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High precision, high coverage DNA-based diet analysis tools allow great insight into the
food web interactions of cryptic taxa. We used DNA fecal-metabarcoding to look for
unrecorded taxa within the diet of a generalist central-placed predator, the little penguin
Eudyptula minor. We examined 208 scats from 106 breeding pairs throughout August–
February in a large colony at Phillip Island, Australia. While we confirmed a largely
piscivorous diet, we also recovered DNA sequences from gelatinous and crustaceous
plankton groups that have not previously been detected in the little penguin diet using
other diet analysis methods. Gelatinous plankton, including salps, appendicularians,
scyphozoans, and hydrozoans were present in 76% of samples and represented
25% of all sequences. DNA recovered from minute copepods and appendicularians
may indicate links between trophic levels through secondary predation. Percentage
frequency of occurrence (%FOO) demonstrated that little penguin diet composition
changed over months and stages (incubation, guard, and post-guard) of the breeding
season (month: χ2 = 201.91, df = NA, p < 0.01; stage: χ2 = 33.221, df = NA, p = 0.015).
Relative read abundance (RRA) uncovered variations in the relative abundance of taxa
in the diet over months and stages (month: F = 53.18, df = 59, p < 0.001; stage:
F = 66.56, df = 29, p < 0.001). The diet became progressively fish-focused over months
of the season and stages, while salps were only present in 4 out of 6 months, with a
peak in September. Based on their prevalence in this dataset, in this year of very high
breeding success (2.15 chicks per pair), salps may constitute a food source for this
largely piscivorous generalist. Our work highlights how DNA metabarcoding can improve
our understanding of the trophic role of gelatinous plankton and other cryptic taxa.

Keywords: next-generation sequencing, foraging ecology, DNA barcoding, eDNA, jellyfish

INTRODUCTION

Diet analyses form the foundation of many important community and species-specific time series
used to inform models and plans for conservation and management. However, many diet analysis
techniques are limited in their coverage and accuracy (Phillips et al., 2003; Braley et al., 2010), in
some cases excluding whole taxonomic clades (Cardona et al., 2012). New techniques now enable
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us to fill in the gaps and update information being used to make
important decisions about species and ecosystem management.

Gelatinous plankton form an abundant and vast group that
has often evaded detection by past diet analysis methods. This
polyphyletic group encompasses the cnidarian sea-jellies, the
salps, appendicularians and other tunicates and the ctenophores,
all of which we will hereafter refer to as “jellies.” Our
understanding of the contribution of jellies to food webs has
been obstructed by the difficulty in recovering and identifying
gelatinous material from predator diet samples, because the soft
tissue is digested rapidly into an amorphous gel (Mianzan et al.,
1996; Arai et al., 2003). Stable isotope and fatty acid analysis have
uncovered specialist and opportunistic jelly predators (Wanless
et al., 2005), challenging assumptions based on observed feeding
(Syvaranta et al., 2012; Couturier et al., 2013) and demonstrating
that scyphozoans can make up as much as ∼90% of the diet
of some fish species that use them as shelter (D’ambra et al.,
2015). However, classification of gelatinous dietary items has
been limited because fatty acid and isotopic signatures can vary
within species, and may overlap among species in a region
(Iverson et al., 2002).

Molecular technologies that identify prey DNA in the
gut, feces and pellets of consumers are revolutionizing our
understanding of organisms’ diets and food web interactions
(Gerwing et al., 2016; Hardy et al., 2017; Komura et al., 2018),
and providing new ways to capture biodiversity (Boyer et al.,
2015). It is now possible to sample an animal’s entire diet
using DNA metabarcoding, which targets regions of DNA that
are highly conserved within a target group and that offer
enough variability to allow distinction between taxonomic groups
(Cristescu, 2014). Furthermore, technological advances in next-
generation sequencing allow 100s of diet samples to be processed
and analyzed rapidly (Metzker, 2010) maximizing capacity
for high temporal resolution, particularly when compared to
visual analysis of prey remains in stomach, gut or fecal
contents (Taberlet et al., 2018). Metabarcoding is now being
used across marine and terrestrial environments to investigate
in fine detail a wide range of ecological, community, and
conservation questions (Kartzinel et al., 2015; Thomsen and
Willerslev, 2015; Thomas et al., 2016), and holds great promise
for the description and understanding of predation on gelatinous
taxa.

Despite their low energy density (Doyle et al., 2007; Cardona
et al., 2012), true sea-jellies (Class: Scyphozoa), hydrozoans or
salps are included in the diets of many marine and coastal
birds and some mammals (Childerhouse et al., 2001; Arai, 2005;
Cardona et al., 2012; Phillips et al., 2017). These endotherms
generally show wide diet composition concordant with a
generalist foraging strategy, including jellies in small amounts,
seasonally, in accordance with local abundance (Harrison, 1984;
Jarman et al., 2013). However, a recent DNA metabarcoding
study demonstrated that the diets of two albatrosses, Thalassarche
melanophris and Thalassarche impavida, included a considerable
gelatinous component (McInnes et al., 2017b). Recent video
footage shows penguins exploiting Scyphozoa as both a source
of fish prey and an occasional prey item (Sutton et al., 2015;
Thiebot et al., 2016) and metabarcoding of Adélie penguin

Pygoscelis adeliae scats also reveals scyphozoan prey (McInnes
et al., 2016). Whether or not they are important prey for these
groups, jellies can constitute a large proportion of biomass
in some areas (Lynam et al., 2006; Henschke et al., 2016)
and many exhibit bloom and bust cycles that significantly
affect trophic interactions (Pitt et al., 2014; Smith et al.,
2016). Jellies are resilient across a range of physical conditions
(Mills, 2001; Purcell, 2012), and some gelatinous groups readily
invade ecosystems and favor environments characterized by
anthropogenic disturbance (Richardson et al., 2009; Purcell,
2012). They are capable of displacing fish and other taxa in
the water column through competition and predation (Purcell
and Arai, 2001; Pakhomov et al., 2002; Henschke et al., 2016).
Together, these observations indicate that gelatinous taxa warrant
greater monitoring and further consideration in ecosystem
management planning (Brodeur et al., 2016; Aubert et al.,
2018).

Little penguins, Eudyptula minor, are generalist predators that
prey mainly on small fish but also crustaceans and squid (Cullen
et al., 1992; Chiaradia et al., 2010, 2014; Kowalczyk et al., 2015).
Their generalist diet makes them useful for capturing information
about the wider food web (Boyer et al., 2015). However, during
the breeding season they are central place foragers whose
foraging range is constrained to differing degrees by the specific
demands of each breeding stage, potentially affecting the types
of prey they are able to exploit (Preston et al., 2008; Chiaradia
et al., 2016; Poupart et al., 2017). Breeding chronology is not
synchronous across a colony, with some birds incubating eggs
while others have chicks that are close to fledging. Depending on
the availability and abundance of prey, pairs can raise one to three
clutches in a single season (Chiaradia and Kerry, 1999).

Little penguin reproductive output is thought to be
determined by the availability and abundance of fish prey
of a certain size (Chiaradia et al., 2003; Kowalczyk et al., 2014),
but almost all that is known about the diet of this species comes
from analysis of stomach contents that overlooks soft prey, and
stable isotope analysis that does not provide accurate species
identification (Chiaradia et al., 2016). Hence important prey
items may have been under-represented in previous studies. We
use DNA metabarcoding of little penguin scats to refine the diet
composition of little penguins so we can better understand their
inshore food web.

MATERIALS AND METHODS

Experimental Design
We combined metabarcoding scat diet analysis with field records
of little penguin breeding stages. To determine diet composition,
we collected scats from little penguin nests on Phillip Island,
Victoria, Australia, over the 7-month breeding season in the
Austral summer 2015/16. We used a universal primer (18S_SSU
rDNA, McInnes et al., 2017a) capable of identifying multicellular
animals to class and sometimes order or family level. We
compared little penguin diet between months of the breeding
season, and between breeding stages, to investigate extrinsic and
intrinsic drivers of diet.
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Study Sites, Species, and Collection of
Breeding Stage Data
Little penguins were monitored at two sites located ∼2 km
apart within the Phillip Island colony in south eastern Australia
(38◦31′ S, 145◦07′ E). The two study sites were “Penguin Parade,”
where monitored penguins breed in artificial wooden nest boxes,
and “Radio-tracking Bay,” where penguins breed in natural
burrows. There is a high degree of spatial foraging segregation
between these sites (Sánchez et al., in press). Around 100 nests
at each site were monitored to record the presence of adults,
eggs or chicks; three times a week at Penguin Parade and once
a week at Radio-tracking Bay due to the differing accessibility
of the sites. Little penguins have three discrete breeding stages,
which significantly influence their foraging range and effort.
These include “incubation,” in which adults take turns incubating
their eggs for 2–7 days while the partner forages at sea (Numata
et al., 2000; Kato et al., 2008); “guard,” where small chicks are
guarded by one parent while the other forages at sea, swapping
roughly daily (Chiaradia and Kerry, 1999), and “post-guard,”
where both adults forage to provision their large chicks, which are
left unattended in the burrow (Saraux et al., 2011). Foraging trips
during post-guard can range from between one to two days when
food is abundant and 2–5 days when food is scarce (Chiaradia and
Nisbet, 2006). Therefore foraging range is most limited during the
guard stage.

Collection of Scat Samples
Each week, we aimed to sample scats from all nests with eggs
or chicks at each site. Cardboard was placed on the floor of
the entrance of nests, taking care not to block the exit, and
pegged in place. The next morning, scats that had been deposited
on cardboard were collected using a metal spatula or tweezers,
placed in individual vials and mixed thoroughly with 75–80%
ethanol for preservation. We did not collect scat from substrate
(soil and vegetation, etc.) as humic substances in soil can inhibit
DNA amplification (Schrader et al., 2012) and contaminant DNA
from the environment can swamp dietary DNA in samples
(McInnes et al., 2017a). Samples were stored in a freezer at−20◦C
within 3 h of collection. For full details of the scat collection
protocol (see McInnes et al., 2017a).

Only around 100 nests were available at each site for
monitoring, and of these fewer than fifty had eggs or chicks in
any given week. This means that many nests were sampled more
than once during the study. Samples collected each week ranged
from less than 10 to 30, due to contamination by substrate, loss
of sample freshness, and failure by penguins to defecate on the
cardboard. A total of 579 samples were successfully collected
from 106 nests across the two sites.

Molecular Methodology
DNA Extraction
DNA extraction and marker amplification were performed at
the Australian Antarctic Division in Kingston, TAS, Australia.
DNA was extracted from approximately 30 mg of each scat
sample, using a Promega Maxwell R© 16 instrument and Maxwell R©

16 Tissue DNA Purification Kits. PCR inhibitor concentrations

in DNA extracts were reduced by mixing samples with 250 µL
Roche Stool Transport and Recovery (S.T.A.R.) Buffer (Roche
Diagnostics, Basel, Switzerland) prior to extraction.

DNA Metabarcoding
Dietary DNA metabarcoding involves amplification and
sequencing of large numbers of short, unique regions of DNA
(barcodes) present in the scats of consumers (Pompanon
et al., 2012). We used a two-step PCR amplification process
enabling amplification of a DNA barcode region, and subsequent
attachment of unique ‘index tag’ sequences to each sample,
allowing samples to be pooled for sequencing (Binladen et al.,
2007). In this study, DNA extracts were amplified using broad
range primers (18S_SSU: McInnes et al., 2017a), that are
conserved in metazoans, and amplify the V7 region of the
nuclear small subunit ribosomal DNA gene (Hadziavdic et al.,
2014). In choosing a barcode marker, there is a trade-off between
coverage and resolution. Highly conserved regions provide
information covering the breadth of a generalist diet, but are
less variable, limiting taxonomic resolution to the class or
family level (Pompanon et al., 2012). The reaction mixture
for the first amplification was 2 µL fecal DNA, 5 µL Phusion
HF (Taq polymerase), 1 µL bovine serum albumin, 0.5 µL
Evagreen (Biotium, Inc., United States), 0.1 µL of each of the
5 µM 18S_SSU primers and 1.3 µL of water. We chose not
to use a blocking primer to prevent amplification of penguin
(host) DNA, because these can also mask DNA from some
target species (Pinol et al., 2014). The amplification process
was completed on a LightCycler 480 (Roche Diagnostics).
Thermal cycling conditions were 98◦C for 2 min; followed by
35 amplification cycles of 98◦C for 5 s, 67◦C for 20 s, 72◦C for
20 s, with a final elongation of 72◦C for 1 min. Samples with
a Cycle Threshold (CT) score greater than 30, indicating low
DNA or inhibited amplification, were excluded from further
analysis (Murray et al., 2015). Second stage amplification and
sequencing steps were carried out at the Ramaciotti Centre
for Genomics (Sydney, NSW, Australia). After purification
with AMPure XP magnetic beads amplicons were labeled
with Nextera Index Primers in unique combinations. The
reaction mix for this stage was 2.5 µL DNA, 2.5 µL of each
of the Nextera Index primers, 12.5 µL of KAPA HiFi HotStart
ReadyMix (Taq polymerase) and 5 µL water. Thermal cycling
conditions were 95◦C for 3 min; then eight amplification cycles
of 95◦C for 30 s, 55◦C for 30 s, 72◦C for 30 s and then a final
elongation of 72◦C for 5 min. Finally, the pooled, indexed
samples were loaded into an Illumina Miseq sequencer, and
underwent 150 bp paired-end sequencing (Illumina Miseq v2
reagent kit).

Bioinformatics
Following sequencing, the separate forward and reverse reads
were merged using the fastq_mergepairs function in USEARCH
v8.0.1623 (Edgar, 2010, 2013). Amplicons that did not exactly
match one of the forward or reverse 18S_SSU primers and those
shorter than 150 bp were excluded. The merged amplicons from
all samples were clustered into molecular operational taxonomic
units (mOTUs) using the UPARSE algorithm (Edgar, 2010,
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2013) with a cut-off threshold of 97% similarity. These mOTU
clusters were then compared to a reference library (SILVA: Quast
et al., 2013) containing DNA sequences linked to taxonomically
verified specimens. Those with >95% match to a reference
sequence were assigned to that taxon at class level. Many but
not all sequences could be assigned taxonomic information at
the class level using the SILVA database. The 10 most common
classes (each accounting for more than 0.5% of food reads in
the dataset) were further resolved to the lowest possible level
using the NCBI Basic Local Alignment Search Tool (BLAST:
Johnson et al., 2008). This global mOTU library was then used to
classify sequences in each of the samples. Following identification
of sequences, data were filtered to retain only food sequences,
defined as all metazoa that are neither obligate parasites nor
known post-defecation contaminants. Then, samples with fewer
than 100 food sequences were discarded (comparable to McInnes
et al., 2016), since these either contained insufficient DNA
to analyze or were dominated by non-target DNA such that
inferences about diet would be unreliable. Table 1 gives the
final number of samples analyzed per each breeding stage and
month.

Diet composition was determined using two methods to
account for biases in the diet summaries (Deagle et al., 2018).
The two can give different results – although they are generated
from the same dataset – because one functions as a record
of presence or absence, and the other is used as a proxy
for abundance. First, the number of reads of an individual
taxon in a scat sample was divided by the total number of
food reads in that sample and multiplied by 100, giving the
percentage, or relative read abundance (RRA), of each taxon
in each sample. These read abundances were then scored as
present (>1% of food reads in a sample) or absent (<1% of
food reads in a sample) to measure the percentage frequency
of occurrence (%FOO) of each taxon across the dataset. RRA
describes the relative percentage of prey sequences deriving
from a prey group across the dataset and although it does
not represent exact proportions of prey items in the diet, this
metric can provide a more accurate summary of overall diet
than frequency of occurrence in many situations (Deagle et al.,
2018). The percentage frequency of occurrence describes the
percentage of samples in the dataset in which a given taxon is
present, but, like all presence–absence records, can overestimate
the importance of common prey items that are ingested in very
small amounts, including in the digestive tract of targeted prey
(secondary predation). Samples were also categorized according
to dominant prey group (i.e., the group comprising > 70%
of the sequences in the sample) to further enable distinction

between primary and secondary predation (McInnes et al.,
2017b).

Statistical Analysis
To accommodate differing structure and assumptions between
FOO (presence/absence) and RRA (percentages), we chose to
analyze the data via separate methods that were better suited
to each data type. A Chi-squared analysis was applied to the
percentage frequency of occurrence data, and a mixed modeling
approach with multiple comparisons employed for the RRA data.
Statistical analyses were executed in R statistical software (R 3.1.2,
R Development Core Team, 2013).

We employed contingency tables with Chi-squared tests
to detect associations between taxa detected in fecal samples
and either breeding stages or months of the breeding season
within the frequency of occurrence (%FOO) data. Chi-squared
tests were applied to the raw frequencies of occurrence, rather
than percentages, as applying chi-squared tests to percentages
is not valid. However, results are reported as percentages,
as this is in line with conventions around this data type.
Two contingency tables were built with counts of samples for
each combination of taxon and either month or stage (xtabs
function, vcd package; Meyer et al., 2008). To control for
some of the possible pseudoreplication attributable to repeated
sampling of burrows, we merged the data wherever there were
multiple records for any combination of burrow, breeding
stage and month. That is, if a taxon was recorded as present
within any of the records for a single combination, it was
retained as present in the merged record and if a taxon
was absent from all records, it was retained as absent in the
merged record. However, we were unable to fully account for
repeated measures of burrows over multiple breeding stages and
months and it is possible that this may inflate Type 1 error.
Therefore, we have chosen to accept only chi-squared results
with residuals > + 4 or < −4 (equivalent to a p-value of
0.01 or less). We have not interpreted residuals between + 2
and + 4 (equivalent to significance at the 0.05 level). Each Chi-
squared test was visualized as an association plot (assoc function,
vcd).

To test for effects of breeding stage or month on the
RRA of individual taxa, we constructed two linear mixed
effects models with burrow nested within site as a random
intercept to account for repeated measures (lme function, nlme
package; Pinheiro et al., 2014). We applied a rank normal
transformation to improve normality in the RRA response. Each
model contained only the interaction of taxon and either stage
or month. As we were interested only in the interaction, we

TABLE 1 | Number of analyzed samples across months and breeding stages of the 2015/2016 breeding season at Phillip Island.

August September October November December January February Total

Incubation 5 24 3 6 6 0 0 44

Guard 0 17 26 9 13 2 3 70

Post-guard 4 9 13 24 24 0 20 94

Total 9 50 42 39 43 2 23 208

Note that January was not incorporated in analyses due to insufficient sample size.
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ignored the main effects (taxa, month, and breeding stage),
which represented only the proportion of the total sequences
that were collected in each breeding stage or month, or for
each taxon, overall. The variance attributable to each level of the
random effect was calculated by hand after retrieving estimated
variances using the VarrCorr function in lme4 (Bates et al.,
2014).

Following the outcome of the above analysis, we then
generated individual linear mixed effects models to test the
effect of month and breeding stage (separate models) for
each taxon, again with rank-normalized responses and burrow
nested within site as a random effect. We applied multiple
comparisons using Tukey’s post hoc comparisons with Bonferroni
corrections to reduce the chance of Type I error (glht
function, multcomp package; Hothorn et al., 2013). These

were visualized in a compact letter display (cld function,
multcomp).

Ethics Statement
This research was conducted under an Ethics Permit No.
2.2014 approved by Phillip Island Nature Parks Animal Ethics
Committee number and Research Permit No. 10006148 from
the Department of Environment, Land, Water and Planning of
Victoria, Australia.

RESULTS

Of 376 processed samples, 208 samples met the requisite 100
prey DNA sequences threshold for inclusion in subsequent

TABLE 2 | Sequences uncovered in the feces of little penguins Eudyptula minor on Phillip Island during the 2015–2016 breeding season, using the universal eukaryote
primer, 18S_SSU (18S rDNA, McInnes et al., 2017a).

Phylum Identity at lowest
taxonomic ranking

Percentage frequency of
occurrence (%FOO; %)

Relative read
abundance (RRA; %)

Percentage of samples with > 70%
RRA per prey group (%)‡

Annelida Annelida 1.92 0.04

Arthopoda Malacostraca 10.10 2.12 0.96

Branchiopoda 2.40 0.27

Maxillopoda

Calanoida 20.19 4.23 1.44

Cyclopoida 6.25 0.22

Harpacticoida 23.08 2.84 0.96

Other 7.21 1.09

Chordata Actinopterygii

Teleostei 100 63.56 49.52

Appendicularia∗

Oikopleuridae∗ 40.87 5.39 1.44

Ascidiaceae∗

Salpidae∗ 42.79 16.33 8.17

Cnidaria Anthozoa∗ 0.48 0.01

Hydrozoa∗

Leptothecata∗ 9.13 0.96

Other∗ 2.40 0.11

Siphonophores∗ 13.46 0.66

Scyphozoa∗ 7.21 1.25

Ctenophora Ctenophora∗ 4.81 0.23

Echinodermata Echinodermata 0.48 0.01

Mollusca Bivalve 0.48 0.10

Cephalopod

Oegopsida 4.81 0.38

Other 1.92 0.09

Chlorophyta Green Algae 0.48 0.01

Stramenopiles Stramenopiles 0.48 0.02

Tardigrada Tardigrada 1.44 0.07

Total prey 100 18.00

Parasite 88 5.7

Contaminant 99.52 8.9

Penguin (host) 100 66.3

Unidentified 66.35 1.1

∗Gelatinous taxa.
‡ In 37.5% of samples, no single taxon dominated the sequence reads.

Frontiers in Marine Science | www.frontiersin.org 5 October 2018 | Volume 5 | Article 381

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-05-00381 October 24, 2018 Time: 15:1 # 6

Cavallo et al. Metabarcoding Reveals Inshore Predator Diet

analyses. Of these, 112 were from Penguin Parade birds, while
96 were collected from Radio-tracking Bay. A total of 465
mOTUs were recognized, of which 353 contained non-food
DNA including 31 obligate parasite OTUs, one penguin OTU
and the remainder a range of non-food eukaryotes including
fungi, unicellular organisms and plant DNA, a further 26 were
unable to be identified (Table 2). A total of 86 mOTUs were
identified as possible prey items, and pooled into their 17
classes for downstream analyses. It is typical for scat samples to
include a high proportion of DNA sequences from parasites and
contaminants (McInnes et al., 2017a).

Diet Composition
Fish (Actinopterygii) were present in all samples with prey
DNA detected (frequency of occurrence; %FOO: Table 2) and
accounted for 63.6% of prey sequences across all samples
(RRA: Table 2). Of the 16 other taxa detected in the food
dataset, only nine accounted for more than 0.5% of prey
sequences each (Table 2). Gelatinous plankton accounted for
5 of the 10 most common taxa in the samples, were present
in 76% of samples (%FOO) and represented almost 25% of
all prey sequences (RRA). Of these, salps were present in
43% of samples, and comprised 16% of prey sequences, while
oikopleurids (appendicularians) were present in 41% of samples
but accounted for only 5% of prey sequences. Siphonophore
and leptothecate hydrozoans were present in 13 and 9%
of samples respectively, and accounted for less than 1% of
prey sequences each. True jellies (Scyphozoa) were present in
7% of samples and accounted for 1.25% of prey sequences.
Crustaceans and cephalopods accounted for four of the 10 most
common taxa. Crustaceans were present in 48% of samples
and accounted for 11% of prey sequences. Of these, free-living
calanoid and harpacticoid copepods were present in 20 and
23% of samples, but accounted for only 4 and 3% of prey

sequences respectively. Malacostraca occurred in 10% of samples
but represented only 2% of prey sequences. Squid (Oegopsida)
were present in 5% of samples and accounted for less than
1% of prey sequences. No differences were found between the
Penguin Parade and Radio-tracking Bay in terms of broad
diet composition (Supplementary Figure S1) and so site was
not considered in further analyses, other than as a random
effect.

Dominant Taxa in Individual Samples
Sixty two per cent of samples were dominated by
sequences from a single prey group that accounted for
70% of the reads or more (Figure 1). Most of these
samples were dominated by fish sequences. Almost 10%
of samples were dominated by gelatinous salps, while
only 1–1.5% of samples were dominated by copepods
(calanoids and harpacticoids), oikopleurids, or malacostracan
sequences.

Diet in Relation to Month of the Year
Frequency of Occurrence (%)
The frequency of occurrence of different taxa varied over
months of the breeding season (Figure 2A), however, based
on an alpha level of 0.01, only 2 of the 10 most common
prey items varied significantly and these were salps and
squid (Figure 2B; χ2 = 201.91, df = NA, p < 0.01).
Fish were the most common item present, occurring in
all samples, and squid occurred the least often, appearing
in only November and December. The free-living calanoid
copepods and the oikopleurid tunicates were the only taxa
other than fish to occur across all 5 months sampled. Salps
were present during August to November only and were
significantly more common than expected in September. Squid
were only present in the diet in 2 months (November and

FIGURE 1 | Sample numbers for each sampling date, colored according to dominant prey type. The dominant prey type was calculated as the taxon that constituted
more than 70% of DNA sequences in that sample. Samples where no single prey type dominated were classed as “mixed.” On the y-axis, each tick mark represents
one sample. Note that although samples from January are included here, these were not incorporated in further analyses due to insufficient sample size.
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FIGURE 2 | The frequency of occurrence (%) of the 10 most common taxa in fecal samples over surveyed months of the breeding season. The percentages for
each taxon over months are shown along with number of samples per month (A) and the association plot (B) illustrates significant differences between observed and
expected numbers of samples containing taxa in each month, based on Pearson residuals. Red or blue shading indicates significance level. Light shading indicates
p-values between 0.05 and 0.01, while bold shading indicates p-values < 0.01. In our analysis, we have accepted only significant values less than 0.01. Note that
January was not incorporated in analyses due to insufficient sample size.

December) and were significantly more common than expected
in December.

Relative Read Abundance (%)
The relative abundance of individual taxa varied over months
of the breeding season (Figure 3) with nine out of 10 of the

most common taxa showing a significant difference in abundance
in one or more months (F = 61.06, df = 59, p < 0.001).
Fish sequences showed a highly significant trend over months,
being least abundant in September and October, increasing
in abundance from October to February and accounting for
more than 90% of the reads in February. Salp sequences
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FIGURE 3 | The RRA (%) of the 10 most common taxa in fecal samples over
surveyed months of the breeding season. The percentages for each taxon
over months are accompanied by a compact letter display indicating
significant differences between months. Months with the same letter are
considered similar to each other, and months with different letters are
considered significantly different from one another. Significant differences are
also denoted by bold, italic text. Note that January was not included in
analyses due to insufficient sample size. Taxa are Cala = Calanoids, Fish,
Harp = Harpacticoids, Lept = Leptothecans, Mala = Malacostracans,
Oiko = Oikopleurids, Salps, Scyph = Scyphozoans, Siph = Siphonophores,
and Squid.

were significantly more abundant in September, with raised
abundance in August and September compared to November
and December, when the taxon was in very low abundance,
and February, when no salps were recorded. Oikopleuran
sequences were most abundant in November and December,
and calanoid copepods and Leptothecan hydrozoan sequences
were most abundant in October. The random effect of burrow
nested in site accounted for 0.5% of the variation in this

data, while the random effect of site accounted for less than
0.001%.

Diet in Relation to Breeding Stage
Frequency of Occurrence (%)
We conservatively conclude that no group varied significantly
over stages in terms of frequency of occurrence, based on an alpha
level of 0.01 (Figure 4; χ2 = 33.221, df = NA, p = 0.015). Fish
were recorded in all samples. Scyphozoa and squid occurred only
during guard and post-guard in a low number of samples, such
that these were not significantly different to the zero counts in
incubation.

Relative Read Abundance (%)
The RRA of taxa varied significantly over breeding stages
(Figure 5), with 6 out of the 10 most common taxa showing a
significant difference in abundance between two or more stages
(F = 66.56, df = 29, p < 0.001). Most pronounced were the
trends in fish and salps. Salp sequences were most abundant
during incubation, and decreased to less than 20% of the reads
in post-guard. Fish sequences were most abundant during post-
guard. Oikopleurids, harpacticoid copepods, leptothecans, and
scyphozoans also varied significantly over breeding stages, but
there were no differences in calanoid copepods, malacostracans,
siphonophores, or squid. As random effects, both burrow nested
in site and site accounted for less than 0.001% of the variation in
this data.

DISCUSSION

We confirm a fish-dominated diet in little penguins that includes
a wide variety of other items. We revealed the presence of
gelatinous and crustaceous plankton taxa not recorded by
previous little penguin studies (e.g., Klomp and Wooller, 1988;
Cullen et al., 1992; Flemming et al., 2013; Kowalczyk et al., 2015;
Chiaradia et al., 2016). Though DNA metabarcoding made it
possible to detect these cryptic taxa, it cannot describe whether
items were ingested intentionally or incidentally (Sheppard et al.,
2005). Consequently, some taxa recorded in our study may
represent secondary predation by penguins (Sheppard et al.,
2005), but their presence indicates a trophic role for newly
recorded taxa and how they may contribute to energy flow
through food webs. Further, getting an accurate measure of a
predator’s diet is always challenging, and in the case of DNA-
based results, some biases could occur due to variation in trip
duration, time since consumption and differential digestion rates
among prey taxa (Thomas et al., 2014; Deagle et al., 2018).
However, dietary DNA persists in the gut and feces of predators
for four days (Deagle et al., 2010), and should reflect full
diet.

We recorded a surprisingly high frequency and abundance
of salp sequences in the diet of this predominately piscivorous
predator. Not only did salps appear in >40% of fecal samples
and constitute >16% of reads in the dataset, they were
the dominant taxon in 8% of samples, suggesting they were
likely to have been targeted prey in many cases. Salps, and
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FIGURE 4 | The frequency of occurrence (%) of the 10 most common taxa in fecal samples over breeding stages. The percentages for each taxon over breeding
stages are shown along with number of samples per stage (A) and the association plot (B) illustrates significant differences between observed and expected
numbers of samples containing taxa at each breeding stage, based on Pearson residuals. Red or blue shading indicates significance level. Light shading indicates
p-values between 0.05 and 0.01, while bold shading indicates p-values < 0.01. In our analysis, we have accepted only significant values less than 0.01. Note that
January was not incorporated in analyses due to insufficient sample size.

other gelatinous plankton, have traditionally been thought to
be of minor importance as prey items to higher trophic
levels owing to their poor nutritional content (e.g., Doyle
et al., 2007). Due to this low nutritional content, animals
known to routinely feed on gelatinous plankton, such as
the leatherback turtle (Dermochelys coriacea) and the ocean
sunfish (Mola mola), have a low metabolic rate (Davenport,
1998; Houghton et al., 2006). In contrast, gelatinous plankton
alone may not sustain endotherms such as marine mammals
and birds that have high metabolic rates. However, despite
being an order of magnitude lower in energy density than
fish, cephalopods or crustaceans, salps can be equally or even
more energy rich than scyphozoans (salps 0.43, scyphozoans
0.41, fish 8.4, squid 5.46 kJ g−1 wet mass: Cardona et al.,
2012); krill 3.03 kJ g−1 wet mass: Gales and Green, 1990),
which many seabirds are known to eat (Thiebot et al., 2016,

2017; McInnes et al., 2017b) and on which predation by
little penguins was recorded in the wider region (Thiebot
et al., 2017). The aforementioned study did not record
predation on salps by little penguins, however the authors
note that they “seldom, if ever” observed salps in videos,
suggesting that there were few recorded opportunities for
predation.

Salps are commonly targeted by larval and small pelagic fish
(Young et al., 1997; Mianzan et al., 2001), and these are important
prey items for many seabirds and marine mammals, including
little penguins (Chiaradia et al., 2003). Given that fish occurred
in all samples, salp presence could result from penguins eating
fish that have recently fed on salps. However, we would expect
the RRA to be much lower if their occurrence in the diet was due
to secondary predation alone. Around half of the salp-dominated
samples contained less than 10% fish sequences, and many of
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FIGURE 5 | The relative read abundance (RRA) (%) of the 10 most common
taxa in fecal samples over breeding stages. The percentages for each taxon
over stages are accompanied by a compact letter display indicating significant
differences between breeding stages. Breeding stages with the same letter
are considered similar to each other, and months with different letters are
considered significantly different from one another. Significant differences are
also denoted by bold, italic text. Note that January was not incorporated in
analyses due to insufficient sample size. Taxa are Cala = Calanoids, Fish,
Harp = Harpacticoids, Lept = Leptothecans, Mala = Malacostracans,
Oiko = Oikopleurids, Salps, Scyph = Scyphozoans, Siph = Siphonophores,
and Squid.

these contained less than 5% fish sequences. Further, there is no
information to suggest that the DNA of salps or other ascidians
are preferentially recovered by the DNA barcode marker we
used. Indeed, the other ascidian in the dataset (Oikopleuridae)
is recorded only in low abundance and salps are rare in other
seabird diet datasets generated with this DNA marker (McInnes
et al., 2017b). Finally, because gelatinous tissue degrades so
rapidly in comparison to other tissues, it is unlikely that enough
salp DNA would persist through two rounds of digestion to
create the signal seen in our dataset. Thus, little penguins do
appear to directly feed on salps, which are known in the diet of
other endotherms (Childerhouse et al., 2001; Cruz et al., 2001;
Hedd and Gales, 2001), and even fed to offspring (Cruz et al.,
2001).

Small crustaceous copepods and gelatinous oikopleurids, as
well as gelatinous Scyphozoa and Hydrozoa, were occasionally
found but with very low abundance, each accounting for <2–
8% of the reads in the dataset. Our results are in contrast to
those by Sutton et al. (2015) who observed with video loggers
that 28% of little penguin predation events included scyphozoans
from one family. These contrasting results (extended in Thiebot
et al., 2017) could be due to temporal and spatial variation
in jelly abundance in Bass Strait between the studies, or
variation in detection between methods. Given the boom-
bust dynamics of scyphozoan populations (Pitt et al., 2014),
it is most likely that the disparity indicates differences in
local abundance between years and locations. Further, the 16S
SSU primer used in this study has previously detected very
high predation on Scyphozoa and other jellies by albatross
species (McInnes et al., 2017b). The use of cameras and DNA
barcoding simultaneously may provide more understanding on
predation events and prey occurrence in dietary samples. The
presence of very small copepods and oikopleurids (<5 mm)
may represent secondary predation events and so patterns
observed in these tiny taxa may reflect their changing availability
to fish, or predation by penguins on different fish species.
Detection of these tiny and cryptic taxa can help us improve
the trophic links within the broader little penguin food
web.

We detected low presence of cephalopods and malacostraca
in the diet of little penguins, although both have been detected
previously (Klomp and Wooller, 1988; Flemming et al., 2013;
Kowalczyk et al., 2015; Sutton et al., 2015; Chiaradia et al., 2016).
While the presence of malacostraca has never been high in little
penguin diet analyses, cephalopods can be quite common in
their diet (30–60%: Chiaradia et al., 2016). High presence of
cephalopods in penguins’ diet has been associated with years of
low food availability (Cullen et al., 1992; Chiaradia et al., 2003).
Given our study season was one of very high breeding success
(2.15 chicks per pair), which suggests high food availability
(Chiaradia and Nisbet, 2006), this may explain the low presence
of cephalopods. Another possibility is that predation on this
group has been overestimated in the past, given the tendency for
hard parts such as squid beaks to be retained in the stomachs and
thereby overrepresented in stomach content analysis (van Heezik
and Seddon, 1989). Indeed, no little penguins were observed
to prey upon cephalopods during Sutton and colleague’s video-
logging and only three predation events included krill (Sutton
et al., 2015) although we do not know how often opportunities to
prey on these sources presented themselves. Finally, it is unlikely
but possible that low cephalopod records were the result of
technical bias in the metabarcoding (see McInnes et al., 2017b).
Further analysis across years should be undertaken to resolve this
uncertainty, ideally alongside DNA markers designed for squid
and concurrent stable isotope and stomach contents sampling to
clarify method-specific biases.

The Role of Salps in a Piscivorous Diet
The high presence and relative abundance of salps shows they
may have a role in the diet of this largely piscivorous species
for while relative abundance does not necessarily reflect true
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mass proportions, it is a useful proxy (Deagle et al., 2018). Salp-
dominated samples occurred in all three breeding stages but were
restricted to September and October, which coincide with a peak
in the incubation. In contrast, fish increased over stages and were
in highest proportion in the post-guard stage; a period when a
nutrient-rich diet is important for the body condition of chicks
(Chiaradia et al., 2003). Avoidance of lower nutrition prey during
chick-raising stages by penguins would explain the negative trend
we found between salps and breeding stage, but the fact that salp
sequences constituted more than a third of the diet sequences
during September, with raised sequence proportions in August
and October, may signpost an extrinsic influence. Raised salp
occurrence and proportions may indicate the presence of a salp
bloom during this time within the foraging range of penguins at
our study sites. Salp blooms are notorious for blanketing large
areas and excluding other planktonic species (Siegel and Harm,
1996; Verity and Smetacek, 1996; Lee et al., 2010) and other
consumers have been shown to feed on salps as stomach fillers
when other prey is scarce (Mianzan et al., 2001). Furthermore, it
is well-known that in SE Australia salp blooms are most prevalent
in August, September, and October (Henschke et al., 2015),
exactly the time of year when they appeared maximally abundant
in the diet of little penguins (Supplementary Figure S2). For
example, Thalia democratica is the most abundant salp in the
Tasman Sea with individual zooids, around 1 cm in size, and has
been reported to reach densities of up to 1312 individuals/m3

(Henschke et al., 2014). In such dense blooms the low energy
density of salps is presumably offset by the ease with which
large numbers can be consumed. So the most parsimonious
explanation of our findings is that penguins opportunistically
feed on salps when they happen to encounter blooms.

Based on studies of the biochemical and nutritional
composition of salps, we do not believe that they contain any
limiting resource that penguins would be targeting, but it remains
a possibility. The organic content of salps is high in protein and
crude fiber (Madin et al., 1981; Amorocho and Reina, 2007),
though they are predominantly composed of water (Dubischar
et al., 2012), and it has also been suggested that predators may
target their visible stomachs, which contain densely packed
diatoms and other phytoplankton (Gili et al., 2006), linking
primary productivity to higher trophic levels through these direct
grazers. Although salps could act as a source of calcium (Caron
et al., 1989), by making concentrated diatomaceous calcium
available to larger consumers, little penguins are easily able to
obtain this resource by swallowing shell grit on the shoreline
(Wasiak, 2008).

Shedding Light on Temperate Inshore
Food Webs
Regardless of whether taxa uncovered by metabarcoding were
obtained through primary or secondary ingestion, this method
provides an avenue for capturing food web and population
dynamics in gelatinous and otherwise cryptic taxa. Given the
method is not taxon-specific, and is non-invasive, a wide variety
of range-restricted, central-placed foragers could be used to
capture inshore gelatinous patterns of abundance, and resolve
trophic links. By pairing a short-range forager with sympatric

long-range foragers, such as seals or shearwaters, it would be
possible to capture whole-of-ecosystem patterns. Since jellies
are expected to flourish under increasingly disturbed conditions
while most other taxa are expected to suffer (Richardson et al.,
2009; Purcell, 2012) tracking their changing abundance and
distribution is of utmost importance if we are to mitigate flow
on effects to other taxa (Purcell and Arai, 2001; Pakhomov
et al., 2002; Henschke et al., 2016). This method also offers an
efficient approach to track cycles of ecologically important taxa,
such as small pelagic fish, in locations that are not subject to
regular commercial fishing-based surveys, providing important
data for ecosystem managers and those managing populations of
threatened predators.
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