremely consistent,
which may offer new ways to address spatial/temporal variability.

Direct Surface pCO2 Underway Observations
The comparison between surface pCO2 underway data across
the Atlantic and neural network-derived pCO2 from CANYON,
CANYON-B, and CONTENT is given in Figure 8 along
with their quality indicators (uncertainty σ and training data
coverage).

The three estimates give a similar result for surface pCO2

and agree with observed large-scale trends, e.g., an increase in
surface pCO2 in tropical areas compared to subtropical/subpolar
ones, or a depression in sea surface pCO2 in the Inter
Tropical Convergence Zone (ITCZ) as well as its seasonal
migration (around 6◦ N for Oct./Nov. cruises and around 1◦ N
for Apr./May cruises; see also Tomczak and Godfrey, 1994).
CANYON-B and CONTENT tend to somewhat outperform
CANYON in tropical regions, while CANYON shows a slightly
smaller bias than CANYON-B or CONTENT in the Eastern
subtropical North Atlantic. All three methods show comparable
results in the South Atlantic both in the Angola gyre (AG) and
Benguela current area for cruises to Cape Town (ANT-XXV/1,
ANT-XXVII/1) as well as off the Patagonian shelf (Patag./SWAtl.)
for cruises from/to Punta Arenas.

There is a general tendency for the neural network-based
methods to overestimate surface pCO2. This is clearly seen
off the Patagonian shelf, where austral autumn (Apr.) pCO2

is consistently overestimated (+20µatm) while austral spring
(Nov.) estimates fit well to in-situ pCO2 levels. Similarly, some
cruises (ANT-XXIV/4 and in particular ANT-XXVI/1, ANT-
XXV/5 possibly, too) show pronounced low in-situ pCO2 on a
spatial scale of few degrees that is not mirrored by the neural
network methods. Similar low in-situ pCO2 patterns have been
observed for three other SOCAT cruises (cruises 29HE20051019,
740H20121011, and 74JC20131009). Finally, low in-situ pCO2 is
overestimated by up to +30µatm in the upwelling area (Upw.)
off the Mauritanian coast in the North Atlantic for Oct./ Nov.
cruises. The coastal upwelling is a seasonal phenomenon that has
its maximum close to the coast in spring (Mittelstaedt, 1983).
The lower-than-estimated pCO2 signature is more pronounced
in the 2008 and 2010 cruises (ANT-XXV/1, ANT-XXVII/1) closer
to the coast than in the 2009 cruise (ANT-XXVI/1), which
passed ca. 200 nm farther offshore. In contrast, Apr./May pCO2

seems to be consistently underestimated (−20µatm) in the
Western ITCZ/equatorial region by CANYON, while CANYON-
B/CONTENT estimates agree better with in-situ data.

Furthermore, the region of the Guinea dome (GD) shows a
high variability in in-situ pCO2, which is not always captured by
the neural network estimates (e.g., ANT-XXV/1, ANT-XXV/5).
Its estimates can be biased high (e.g., ANT-XXIV/4) or low (e.g.,
ANT-XXVI/1). Similarly, in-situ data diverges from estimates
across the Angola gyre (AG) as well as the Benguela current
system and the upwelling area off Namibia with a consistent
pattern for both cruises. These areas and season are least-covered
by the GLODAPv2 training data.

The CANYON and CANYON-B uncertainty are of similar
magnitude. While CANYON’s σ simply follows the estimated
pCO2 (e.g., a decrease in σ in the ITCZ where pCO2 is lower),
CANYON-B shows some elevated levels along the Patagonian
shelf, where in-situ pCO2 variability is high. CONTENT’s
σ, in contrast, is of considerably smaller magnitude, with
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FIGURE 8 | Surface underway pCO2 data during six R/V Polarstern transects across the Atlantic Ocean, three northbound austral autumn/boreal spring cruises

(panels 1, 3, and 5, top to bottom) and three southbound austral spring/boreal autumn cruises (panels 2, 4, and 6). (Left) For each cruise, CANYON pCO2 (brown),

CANYON-B pCO2 (green), and CONTENT pCO2 (blue) are shown with their respective uncertainty interval (shaded). In-situ observations are given in black. Regions

are denoted by gray dashed lines: Patagonian Shelf and South West subtropical Atlantic (Patag./SWAtl.), South Equatorial Current (SEC) and South Equatorial (SEq.)

region, Benguela Current region, Angola gyre (AG), Inter Tropical Convergence Zone (ITCZ), Eastern tropical North Atlantic and Guinea dome (GD), Mauritanian

upwelling region (Upw.), and Eastern North Atlantic (NEAtl.). (Middle) Maps show the cruise tracks as well as the GLODAPv2 surface carbonate system data

coverage of the neural network training data around the cruise dates (April/May and mid-October to mid-December, respectively). (Right) For each cruise, the gray

histogram gives the training data coverage as number of cruises within a box of ±10◦ and ±30 d (yearday) around the observation. Thick colored lines give the

methods’ uncertainty estimates (brown, green, and blue, respectively), while σ
CONTENT
min

is given as thin blue line.

pronouncedly elevated levels (above σ
CONTENT
min ) for boreal spring

(May) cruises across the Guinea Dome, within the ITCZ,
and to some extent along the Patagonian shelf/South West
Atlantic. However, in areas of surface pCO2 overestimation and
high surface pCO2 variability like along the Patagonian shelf,
CONTENT tends to give estimates with |1| > σ when compared
to in situ data.

The tendency of neural network overestimation of pCO2

is also visible in the bulk statistics/metrics for all six
cruises combined (Table 4). The median CANYON-B and
CONTENT biases are +7 and +10µatm, respectively, while
CANYON appears to have the smallest bias with a median of
+3µatm. However, for all three methods the 10/90th-percentiles
indicate a clear asymmetry toward overestimation. The median

uncertainties of CANYON and CANYON-B are comparable (31
and 32µatm), while CONTENT states a considerable smaller σ

(18µatm). With respect to co-location of 1 and σ, there is a
comparable picture for data underestimation, i.e., 1 < –σ, for
CANYON (2.5%), CANYON-B (2.0%), and CONTENT (3.6%),
despite the much smaller σ

CONTENT. CANYON and CANYON-
B have a similar fraction of data overestimation, i.e., 1 > +σ (5.5
and 4.1%, respectively). For CONTENT, as already seen above,
this fraction is significantly higher (30.9%). In total, CANYON-B
has a smaller fraction of |1| > σ (6.0%) than CANYON (8.0%),
while about one third (34.5%) of CONTENT biases are outside
the stated uncertainty, mostly due to overestimation.

For comparison, a smoothed monthly climatology
(Landschützer et al., 2016, 2017; not shown in Figure 8)
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gives a small median bias of +2µatm and a similar width of
biases 1 for underestimation as the neural network approaches
(distance 10th percentile-median of about 18µatm). The tail
of the 1 distribution for overestimation is slightly smaller
for the climatology compared to CANYON/CANYON-
B/CONTENT (distance median-90th percentile ca. 16µatm
vs. 20–24µatm, respectively). With a stated uncertainty of
12µatm (Landschützer et al., 2014), a total of 36.2% of the data
differences 1 exceed σ, with some tendency for preferential
1 overestimation, but not as pronounced as for CONTENT.
Note that this is not a completely independent comparison, as
the six R/V Polarstern cruises are part of SOCAT, on which the
climatology is based.

The Patagonian shelf, as well its slope area, is well known
for intense spring and summer blooms with a tight coupling
between surface chlorophyll a and 1pCO2. Autumn 1pCO2 air
sea disequilibria between−30 and−40µatm are typical (Bianchi
et al., 2009). The consistent austral autumn (Apr.) overestimation
of pCO2 along the Patagonian shelf is a clear example of surface
O2 being an imperfect predictor for surface pCO2. Moreover,
autumnal training data coverage is scarce and σ

CONTENT levels
are elevated (Figure 8). CANYON-B/CONTENT are thus hard-
pressed to provide reliable predictions, which is expressed in both
quality indicators.

The same effect can be seen in the North Atlantic off the
Mauritanian coast for the Oct./ Nov. cruises. Coastal upwelling
(Upw.) fuels biological production that causes a reduction in
surface pCO2, which is advected offshore (Jones and Folkard,
1970; Huntsman and Barber, 1977; Mittelstaedt, 1991; Messi and
Chavez, 2015). The strength of this seasonal phenomenon does
not seem to be captured by the CANYON/CANYON-B training
either, yielding offsets of up to +20µatm for the estimates (and
being more intense for the near-coastal than for the off-shore
cruises).

TABLE 4 | Comparison between neural network (CANYON, CANYON-B, and

CONTENT) surface pCO2 and in-situ underway pCO2 data, as well as between a

smoothed monthly climatology (Landschützer et al., 2016, 2017; based on

SOCAT data, which includes our underway data) and in-situ underway pCO2 data:

Bias 1 (in µatm) with 10/50/90th percentile, estimated uncertainty σ (in µatm) with

10/50/90th percentile, and fraction of data (in %) where bias exceeds uncertainty

(– / + /
∑

denotes underestimation, overestimation, and total, respectively).

surface pCO2

1 / µatm

surface pCO2

σ / µatm

|1| > σ / %

10 / 50 / 90th 10 / 50 / 90th – / + /
∑

CANYON −18 / +3 / +27 29 / 31 / 34 2.5 / 5.5 / 8.0

CANYON-B −12 / +7 / +27 29 / 32 / 34 2.0 / 4.1 / 6.0

CONTENT −9 / +10 / +32 16 / 18 / 22 3.6 / 30.9 / 34.5

Landschützer et al. (2017) −15 / +2 / +18 12 / 12 / 12 13.8 / 22.4 / 36.2

Note that CANYON suffers from the same systematic overestimation issues in

productive regions as CANYON-B/CONTENT (see discussion). For CANYON, those are

accompanied by underestimation in other areas (e.g., in the tropics; Figure 8), which

gives a small median bias but not thanks to better performance.

Similarly, the drop in observed pCO2 in the SEC region is
potentially a signature of past productivity associated with the
seasonal Atlantic Cold Tongue (ACT) in the Eastern tropical
Atlantic (e.g., Schott, 1942) that was advected into this area. The
ACT correlates with the entrainment of nutrient-rich waters that
fuel surface production (Grodsky et al., 2008) and consequently
reduces in-situ pCO2.

These examples show how divergence between neural network
estimates and in-situ data can help to identify special ocean
conditions (past upwelling or advected past productivity, in
our cases). In fact, they illustrate an alternative value of
CANYON-B/CONTENT for surface pCO2 applications: While
appearing incoherent at a first look, many of the differences
between observed surface pCO2 and CONTENT pCO2 have
biogeochemical reason, i.e., instead of substituting for an actual
surface pCO2 observation (about one third of the surface pCO2

are overestimated by CONTENT, Table 4), CONTENT surface
pCO2 should be used for quality control/validation as well as
interpretation through identification of “uncommon” features or
“past productivity” conditions.

For such an application, CONTENT pCO2 seems to be
more suited than CANYON-B (or CANYON) pCO2. First,
CONTENT’s uncertainty σ is considerably smaller and second,
CONTENT has the tendency to give slightly higher pCO2 than
CANYON-B (by a few µatm), both of which make it more
sensitive to lower-than-expected (i.e., climatological) pCO2.
When neglecting the accumulated low pCO2 areas outlined
above, the CONTENT bias exceeds its (small) uncertainty
estimates only in areas of high variability and low training data
coverage (e.g., Benguela current/Angola gyre area or the Guinea
dome; Figure 8). This increase can be attributed to the limitations
of the underlying training data not fully reflecting the dynamics
of these highly variable ocean areas (e.g., the Guinea dome, Oettli
et al., 2016).

Moreover, the underway data illustrate that focussing on
one bulk metric alone (e.g., the bias 1) can be misleading:
From Table 4, CANYON appears to have the lowest (median)
bias. However, it possesses the same systematic overestimation
problems for accumulated biological pCO2 drawdown (i.e., the
lack of a suitable predictor) as CANYON-B and CONTENT.
These overestimations are complemented by underestimations
in other areas (e.g., the tropics), causing an apparently
smaller median bias than for CANYON-B/CONTENT, which,
in fact, both show a better performance in the tropics.
Focusing on the bias only would thus give a false impression,
which is why we use all three metrics together for our
assessment.

Global Surface pCO2 From Water Column Data and

CANYON-B/CONTENT
One advantage of the CANYON-B/CONTENT mappings (based
on the GLODAPv2 collection of hydrographical data) is its
transferability to a different observation network (e.g., Argo-
O2). This way, one can take advantage of the unbiased temporal
sampling of Argo floats (Figure 1) to complement another
observation network, i.e., surface underway pCO2 lines.
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From the transfer data set of WOD-O2, GLODAPv2-
O2, and Argo-O2 profiles, we used the shallowest profile
observation together with CANYON-B and CONTENT,
respectively, to estimate a climatological, global surface pCO2.
CANYON-B/CONTENT pCO2 was compared to a smoothed
monthly surface pCO2 climatology for the period 1982–2015
(Landschützer et al., 2016, 2017), which is based on SOCAT
itself (Figure 9 for CONTENT results). For reference, the
SOCATv5 monthly gridded surface pCO2 (Bakker et al.,
2016) was compared to the same climatology for better
assessment.

The comparison gives a mean difference to climatological
surface pCO2 of −1 ± 13µatm for SOCATv5 surface data,
of −1 ± 16µatm for CANYON-B with the transfer data
set, and +2 ± 17µatm for CONTENT with the transfer
data set, i.e., the estimates are not significantly biased. The
fraction of |1| exceeding the combined uncertainty σ of the
climatology (12µatm, Landschützer et al., 2014) and of the
method (5µatm for SOCATv5 data, σCANYON−B, and σ

CONTENT)
is 18.3, 4.2, and 12.1% (approx. equal portions of over- and
underestimation), with a mean combined uncertainty of 13,
33, and 23µatm for SOCATv5, CANYON-B, and CONTENT,
respectively.

The comparison between SOCATv5 and the Landschützer
et al. climatology basically gives information about the mapping
error when creating the smoothed, monthly climatology, as
well as the noise of the SOCAT source data (Figure 9, left).
Unsurprisingly, there is no mean bias between the two and the
bias’ standard deviation matches the method’s stated uncertainty
(Landschützer et al., 2014).

What’s important to note is that the source data of SOCATv5
and our CANYON-B/CONTENT estimate are different, i.e., the
CANYON-B-/CONTENT-based transfer data set estimates are
truly independent from the climatology and SOCAT. With this
in mind, the comparison is very encouraging with an unbiased
mean difference and a spread in the bias that is only 25% higher
than for the SOCAT source data. Nonetheless it appears that the
biases occur less randomly than for SOCAT, i.e., they appear to
cluster regionally (e.g., underestimation of pCO2 in Dec/Jan/Feb
close to the Antarctic continent; overestimation in the Northeast
and subtropical Pacific compared to the climatology). What’s
encouraging is that some of these patterns can be seen in the
SOCAT—climatology comparison, too (e.g., Dec/Jan/Feb high
latitude Southern Ocean underestimation), or that they are
accompanied by an elevated σ

CONTENT
mean (e.g., Northeast and

subtropical Pacific).
Surface pCO2 observations in SOCAT are Northern

hemisphere-focused and summer-biased in high latitudes.
Conversely, floats provide the same data density winter and
summer (Figure 1). Moreover, WOCE/CLIVAR/GO-SHIP
repeat hydrography observations as well as Biogeochemical-
Argo observations of O2 cover areas that are not frequented
by commercial shipping. They can thus extend observations
and provide proxies for seasonal variability, even if their
CANYON-B/CONTENT pCO2 estimate itself may be of
lower accuracy than direct observations, and thus help to fill
spatial gaps in SOCAT data (e.g., in particular in the Southern

hemisphere; Figure 9). The CANYON-B/CONTENT surface
pCO2 estimation presented here thus represents an actual
extension of the surface pCO2 database. This is relevant for
global CO2 flux estimation efforts such as the Surface Ocean CO2

Mapping intercomparison (SOCOM; Rödenbeck et al., 2015).
However, only variability observed by WOCE/CLIVAR/GO-
SHIP can be reproduced by CANYON-B/CONTENT at present.
With large gaps in surface pCO2 observations in the Southern
Ocean and during winter, the prospect to fill these gaps through
mapping methods such as CONTENT pCO2 is promising,
but is still associated with quite large uncertainties. Still, some
major driving factors of carbonate chemistry are captured by
CONTENT even within such “gaps,” which is visible in the
short-term variability. When assessing the quality of CONTENT
estimates, both σ

CONTENT and the training data coverage should
therefore be included in the assessment.

Apart from the spatio-temporal aspect,
CANYON-B/CONTENT pCO2 is based on water column
data, i.e., it provides the depth of the mixed layer that is relevant
for gas exchange in parallel to an estimate of the pCO2 profile,
a dimension that is critically lacking from surface underway
observations. This will help improve CO2 flux and budget
estimates even in regions in which the surface disequilibrium
is well characterized by other means. In fact, the promising
applications will therefore come from the linking of observation
systems (e.g., Biogeochemical-Argo and voluntary observing
ship lines) and data sets (e.g., CONTENT pCO2 for the water
column structure and SOCAT for accurate surface pCO2,
respectively).

Complete Carbonate System Description:
Analysis of the Revelle Buffer Factor
CONTENT provides an estimate of the complete state of the
carbonate system. Below, we use this technique to get a better
view of the global distribution of the Revelle buffer factor. Sabine
et al. (2004) report R values in the range from 9 to 15 for the
year 1994, which is already about 1 unit higher than in the pre-
industrial ocean due to the uptake of anthropogenic CO2 (Sabine
et al., 2004).

With the transfer data set, we obtain a similar mean
distribution of R as presented by Sabine et al. (2004) (Figure 10,
left; mean year 2005). Further analysis of these observation-based
estimates reveals a decadal trend in R with a global mean of
+0.18 ± 0.14 (1 std.) units per decade (Figure 10, middle and
right). In some regions, the increase in R is stronger than the
global mean, in particular in cold surface waters (e.g., subpolar
North Atlantic/Pacific and Southern Ocean). There, we observe
an average trend of+0.25± 0.16 (1 std.) units per decade (North
of 45◦ N) and of+0.30± 0.12 (1 std.) units per decade (Southern
Ocean; South of 45◦ S), respectively, which is about 50% larger
than the global average and more than twice as large as the
trend at lower latitudes below 45◦ N/S (+0.12 ± 0.09 units per
decade).

Along the same lines, the analysis of the Revelle factor R
shows the value of CANYON-B/CONTENT on a climatological
scale. In fact, we believe this is the first global observation of
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the increase in R apart from sensitivity considerations (e.g.,
Fassbender et al., 2017) or model studies (e.g., Thomas et al.,
2007; Hauck and Völker, 2015). The magnitude of the increase
fits perfectly with what has been observed at selected CO2 time
series sites (range +0.11 to +0.30 units per decade; Bates et al.,
2014) as well as with surface pCO2 climatology-based estimates

(range +0.1 to +0.4 units per decade, Fassbender et al., 2017).
Similarly, the higher trend in R in cold surface waters has been
suggested from sensitivity considerations (e.g., Thomas et al.,
2007; Fassbender et al., 2017). Such an elevated trend at higher
latitudes is particularly important for the current and future
uptake and sequestration of anthropogenic CO2 through the

FIGURE 9 | Comparison of the SOCATv5 data and CONTENT pCO2 estimates for the transfer data set to the Landschützer et al. monthly surface pCO2 climatology

for the period covered by the climatology (1982–2015) and the months of December/January/February, March/April/May, June/July/August, and

September/October/November (top to bottom), respectively. From left to right, the first panel shows the difference between SOCAT data and the climatology, the

second panel the difference between CONTENT and the climatology, the third panel the CONTENT uncertainty contribution from an inconsistent CANYON-B

carbonate system, and the last column the number of GLODAPv2 cruises with carbonate system data within ±20◦ and ±30 days (doy). Estimates in the tropical /

subtropical Northeast Pacific seem to be systematically biased high (2nd from left), potentially related to low training data coverage (right panels). Both SOCATv5 and

CONTENT give lower pCO2 than the climatology in the high latitude Southern Ocean during austral summer (DJF). In contrast, while CONTENT pCO2 is low in the

high latitude North Pacific during boreal summer (JJA), SOCAT, and climatology pCO2 agree.

FIGURE 10 | Revelle factor R calculated with CONTENT CT and AT for the transfer data set (Left) and derived decadal trend in R (Middle and Right). The global

pattern of R matches the picture of Sabine et al. (2004). Linear trends were derived per 5◦ x 5◦ grid box that has data of at least 3 individual years spanning at least 10

years (insignificant trends are denoted by gray dots). The zonal median trend (thick line) and its 10/90th percentiles (thin lines) are shown in black, while the red line

gives the smoothed zonal median trend (Right).
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FIGURE 11 | Example of estimated AT distribution at 400m using different (climatological) mapping methods: GLODAPv2 mapped climatology (Gv2), CANYON,

CANYON-B, CONTENT, and LIR. All but the mapped climatology use climatological fields of T, S, and O2 at 400m as inputs. Panels from top to bottom give the

distribution of AT, the difference between the individual method’s AT and the median AT of Gv2, CANYON, CONTENT and LIR, and estimated AT uncertainty.

solubility pump, as deep and intermediate water masses are
formed in these areas. It should be noted, however, that our
estimates at very high latitudes (Arctic ocean and near the
Antarctic continent) are nonetheless based on few observations
and show the highest variability. The significance of the slight
decrease in the trend inR toward the poles estimated by this study
might thus be debatable.

This illustrates the capacity that knowledge or improved
estimates of the oceanic carbonate system gives to ocean
biogeochemistry and global climate science.

DISCUSSION

Comparison Between a Static Climatology,
CANYON, CANYON-B, CONTENT, and LIR
Figure 11 shows the distribution of AT at 400m depth
as an example for the prediction by a classical (“static”)
climatology (GLODAPv2 mapped climatology, Lauvset et al.,
2016), neural network approaches like CANYONandCANYON-
B, CONTENT, and a regression approach such as LIR. All
methods but the first use climatological fields of T, S, and O2 as
input data.

The distribution of AT between all fivemethods is comparable,
with a similar overall range as well as a similar spatial
distribution. The estimated uncertainty σ, however, shows a
markedly different character: For the mapped climatology (Gv2),
minima are observed along repeat hydrography lines (compare
Figure 1) while mapping errors increase strongly in between
lines. CANYON’s constant uncertainty σ ignores both the
underlying training data distribution (along repeat hydrography
lines) as well as oceanic structures. CANYON-B’s σ shows
some local structure, e.g., with slightly elevated levels along
the Antarctic circumpolar current (ACC), in Eastern boundary
upwelling areas, or in the subtropical Pacific at the edges of the
oxygen minimum zone. However, CONTENT’s and LIR’s σ are
muchmore variable and nuanced, i.e., they cover a wider range of
uncertainties and oceanographic features or structures are clearly

visible, e.g., the Kuroshio extension, in which CONTENT shows
elevated while LIR shows reduced σAT, the ACC region, or fronts
and gyre boundaries.

For better comparison, the anomalies 1 of predicted AT to
the median value of Gv2, CANYON, CONTENT, and LIR as the
best guess of “true” AT are also shown in Figure 11. (CANYON-
B was not included in the median as its result is already inherent
to our implementation of CONTENT.) As for the uncertainty,
the Gv2 anomaly 1 shows a grid-like structure. CANYON,
CANYON-B, and CONTENT 1’s follow oceanic features or
water masses, where CANYON’s anomalies are of significantly
higher magnitude than those of CANYON-B or CONTENT. LIR
shows similar (low) 1 in the Pacific, but elevated differences
(with alternating sign) in the Atlantic basin for this example.

Mapping Character and Predictor Limitations
A classical climatology provides a mapping between a variable
and the spatial coordinates (or predictors) latitude, longitude,
and depth. A regional MLR provides a mapping between a
variable of interest (e.g., AT) and other variables (e.g., T, S, O2) as
predictors. Our neural network approaches mix these two end-
members to provide a mapping that depends on other observed
variables, but in a spatially varying way (for global coverage).
In comparison with a classical climatology with predictors lat,
lon, and P, mapping techniques like CANYON-B, CONTENT,
LIR, etc. simply use a wider range of predictors (lat, lon, P, T, S,
O2), which allows them to react more flexibly, e.g., to a different
water mass characteristic. In the end, they are based on the
available observations, which is why we denote their mappings
as “dynamic climatology.”

This difference is nicely illustrated by Figure 11. The
GLODAPv2mapped climatology (Lauvset et al., 2016) has largest
mapping errors in between repeat hydrography lines due to
the strictly spatial mapping. The uncertainty of CANYON-
B/CONTENT/LIR, in contrast, is elevated along oceanographic
features such as fronts, gyre boundaries, upwelling areas, etc.,
illustrating the “dynamic” character of these mappings. Here,
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CONTENT and LIR show the widest distribution of σ, i.e., the
largest adaptation of σ to the local conditions (Figures 3, 4,
11). CANYON, in contrast, is ignorant to where predictions
are made—variations in σ only originate from the measurement
uncertainty, σmeas.

The “dynamic” climatologies, however, can only adapt to
local conditions for which they have adequate predictors. If
there is no suitable predictor available for a given process (e.g.,
denitrification; or accumulated surface pCO2 disequilibrium),
there is little potential to reproduce observations impacted by
such processes except for in a climatological (i.e., mean state-)
sense. Elsewise, they can be employed as simple-to-use transfer
functions to assess what a variable of interest would look like
(again, in a climatological sense) with the given predictor inputs,
much like a “classical” climatology.

Thus they represent an alternative interesting way to densify
“virtual” observations of some costly acquirable variables from
the sole knowledge of simply and cost-effectively acquirable
variables. In such sense these dynamic climatologies have a great
potential to take benefit from emerging networks of autonomous
platforms (e.g., BGC-Argo) for filling observational gaps of some
key variables.

Scale Analysis
The notion of good representation of profile-to-profile surface
variability betweenWilliams pCO2 and CANYON-B/CONTENT
pCO2 can be supported by an analysis of the power spectrum
of the respective time series (Lomb, 1976; Scargle, 1982)
(Figure 12). In effect, the Williams pCO2 series shows a higher
spectral power than the climatologies (Takahashi et al., 2014;
Landschützer et al., 2015a) at all time scales from 20 to 365 days.
CANYON-B and CONTENT pCO2 show a somewhat lower
power than Williams pCO2 at long time scales (comparable to
the climatologies), however, for scales shorter than ca. 100–
120 days, they approach or match the spectral power of the

float data. In addition, the spectral power of the difference
between climatology/CANYON-B/CONTENT and Williams is
markedly attenuated for CANYON-B/CONTENT compared to
the climatologies for time scales between 40 and 120 days.

A similar analysis can be done for the surface underway
pCO2 data (Figure 12) with a quasi-synoptic assumption, i.e.,
for each cruise the variability is assumed to be only spatial,
not temporal. Again, the in-situ data shows a higher spectral
power than the climatologies at all scales (2 to 20,000 km). The
power spectrum of CANYON-B/CONTENT is comparable to
the climatologies at long scales (>6,000 km), while it approaches
the intensity of the in-situ data at scales of 500–1,500 km,
and shows a similar power as in-situ data for smaller scales
(<500 km). The power spectrum for the difference between
climatology/CANYON-B/CONTENT and in-situ pCO2 shows
the largest difference at scales of 500–1,500 km, where CANYON-
B/CONTENT show a lower power than the climatologies. At
large scales (>6,000 km), the difference of climatology—in-situ
shows a somewhat smaller spectral power than their CANYON-
B/CONTENT counterparts.

The scale analysis of surface pCO2 provides two conclusions:
(1) The spectral behavior at smaller scales (mesoscale,
monthly/sub-seasonal) is comparable between the CANYON-
B/CONTENT mappings and in-situ observations. In particular
the larger portion of this range (i.e., 500–1,500 km; 40–120
days) shows an improved coherence. This reflects the influence
of the “dynamic” predictors T, S, and O2, which implicitly
cover certain surface driving mechanisms. (2) The spectral
behavior at large scales is comparable between the CANYON-
B/CONTENT mappings and a classical climatology. This reflects
the climatological character of both approaches, which are based
on the same “climatological scale” (i.e., basin-wide, multi-year)
GLODAPv2 data set.

Thus, despite some identified systematic shortcomings under
certain conditions (see above), dynamic climatologies such as

FIGURE 12 | Power spectra of temporal (Left) and spatial (Right) variability of surface pCO2 (Top) and difference between estimated pCO2 and float-derived/in situ

pCO2 (Bottom). The “dynamic climatologies” (CANYON-B, CONTENT) resemble the observations more closely than classical climatologies (Takahashi, Landschützer)

at smaller scales (<120 d, <1,500 km).
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CANYON-B or CONTENT offer new ways to approach small-
scale variability that are unaddressed with classical climatologies.
Moreover, they are useful transfer functions to connect different
parts of the ocean observation system but also oceanic
variables. The climatological character is confirmed in that
global (monthly) surface pCO2 of CANYON-B/CONTENT
(from CTD-O2 and Argo-O2 profiles) is unbiased compared to
a dedicated surface pCO2 climatology.

CONTENT Uncertainty Indicator
In all our examples described and discussed here, the CONTENT
uncertainty and the training data coverage indicator played a
central role, which we want to emphasize here.

In general, neural network and MLR approaches can provide
an estimate outside the range of their reference data set, for which
the training might not be ideal and their stated uncertainty not
be appropriate. Previously, it was almost impossible from a user
perspective to judge whether the respective local conditions and
local biogeochemical variability were represented in the training
data set or not.With CONTENT and the σ

CONTENT indicator, the
user can evaluate this on a case-by-case basis, based on the local
conditions.

The a-priori assumption is that within the range of the
training data, the CONTENT estimates are consistent (i.e.,
σ
CONTENT close to σ

CONTENT
min ) as the reference data are assumed

to be unbiased, i.e., giving a “true” (and therefore consistent)
image of the carbonate system. For estimates largely outside the
range of the reference data, the four CANYON-B neural network
estimates are bound to extrapolate in ways that are inconsistent
with carbonate chemistry, yielding an inconsistent carbonate
system description and thus elevated σ

CONTENT. Such elevated
σ
CONTENT values identify conditions where the GLODAPv2-

based neural network estimates are inadequate and thus provides
a warning to the user. To focus on this inconsistency portion,
σ
CONTENT
mean is probably most useful.
However, we cannot ignore that CONTENT sometimes

describes the state of the carbonate system in a consistent manner
(i.e., small σ

CONTENT) although its estimates disagree with the
“true” state. CANYON-B and CONTENT can only describe
the spatial and temporal variability that was present in their
GLODAPv2 training data. Undersampled regions and seasons
may thus be internally consistent but possibly inaccurately
parameterized. This is where the information of training data
coverage becomes crucial. If there are no training data within
the relevant length and time scales, CANYON-B and CONTENT
estimates can still be reasonable and based on implicit, general
physical or biogeochemical relations (e.g., between temperature
and CO2 solubility). However, they could also be unreasonable
but consistent just by pure chance. CANYON-B/CONTENT
estimates in such areas should therefore be used with care. This
aspect is more difficult to formalize than σ

CONTENT, as both the
spatial and temporal scales can vary considerably (e.g., high-
latitude surface ocean vs. subtropical gyre surface ocean vs. deep
ocean). The thresholds for this metric will need to be defined
by the user. For the present purposes and applications, a spatial
range of±10◦ or±20◦ and a seasonal range of±30 days seemed
reasonable.

In the end, CONTENT and similar transfer functions cannot
replace actual observations. However, with new processes
characterized, e.g., by Biogeochemical-Argo and other novel
observation methods in the future, a mapping method like
CONTENT provides the opportunity to go back to todays
observations and better describe our present-day carbonate
system—since, at present, autonomous O2 observations
have reached maturity (e.g., Bittig et al., 2018) while pH
and other carbonate system observations are still in their
development/maturing phase.

CONCLUSIONS

Our re-developed neural network mappings for NO3, PO4,
Si(OH)4, and the four carbonate system variables (AT, CT,
pHT, and pCO2), CANYON-B, is a considerable enhancement
of CANYON: It is more robust, more precise (Table 2), comes
with a proper uncertainty estimation, and thus should replace
the use of CANYON (Sauzède et al., 2017). Compared to
independent validation data, CANYON-B’s local uncertainty
encompasses typically more than 90% of the validation data,
whereas CANYON only provided a single, global value for
its uncertainty (with fewer validation data inside its bounds,
despite σ

CANYON > σ
CANYON−B; Table 2). CANYON-B’s local

uncertainty incorporates the fact that the network’s training
data show different variability in different parts of the domain
(e.g., surface vs. at depth), and that the data only cover a
certain subspace/domain in multidimensional parameter space,
i.e., not all combinations of input parameters are equally
well constrained. From comparison to independent validation
data, global rmse’s for CANYON-B are 0.68 µmol kg−1 NO3,
0.051 µmol kg−1 PO4, 2.3 µmol kg−1 Si(OH)4, 6.3 µmol
kg−1 AT, 7.1 µmol kg−1 CT, 0.013 pH, and 20µatm pCO2

(Table 2).
Our second approach, CONTENT, combines the neural

network-based estimates of the four carbonate system variables
from CANYON-B with calculations on the carbonate system to
give better-constrained estimates and uncertainty estimates than
CANYON-B (Table 1). The reduction in estimated uncertainty is
most pronounced for pCO2, with a global accuracy estimated at
8.2% (33µatm at 400µatm) for CANYON-B and 3.7% (15µatm
at 400µatm) for CONTENT. The uncertainty estimates for all
four carbonate system variables are realistic for water column
data, where more than 92% of independent validation data
fall within the uncertainty bounds (Table 2). For CONTENT,
global rmse’s are 6.2 µmol kg−1 AT, 6.9 µmol kg−1 CT, 0.013
pH, and 15µatm pCO2 (Table 2). The power and potential of
CONTENT comes from the full carbonate system description
at once. The over determination permits the computation of
additional metrics of the quality/accuracy of the final estimate,
which allows informed analysis of the state or individual
aspects of the carbonate system on a much larger scale than
with direct measurements only. We used this technique here
to provide the first global picture of the change in the
Revelle factor of the surface ocean carbonate system based on
observations.
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It needs to be stressed that CONTENT provides a slightly
different character for the four carbonate system variables than
CANYON-B: Its estimates are the best guess for each of the
four variables to be in line with carbonate chemistry between the
four, whereas CANYON-B gives the best guess for an individual
variable to be in line with observations of this one variable.
CONTENT’s local uncertainty estimate accordingly contains
a portion that is based on the consistency of the carbonate
system description by the individual direct and indirect estimates
for each variable. In comparison to existing parameterizations
(e.g., Juranek et al., 2009, 2011; Carter et al., 2016; Sauzède
et al., 2017), such local uncertainty information is unique to
CONTENT.

The focus and main area of application of both CANYON-
B and CONTENT is the water column and ocean interior.
However, they can be used for surface applications, with
potentially noticeable boundary effects: (1) unlike in the interior
ocean, air sea gas exchange can act in surface waters to
systematically decouple C cycling from O2 cycling, the dominant
predictor variable for biogeochemistry, and (2) surface waters
are the most variable part of the ocean and they are at the
edge of the domain covered by the GLODAPv2 training data.
In the end, CANYON-B/CONTENT can only reproduce the
variability that is present in the training data. Thus, if the training
data don’t include the full surface variability, this prevents
the neural network mappings from reproducing this variability
when confronted with in-situ data. This includes the tendency
to underestimate the seasonal cycle’s amplitude seen in some
examples, which is due to the near-aseasonality of the training
data.

Nonetheless, application of this new method to estimate
surface pCO2 gives results consistent with high quality
surface pCO2 underway data for a large fraction of data.
Moreover, mismatches can be used to identify “uncommon”
biogeochemical conditions or features. Comparison with a
global climatology shows that CANYON-B’s and CONTENT’s
surface pCO2 estimate is unbiased. The application also shows
that the neural network mappings give comparable results
to a classical climatology for basin or multi-year scales.
At the same time, they show improved spectral behavior
that is close to in-situ observations on scales of 500–
1,500 km and 40–120 days thanks to the extra predictors
T, S, and O2, which allow inclusion of additional driving
factors in the mappings. We therefore term CANYON-B
and CONTENT dynamic climatologies. They thus provide a
promising technique to fill spatial and temporal gaps. Even
more importantly, however, CONTENT allows the expansion
of pCO2 (and other carbonate system variable) estimation
into the depth dimension (i.e., profile data) for better flux
estimates (both surface and entrainment fluxes). Here, it shows
a comparable performance to autonomous pCO2 and pH sensor
observations.

However, CANYON-B/CONTENT’s accuracy will always
fall short of state-of-the-art measurement methods. Crossovers
between such measurements and the CANYON-B/CONTENT-
based data can serve as quality control or for adjustment.
For regional studies and to allow an informed assessment

of the neural network estimates, we recommend explicitly
verifying local validity, both in terms of potential (e.g., by
checking the regional and seasonal training coverage) and
accuracy (e.g., with reference data from a nearby time series
site). Such ancillary data can be used to establish a local
correction, if necessary, to further improve results (e.g., by
an empirical seasonal correction of the seasonal CANYON-
B/CONTENT amplitude). In addition, such a mapping approach
only reproduce what has already been observed. Therefore,
there remains a need to observe the ocean’s carbonate system
and biogeochemistry. Still, such mappings help to densify
data of variables that are laborious or expensive to obtain,
and as such are a great tool to complement biogeochemical
observations.

The power and potential of CANYON-B/CONTENT comes
from its transfer capability: The vast set of multidecadal
observations of biogeochemical relations accumulated in
GLODAPv2 are easily transferable to any set of input data,
independent of their origin, through a mapping like CANYON-
B or CONTENT, provided that accurate O2, P, T, and S data
as well as geolocalization are available. With such a transfer of
information, one can take full advantage of the complementary
spatial and temporal coverage between observing systems.
As an example, such a technique could be used to drastically
densify biogeochemical float observations beyond the envisioned
∼1000 float Biogeochemical-Argo array, if all ∼4,000 Argo
floats or the upcoming Deep Argo were equipped with O2

sensors with in-air calibration capability, but also to densify
ship-based carbonate system observations by a factor of 10 with
Argo-O2/CONTENT estimates. More generally, the transfer
functions proposed here represent a premise of how various
bricks of present observation systems (ship-based, robots,
satellite) could be synergistically used (compare, e.g., Sauzède
et al., 2016) in the near future to dramatically fill, in a highly
cost-effective way, the present observational gaps for those
variables which are not immediately accessible to robotic
measurements.
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