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Air-breathing marine animals, such as seals and seabirds, undertake a special form

of central-place foraging as they must obtain their food at depth yet return to the

surface to breathe. While telemetry technologies have advanced our understanding of

the foraging behavior and physiology of these marine predators, the proximate and

ultimate influences controlling the diving behavior of individuals are still poorly understood.

Over time, a wide variety of analytical approaches have been developed for dive data

obtained via telemetry, making comparative studies and syntheses difficult even amongst

closely-related species. Here we review publications using dive telemetry for 24 species

(marine mammals and seabirds) in the Southern Ocean in the last decade (2006–2016).

We determine the key questions asked, and examine how through the deployment

of data loggers these questions are able to be answered. As part of this process

we describe the measured and derived dive variables that have been used to make

inferences about diving behavior, foraging, and physiology. Adopting a question-driven

orientation highlights the benefits of a standardized approach for comparative analyses

and the development of models. Ultimately, this should promote robust treatment of

increasingly complex data streams, improved alignment across diverse research groups,

and also pave the way for more integrative multi-species meta-analyses. Finally, we

discuss key emergent areas in which dive telemetry data are being upscaled and

more quantitatively integrated with movement and demographic information to link to

population level consequences.

Keywords: diving behavior, dive variables, seals, marine mammals, penguins, data loggers, comparative analyses,

Antarctica

INTRODUCTION

The Southern Ocean (hereafter SO) is a unique circumpolar biogeographic region, supporting a
rich biodiversity with many species of high conservation value (De Broyer and Koubbi, 2014b). It
is also one of the areas manifesting the most rapid climate-related changes (Larsen et al., 2014).
The SO ecosystem supports diverse marine predators, many of which are pursuit divers (Trathan
and Hill, 2016) that are particularly interesting for the study of the underlying principles related

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2018.00464
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2018.00464&domain=pdf&date_stamp=2018-12-14
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:giulia.roncon@utas.edu.au
https://doi.org/10.3389/fmars.2018.00464
https://www.frontiersin.org/articles/10.3389/fmars.2018.00464/full
http://loop.frontiersin.org/people/566493/overview
http://loop.frontiersin.org/people/571679/overview
http://loop.frontiersin.org/people/115171/overview
http://loop.frontiersin.org/people/594349/overview
http://loop.frontiersin.org/people/13373/overview


Roncon et al. Southern Ocean Dive Telemetry

to foraging behavior and diving physiology. Seven species
of seals are endemic to the SO, some breed on land while
others use the sea-ice as breeding platform. Toothed whales
(parvorder Odontoceti) may occupy the SO year round while
in contrast baleen whales (parvorder Mysticeti) typically migrate
and are present only seasonally. Over 90% of the SO avian
biomass comprises penguins (order Sphenisciformes) (Woehler
and Croxall, 1997) but a large variety of seabirds, the
majority of the order Procellariiformes [e.g., prions (genus
Pachytila), shearwaters (genus Puffinus), albatross (family
Diomedeidae), petrels (family Procellariidae)] and of the order
Charadriiformes [i.e., gulls and terns (family Laridae), skuas
(family Stercorariidae)], visit the Antarctic region during the
austral summer. These species are all adapted to the extreme
and highly seasonal ocean-ice environment and are likely to
respond differently to changing climate and other human-
induced influences and activities (Forcada et al., 2008; Constable
et al., 2014).

Historically, these highly mobile animals were almost
impossible to observe across their range. Today, a multitude
of data loggers and sensors provide a broad observational
framework for acquiring detailed information about their lives
at sea. Information on how animals use the environment in
space and time are the central tennants that inform a synthetic
overview of ecosystem structure and dynamics (Schick et al.,
2013). The demographic performance (e.g., growth rates and
reproductive behavior) of these animals provides an integrated
measure of overall system function and health (Barbraud and
Weimerskirch, 2001). As long-lived species, marine mammals
and seabirds can be monitored long-term and act as indicators
of ecosystem status across a range of spatiotemporal scales
(Schick et al., 2013). Since many of these species dive to several
hundred meters (e.g., elephant seals (genus Mirounga, McIntyre
et al., 2010) and beaked whales (family Ziphiidae; Tyack et al.,
2006), they provide information from the surface to the deep
ocean. Quantifying movement and diving behavior can therefore
provide information on areas of high and low productivity, how
these change over time, and may help provide insights into how
animals will respond to global climate change.

Kooyman (1965) was the first to investigate the diving
behavior of a Weddell seal (Leptonychotes weddellii) using an
animal-borne device—a pressure gauge combined with a kitchen
timer; the deployment lasted about an hour. This basic time-
depth recorder (TDR) recorded for the first time not only dive
depth and duration but also ascent and descent rates of the seal.
This work revolutionized the study of marine mammals and
other marine animals (Kooyman, 2004). From these origins we
can now integrate in situ behavior and physical measurements
to study direct links, e.g., between the characteristics of the
environment (e.g., the water mass a seal uses) and animal
behavior (e.g., how deep and long it dives) and performance
(e.g., how often it breaths). These linkages can ultimately help to
quantify how population growth rates are affected (e.g., Hindell
et al., 2017; McMahon et al., 2017).

Diving predators need to acquire sufficient resources which
among other factors are determined by prey distribution,
abundance, and quality. These need to be balanced against their

physiological constraints (e.g., oxygen stores, age/size or sex
influencing diving capacity). The interplay between need and
constraint is reflected in what is directly observable, and what
can be measured, for example, dive behavior using data loggers.
How these predators manage their dive cycle structure is the key
from which inferences can be made about the “hidden” aspects of
foraging and physiology (Figure 1).

In our study, we conducted a systematic literature review of
publications using dive telemetry in the Southern Ocean with
a focus on 2006–2016 (Supplementary Material), as this was
a period of considerable study employing both well established
sensors (e.g., time-depth recorders) and emerging techniques
(e.g., accelerometry, animal-borne cameras). We searched for
peer-reviewed literature, published in English, containing the
words: dive data, tag, time-depth recorder, TDR, Southern
Ocean, Antarctic, marine mammals, penguins, seabirds, seals,
cetaceans, and species names. For identifying SO birds and
mammals, we follow Ropert-Coudert et al. (2014). Most research
data is from south of 40◦S (De Broyer and Koubbi, 2014a,b),
although some species are clearly limited to the Antarctic region
(i.e., south of 60◦S). This substantial field of telemetry work
comprises 218 studies of 24 species, including 10 species of
marine mammals and 14 species of seabirds, that used a variety
of different data loggers and sensors. The full literature database
is made available under Supplementary Material.

Where pertinent, we do refer to literature published outside
the 2006–2016 time frame, as key studies obviously occurred
either before this decade, or studies were conducted on species
similar to those included in this review. We do not intend this
as a general review of advances in the bio-logging field (for
which see, for example, Halsey et al., 2006a,b, 2007a; Mate et al.,
2007; Goldbogen et al., 2013; Balmer et al., 2014; McIntyre,
2014; Ceia and Ramos, 2015; Hussey et al., 2015). Rather we
aim to examine the richness of information and insights gained,
from relatively simple dive data streams, about the underwater
lives of Southern Ocean marine predators. While focusing on

FIGURE 1 | Diagram showing the interplay between what is “observable”

and can be measured, i.e., dive behavior and dive cycle management; and

what can be inferred, i.e., about foraging and physiology, and may be

considered “hidden” behavior.
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mammals or birds only (e.g., Goldbogen et al., 2013; McIntyre,
2014; Carter et al., 2016) would allow a more detailed coverage, it
is timely for a more holistic perspective of the Southern Ocean.
We hope this review provides a useful synthesis particularly
for new researchers commencing Southern Ocean biotelemetry
research.

First, we briefly cover the main observational platforms
used (devices and sensors), and the general coverage across SO
species and geographical areas. Following a basic explanation
of diving behavior, we then synthesize the literature by
adopting a question-driven approach: exploring the foraging and
physiological inferences achievable using dive data. Adopting this
approach organizes the insights obtained from dive telemetry
under an ecological framework which, we suggest, provides a
useful context for aligning the analyses of dive metrics. This
perspective might thereby serve to facilitate comparative multi-
species analyses and meta-analyses. The scope of the review
covers what has been learnt about important SO predators, and
particularly how tags, data and analytical methods were used.
The review closes with a perspectives section considering the
outstanding questions being addressed in emergent areas.

OBSERVATIONAL PLATFORMS

Devices and Sensors
Animal-borne data loggers enable the remote study of various
aspects of the biology of free-living animals with regard to
behavior, physiology and energetics (Cooke et al., 2004). Data
loggers are devices that record information using sensors
measuring physical (e.g., light, temperature, or pressure) or
physiological properties such as heart rate (Table 1). Measuring
the speed at which an animal moves helps, for example, to
define the function of the dive (e.g., transit or hunting) (Naito,
2010). More detailed information about an animal’s dive behavior
became available with the introduction of sensors, such as
gyroscopes (change in direction) (Kawabata et al., 2014), 3-axis
magnetometers (orientation) (Friedlaender et al., 2011), cameras
(video) (Watanabe and Takahashi, 2013), and hydrophones
(sound) (Goldbogen, 2006). Further, recording in situ physical
and oceanographic features while an animal is diving provides
information of the habitats the animal uses for feeding, and
how these may influence vertical distribution of its prey. Finally,
recording physiological variables, such as heart rate and body
temperature, can provide proxies for metabolism and prey
consumption rates (Kuhn et al., 2006; Crossin et al., 2012) (see
Table 1).

Throughout the 1970s and most of the 1980s TDRs were
predominantly archival, needing to be recovered to retrieve the
information. Taking into account difficulties often experienced
in recapturing a tagged animal, satellite-linked depth recorders
(SLDR) were developed (Bengtson et al., 1993). These typically
use the Argos satellite system to relay data which, due the system’s
limited bandwidth, often requires high temporal resolution
data to be summarized either into user-defined bins (Fedak
et al., 2001, 2002) or greatly simplified time depth profiles (e.g.,
Photopoulou et al., 2015). Satellite-relayed information offers the
only solution to studying animals without prospect of recapture,

TABLE 1 | Commercially available sensor types for data loggers and their use for

marine mammal and seabird research.

Sensor Use

Time Activity information: duration, time of the day

Pressure Activity information: depth reached diving

Acceletometer Activity information: active swim speed

Speed sensor Activity information: swim velocity

Wet/dry sensor Activity information: in/on water

Gyroscope Activity information: change in direction

Magnetometer Environmental information, orientation, inertia,

position of each sensor relative to the

transmitter

Camera Movie information processed via image

processing software

Hydrophone Sound information

Heart rate Physiological information as energy expenditure

Stomach or esophagus

temperature

Physiological information as ingestion

Temperature Environmental information: use of currents

Salinity Environmental information: ocean circulation

Light Environmental information, day/night,

seasonality

POSITION SENSOR

Argos transmitter Local-to meso-scale movement information

GPS (Global Positioning

System)

Fine-scale movement information

GLS (Global Location

Sensing)

Meso- to basin-scale movement information

For further information regarding scales of movement and location errors associated with

different positioning sensors see: Bradshaw et al. (2007), Bryant (2007), Block et al.

(2011), Costa et al. (2010), Patterson et al. (2010), Winship et al. (2012) and references

therein.

such as fledglings, non-breeding individuals and/or those not
bound to land (or ice) based colonies.

Usage in Southern Ocean Species
From 2006–2016, data loggers were used to study 24 air-
breathing species in the SO: 7 pinnipeds, 7 penguins, 3 cetaceans,
and 7 flying seabirds. Most studies focused on pinnipeds
(44%) and penguins (41%), while studies on flying seabirds
and cetaceans accounted for only 6 and 9% of publications,
respectively (Table 2). The reasons for this disparity are likely due
to differences in the catchability and accessibility of the different
species. More than half of the species studied (n = 16) were sub-
Antarctic (40–60◦S) species and 8 were high Antarctic species
(>60O S) (Figure 2). The sampling effort was greatest in the
South Atlantic.

Fourteen of 28 studies on Antarctic fur seals (Arctocephalus
gazella) took place in the South Georgia region. Southern
elephant seals (Mirounga leonina) were taggedmostly at breeding
colonies on South Georgia, Kerguelen, Crozet, and Prince
Edward islands but also at haulouts near Antarctic continental
stations. Crabeater (Lobodon carcinophaga), leopard (Hydrurga
leptonyx), Ross (Ommatophoca rossii), and Weddell seals were
tagged on or near the continent, especially near the Antarctic
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TABLE 2 | Southern Ocean literature review results showing the number of studies conducted by species from 2006–2016.

Map

ID

Species No.

Studies

Dive duration (s) Dive depth (m) References

1 Antarctic fur seal (AFS)

Arctopcephalus gazella

28 107 ± 43 31 ± 20 (12) Arthur et al., 2016

97 ± 42 50 ± 22 (11) Viviant et al., 2016

67± 4 21 ± 2 (5) Bestley et al., 2015

2 Subantarctic fur seal (SFS)

A. tropicalis

3 14–18 5–13 (78 p) Verrier et al., 2011

93 ± 0.5 100 ± 0.3 (47)* Luque et al., 2007a

93 ± 0.5 40 ± 0.3 (47) Luque et al., 2008

3 Southern elephant seal (SES)

Mirounga leonina

47 1103 ± 308 409 ± 192 (9) Le Bras et al., 2016

1560 ± 318,

1488 ± 306

1049 ± 315 (326 f),

1170 ± 411 (61m)

Hindell et al., 2016

1183 ± 326 334 ± 133 (20) Bestley et al., 2015

4 Leopard seal (LS)

Hydrurga leptonyx

4 132 ± 74 17 ± 11 (21) Krause et al., 2016

nr 62 ± 15 (7) Krause et al., 2015

>75% dives <300 (2)** 140 ± 8 (1),

108 ± 7 (1)

Nordøy and Blix, 2009

119 ± 83 44 ± 48 (1 j) Kuhn et al., 2006

5 Crabeater seal (CS)

Lobodon carcinophagus

6 225 ± 23 54 ± 27 (13) Bestley et al., 2015

nr nr (34) Friedlaender et al., 2011

228 11 ± 5.3 (34) Burns and Costa, 2008

6 Weddell seal (WS)

Leptonychotes weddellii

12 489 ± 122 119 ± 38 (18) Bestley et al., 2015

1380 ± 0.6 511 ± 4 (1), Heerah et al., 2015

1260 ± 6 475 ± 4 (1)

600 ± 360 67 ± 54 (1) Heerah et al., 2014

7 Ross seal (RS)

Ommatophoca rossii

1 nr 52–100 (10) Blix and Nordøy, 2007

1 King penguin (KP)

Aptenodytes patagonicus

22 211–248 95–135 (6) Hanuise et al., 2013

1–495 2–344.5 (21) Le Vaillant et al., 2013

269.4 ± 62.4

261.6 ± 57.4

154.8 ± 52.8 (7 f),

143.5 ± 45.4 (8m)

Le Vaillant et al., 2012

2 Emperor penguin (EP)

Aptenodytes forsteri

23 222.6 ± 6 72.3 ± 4.1 (4) Wright et al., 2014

282 ± 30 102.9 ± 28.6 (7) Williams et al., 2012

nr 1047.8 ± 108.6 (10) Shiomi et al., 2012

3 Adélie penguin (AD)

Pygoscelis adeliae

14 56 ± 4 17.3 ± 1.8 (1) Cottin et al., 2014

97 ± 38,

78 ± 27

nr (14) Watanabe and Takahashi, 2013

Nr 43.08 ± 0.1 (65) Ainley and Ballard, 2012

4 Gentoo penguins (GP)

Pygoscelis papua

6 88 45.9 (20)* Handley and Pistorius, 2015

92.3–109.6 35.9–52.2 (7)
Lee et al., 2015

nr 52.7 ± 16.0 (12) Kokubun et al., 2011

5 Chinstrap penguin (CP)

Pygoscelis antarctica

8 70.5 ± 9

81 ± 13.1 76.7 ± 17.8

29.1 ± 6.6 (20),

37 ± 10.6 (17),

33.9 ± 12.7 (20)

Kokubun et al., 2015

62 ± 25 20 ± 14 (31)* Blanchet et al., 2013

20 5 (2)* Mori, 2012

6 Macaroni penguin (MP)

Eudyptes chrysolophus

13 130 ± 11 48 ± 7 (7) Whitehead et al., 2016

85 ± 36 32 ± 26 (20) Blanchet et al., 2013

40 – 130 9 – 40 (105) Hindell et al., 2011

7 Southern rockhooper penguin (SRP)

Eudyptes chrysocome

4 nr 16 ± 6 (36) Rosciano et al., 2016

77.2 ± 3.5 29.7 ± 3.4 (12) Ludynia et al., 2012

63.2 ± 36.4 20.6 ± 19.4 (4) Raya Rey et al., 2009

71.7 ± 5.5 27.1 ± 5.7 (30) Pütz et al., 2006

1 Killer whale (KW)

Orcinus orca

1 294.6 ± 140.4 57.5 ± 112.5 (9) Reisinger et al., 2015

(Continued)
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TABLE 2 | Continued

Map

ID

Species No.

Studies

Dive duration (s) Dive depth (m) References

2 Humback whale (HW)

Megaptera novaeangliae

12 nr 18–64 (9) Friedlaender et al., 2016

nr 66.1 ± 75.1 (13) Tyson et al., 2016

nr 5–85 (9) Friedlaender et al., 2013

3 Antarctic minke whale (MW)

Balaenoptera bonaerensis

1 84 ± 24 18 ± 5 (2) Friedlaender et al., 2014

1 Crozet shags (CRs)

Phalacrocorax melanogenis

2 nr 100–110 (12)* Cook et al., 2008a

371 145 (12)* Cook et al., 2008b

2 Great shearwaters (GRs)

Puffinus gravis

1 7.9 ± 8.5 3.3 ± 3.8 (7) Ronconi et al., 2010

3 Common diving-petrel (CMp)

Pelecanoides urinatrix

1 10.1 ± 4.1 2.1 ± 0.3 (20) Navarro et al., 2014

4 White-chinned petrel (WHp)

Procellaria aequinoctialis

2 4.6 ± 3.9 2.9 ± 2.4 (9) Rollinson et al., 2014

nr 3.9 ± 1.1 (14)* Sue-Anne, 2012

5 South Georgian diving petrel (SGp)

Pelecanoides georgicus

1 14.3 ± 4.2 18.1 ± 3.6 (6) Navarro et al., 2014

6 Kerguelen shag (KEs)

Phalacrocorax verrucosus

5 <350 <120 Cook et al., 2013

97 23.5 (26) Watanabe et al., 2011

87–304 70–80 (15)* Cook et al., 2010

nr 70–80 (15)* Cook et al., 2008a

321 108.5 (15)* Cook et al., 2008b

7 Imperial cormorant (IMc)

Phalacrocorax atriceps

1 304–14 65–2 (12) Quintana et al., 2007

Examples of reported mean dive durations (sec) and mean depths (m) are given as mean ± SD or range (min–max) as available. Sample sizes are given in brackets. For species with few

studies (≤5) all references are given here, otherwise the three most recent studies are shown. Abbreviations: nr, numeric value not reported; m, males; f, females; p, pups; j, juveniles. In

some case multiple values are given for separate seasons. The full database containing all literature references (n = 218) is made available under Supplementary Material. *Indicates

mean maximum dive depth was reported; **binned data from satellite-linked recorders.

Peninsula or near the coast on the sea ice, and occasionally
on sub-Antarctic islands. Access to these dispersed ice-affiliated
species remains challenging over large areas of the SO. Some
80% of studies on Adélie penguins (Pygoscelis adeliae) were
carried out in Adélie Land. Macaroni penguins (E. chrysolophus)
were most commonly tagged at South Georgia and sub-Antarctic
islands within the Indian sector. A few rockhopper penguin
(Eudyptes chrysocome) colonies off Argentina and the Falkland
Islands fall within the Southern Ocean (i.e., <40OS). Chinstrap
penguins (P. antarctica) were studied at sub-Antarctic islands
including South Georgia, South Orkney (Takahashi et al., 2003),
and South Shetland (Croll et al., 2006). Finally, emperor penguins
(Aptenodytes forsteri) were studied at various colonies along
the coast of the Antarctic continent (Wienecke et al., 2007).
Albatrosses and diving petrels were studied at South Georgia and
the South Orkney Islands (Phillips et al., 2005, 2007; Rollinson
et al., 2014). The only site where the diving ability of cormorants
(Phalacrocorax spp.) was studied in the last 10 years is the Crozet
archipelago (Cook et al., 2008a,b). For cetaceans, the studies were
carried out near the Auckland Islands, the Falkland Islands and
in South America, and in the Antarctic Peninsula region.

Cetacean telemetry studies have lagged somewhat behind
those of seals and penguins largely due to accessibility, as
well as technological issues with tag attachments. These are
resolving and beginning to provide valuable longer term tracking
datasets (e.g., Reisinger et al., 2015; Weinstein and Friedlaender,

2017). Additionally, the tag design for DTAGs (multisensor
archival digital acoustic recording tags, Johnson and Tyack, 2003;
Goldbogen et al., 2013) provides some of the most sophisticated
diving data achievable for the study of free-living animals, albeit
still usually at short time scales (typically a day or so, using
suction cup attachments, e.g., Tyson et al., 2016). Taking these
developments into account we can expect a maturation of this
field and consequent major expansion of these data over the next
decade. The study of SO seabirds also largely remains focused
on movement studies, often with the addition of simple wet/dry
activity sensors (e.g., Phalan et al., 2007). Seabird diving studies
continue only in relatively low numbers, but we may similarly
expect an increase in future with the ongoing miniaturization of
data loggers and sensors.

THE BASICS OF DIVING BEHAVIOR

Diving behavior occurs at a series of scales: the individual dive
scale, the bout scale (being made up of a series of dives) and the
trip scale (a trip from land being made up of a series of bouts).
Furthermore, diving behavior can vary on different temporal
scales (daily, monthly, seasonally) and may also be influenced by
the lunar cycle (e.g., Horning and Trillmich, 1999; Biuw et al.,
2010; Heerah et al., 2013; Guinet et al., 2014) as expanded in the
next section on Foraging Inference.

Frontiers in Marine Science | www.frontiersin.org 5 December 2018 | Volume 5 | Article 464

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Roncon et al. Southern Ocean Dive Telemetry

FIGURE 2 | Spatial distribution of sampling effort/data logger deployment in the Southern Ocean during 2006–2016 for each species. Circle size and white number

represent the total number of studies carried out in each location. Color-coded numbers correspond to the species cited in Table 2. The database containing all

literature references is made available under Supplementary Material.

Each dive can be divided into distinct phases (Figure 3). The
descent phase (DESC) represents a period of active swimming
using sequential, large amplitude strokes of flippers, flukes or feet
to reach the desired depth (Williams et al., 2000). The bottom
phase (BOT) is defined as the period between the dive descent
and ascent. Often this is simplified as the time between the
first and last recorded depth that is some fraction (e.g., 80%,
but also 60–85% depending on the species) of the maximum
depth (Austin et al., 2006; Bailleul et al., 2008). Halsey et al.
(2007a) proposed the definition as between the first and the
last wiggle or step, being deeper than a given proportional
depth threshold, assigned per species. The bottom phase is
generally assumed to be connected to feeding activity. During

the ascent phase (ASC) when the animal returns to the surface,
it experiences a decrease in pressure and the re-inflation of the
lungs (Williams et al., 2000). The final phase is the post-dive
surface interval (PDSI) during which the animal replenishes
its oxygen stores before a new dive (Houston, 2011). Time
at the surface can also be used for preening, resting, food
processing or moving to a new area (traveling or searching)
(Thompson and Fedak, 2001). This is a generalized structure of
a dive and a useful conceptual framework. However, in reality
many dives diverge from this pattern, either having no or a
greatly limited bottom phase (“V” and “U” shaped dives), or
multiple bottom phases at different depths (Heerah et al., 2014,
2015).
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FIGURE 3 | Stylized graphic representation showing a general dive of a

marine predator. The diving phases are summarized using different colors:

descent phase (red); bottom phase (violet); ascent phase (green); surface

phase (blue). Designed by: Charlie Armstrong.

On the basis of their profiles, dives may be classified
typically as square dives (DESC = ASC with BOT); V-shaped
(DESC = ASC without BOT); skewed right (DESC < ASC)
or left dive (DESC > ASC) (Schreer et al., 2001). Among
all species and groups, square dives are generally regarded as
foraging dives, although Weddell seals may use V-shape dives
for feeding (Fuiman et al., 2007). In contrast, left and right
skewed dives generally have a different purpose and are usually
performed during traveling and searching activities. However,
among elephant seals skewed right dives may be linked with food
processing (Crocker et al., 1997).

Individual dives often occur in clusters or bouts. Bouts as
defined by Boyd and Croxall (1992) are: “a series of four or
more dives not separated by a surface period exceeding a few
minutes.” The end of a bout is derived from the post-dive
surface interval of the last dive, but can be difficult to determine.
Luque and Guinet (2007b) suggested that employing a maximum
likelihood estimation method delivers the most accurate means
to determine when a bout has ended. Bout durations and
locations can provide information on the spatial scale of prey
patches (Mori, 2012), as the animal moves between successive
patches (Hooker et al., 2002). Information about bouts can also
be used to make inferences about foraging preferences (e.g., prey
type, Elliott et al., 2008), or foraging effort (Della Penna et al.,
2015).

A trip comprises the entire time an animal spends at sea
from the time it leaves land (or sea ice) to the time it returns;
generally many dive bouts are performed during this period.
Depending on the species and breeding status, trips may range
from several days to many weeks, and short and long trips may
be alternated (e.g., Chaurand and Weimerskirch, 1994; Croxall
and Davis, 1999; Luque et al., 2007a; Green et al., 2009a). At the
Kerguelen and Crozet islands, rockhopper penguins performed
daily trips during the brooding period, but as chicks grew older
trip durations increased (Tremblay and Cherel, 2005). For some
taxa, such as cetaceans or pack-ice seals, the concept of a trip
is not necessarily as well defined but can be regarded as the
time spent moving between regions to which they demonstrate
some fidelity. For example, Antarctic seal-hunting (B type)
killer whales (Orcinus orca) from the Antarctic Peninsula make

periodic round trips to the South American coasts and back
probably for physiological maintenance rather than for feeding
or breeding purpose (Durban and Pitman, 2012).

Multiple factors including body condition (e.g., Miller et al.,
2012; Richard et al., 2014; Gordine et al., 2015), age (Le Vaillant
et al., 2012, 2013), sex (Beck et al., 2003; Baird et al., 2005), life
history stage (Schulz and Bowen, 2004; Verrier et al., 2011), and
body size (Irvine et al., 2000; Mori, 2002; Navarro et al., 2014)
can all influence an animal’s diving behavior. An example of how
dive capabilities (depth and duration) vary across SO species is
presented in Figure 4. In general, larger seabirds and marine
mammals dive longer and deeper than smaller species (Schreer
et al., 2001). However, there are exceptions: for example, among
petrels and albatrosses, smaller species tend to diver deeper in
relation to their body mass than larger species (Prince et al., 1994;
Navarro et al., 2014).

FORAGING INFERENCE

Southern Ocean predators use diverse habitats and feed on
a wide variety of prey. By understanding the diving behavior
of these species we are able to address a number of key
ecological questions including: What is the distribution of their
prey (spatial, vertical, among habitats, and seasonally)? What
is their prey type (schooling/individual, benthic, or pelagic)?
What are the foraging strategies adopted? What is the prey
density (relative abundance) and quality? How much is eaten?
Ultimately, integrating these observations can help explain the
foraging activity and success for individual animals in time
and space, as well as their functional response when facing
environmental changes.

Prey Distribution and Type
Marine predators change their diving behavior in relation to
the spatial distribution of their prey (Thompson and Fedak,
2001). Basic information about where prey is located in the water
column is obtained from simple dive depth metrics (maximum,
mean, daily and seasonal variability, position relative to the
ocean floor or other physical features such as seasonal mixed
layer depth). Temporal patterns in these metrics can indicate
whether prey species migrate vertically over a diurnal (e.g.,
Robison, 2003) or lunar cycle (e.g., Benoit-Bird et al., 2009).
For example, gentoo penguins dive deeper during the day and
shallower at night, probably to follow the vertical krill migration
(Lee et al., 2015). Similarly, the large number of dives Antarctic
fur seals undertake at night may be due to the shallower night
time occurrence of a krill patch rather than the quality of the
prey patch (Iwata et al., 2012). In general, pelagic foragers tend
to dive deeper and longer during the day than at night (e.g.,
Weddell seals, female southern elephant seals, and Adélie and
gentoo penguins; Schreer et al., 2001). Benthic foragers [e.g.,
blue-eyed shags (Phalacrocorax atriceps), male southern elephant
seals] in general show little to no diel patterns in maximum
depth and duration (Schreer et al., 2001). The depth of benthic
dives is clearly determined by the bathymetry of the foraging
area. At Signy Island, chinstrap and Adélie penguins hunt the
same prey, but foraging chinstraps perform shallower dives than
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FIGURE 4 | The relationship between dive duration (s) and depth (m) across the most commonly researched SO marine predators described in Table 2 (species

abbreviations given in table). Values shown as mean ± SD. Inset panel provides a closer look at shorter (<100 s) and shallower (<100m) dives. Data collected from

studies undertaken between 2006–2016 (see Supplementary Material).

Adélies and feed inshore, while Adélies forage farther offshore
(Takahashi et al., 2003). Interpretation of pelagic and benthic
foraging behavior clearly requires a spatial context and may be
hampered by poorly resolved bathymetry.

The size of prey items consumed by an animal is highly
variable and not linearly related to the body size of the predator.
For example, some marine predators ingest very large numbers
of small prey items at a time (e.g., whales feeding on krill swarms;
Kawamura, 1994) while others chase a single large prey item (e.g.,
Weddell seals eating large lipid-rich toothfish; Ainley and Siniff,
2009). The diet of marinemammals and seabirds has traditionally
been studied through of the enumeration of stomach contents
and/or scats, and is increasingly approached though methods,
such as fatty-acid analyses (Pierce and Boyle, 1991), stable isotope
signatures (Cherel et al., 2007; Cherel, 2008) and DNA-based
methods (Deagle et al., 2007; McInnes et al., 2016, 2017). Such
information may be powerfully integrated with tracking data to
provide a spatial context (e.g., Bailleul et al., 2010; Walters et al.,
2014), and dive data may also be used to infer what SO species
consume (Hocking et al., 2017).

Dive bout duration and inter-bout intervals can provide a
relative indication of the size of prey patches and dispersion of
prey types (Boyd and Croxall, 1996; Mori, 1998). Depending
on the particular predator and prey combination, a bout may
correspond to a single or multiple prey patches. Bout types
or structures may be differentiated by combined parameters,
such as timing (day/night/dusk), length (short/long), and depth
(shallow/deep) (e.g., Boyd et al., 1994; Lea et al., 2002), and
can help discriminate the prey item(s) that are being targeted
by a predator (e.g., Elliott et al., 2008). Bout duration and
timing between bouts can provide information on the temporal

distribution of foraging patches (Luque et al., 2008). In a
study of provisioning Adélie penguins, Watanuki et al. (2010)
found longer dive bouts tended to occur toward the end of
foraging trips, and were associated with higher meal mass.
Combined information on dive depth distribution and dive bout
characteristics (e.g., proportion of dives in a bout, number of
dives per bout, bout type) can identify prey as being epipelagic
(e.g., surface-swarming krill; Lee et al., 2015), or mesopelagic
(e.g., myctophid fish and cephalopod species; Georges et al.,
2000), and whether prey are more aggregated (high number of
dives per bout) or dispersed (low number of dives per bout) (Lea
et al., 2002).

Without ascribing bout structure, Hart et al. (2010) focussed
on the autocorrelation in raw TDR data (depth and time) as
an indicator of the persistence or periodicity of dive behaviors
in macaroni penguins. Evidence for foraging flexibility or prey
switching may come from high variability and/or temporal (e.g.,
seasonal) changes in individual dive (Deagle et al., 2007) or
bout (Harcourt et al., 2002) characteristics which can be difficult
to detect. When animals are large enough, prey selection can
be directly observed using miniature cameras mounted on a
data logger, as has been done successfully on Antarctic fur seals
(Hooker et al., 2002, 2015; Heaslip and Hooker, 2008). Cameras
were also deployed on gentoo and Adélie penguins foraging
on krill and fishes schooling underneath sea ice (Takahashi
et al., 2008; Watanabe and Takahashi, 2013). Using cameras in
combination with a number of sensors in Weddell seals, Madden
et al. (2015) documented alternative foraging behaviors (deep
anaerobic and shallow aerobic dives) both exploiting the same
prey type [Antarctic silverfish (Pleuragramma antarcticum)], and
hypothesized an energy-saving strategy where the seals were
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exploiting shallow schools of silverfish. However, animal-borne
videos typically represent short observation periods relative
to other behavioral records, and efficient image storage and
processing methods are currently an active area of research.

Foraging Strategies
Optimal foraging theory (OFT) (Stephens and Krebs, 1986) is a
conceptual framework widely employed to examine the strategies
animals use to acquire food. Under the OFT framework, animal
movement and behaviors are expected to be as efficient as
possible. Translated to air-breathing divers, OFT suggests these
animals should minimize the costs associated with feeding
underwater (e.g., dive transit time, oxygen consumption) and
maximize the benefits using some fitness related criterion (e.g.,
time spent at foraging depths, net energy gain or energy
efficiency, load size, prey capture rate) (Kramer, 1988; Houston
and Carbone, 1992; Mori, 1998). The most commonly developed
dive optimality models are “time allocation models” (Houston,
2011) that seek to optimize the foraging and surfacing time of
animals in response to changing conditions, such as prey depth
(Mori and Boyd, 2004) or prey encounter rate (Thompson and
Fedak, 2001). In the latter case, Thompson and Fedak (2001)
investigated the effects of a “giving up” rule to demonstrate
cases where a net benefit was obtained by terminating dives
that are likely to be unproductive. While this general held
true for shallow divers, it was unclear for deep divers such as
southern elephant seals.Moreover, in the controlled environment
of captive experiments where the model was tested on gray seals
(Halichoerus grypus), it was not clear if the effect held true in all
situations (Sparling et al., 2007).

Time-depth recorders and other bio-logging tools such as
accelerometers have allowed OFT models to be developed, and
predictions tested, across a wide array of free-ranging marine
predators. A non-exhaustive list of applications to SO species
include Antarctic fur seals (Mori and Boyd, 2004), southern
elephant seals (Gallon et al., 2013), Adélie penguins (Watanabe
et al., 2014), macaroni and gentoo penguins (Mori and Boyd,
2004), king penguins (A. patagonicus) (Hanuise et al., 2013),
humpback (Megaptera novaeangliae) (Tyson et al., 2016) and fin
(Balaenoptera physalus) whales (Acevedo-Gutiérrez et al., 2002;
outside SO). The results of Acevedo-Gutiérrez et al. (2002), who
compared observed TDR dive times to those predicted by an
OFT model, suggested that the foraging strategies of fin whales
are energetically expensive and limit the dive time of these
large predators. More recently, Tyson et al. (2016) tested a suite
of OFT models for humpback whales foraging at the western
Antarctic Peninsula using high-resolution multi-sensor data
loggers. They found that the agreement between observed and
optimal behaviors varied widely depending on the physiological
and behavioral values used to derive optimal predictions, and
highlighted the need for an improved understanding of cetacean
physiology.

In their seminal paper, Mori et al. (2005) used an optimality
framework to derive prey indices from Weddell seal diving
profiles, in conjunction with prey richness estimates from
animal-borne camera data. The authors generally found positive
correlations between these two indices (dive profiles and prey

richness), but highlighted the importance of identifying the
relationship between the diving behavior of predators and the
type of prey they take (see above) in order to estimate prey
abundance using diving profiles. Smaller numbers of larger prey
are sufficient in terms of energy intake; for example, a single
large high-quality items such as Antarctic toothfish (Dissosichus
mawsoni) delivers possibly more energy per ingestion than
smaller prey like Antarctic silverfish which may require several
dives to obtain the same amount of biomass comparable to a
single toothfish. However, there may be an increased energetic
cost when digesting one large prey item whose temperature
is much lower than that of the predator’s core (see Prey
consumption, below).

Dive profiles can also provide more general information
on predation strategies, for example whether foraging animals
approach their prey from above or below. Using a time-
depth-speed logger, Ropert-Coudert et al. (2000) reported steep
acceleration events where king penguins swam rapidly upwards
mainly during the bottom and early ascent phases of dives. This
appears to reflect an upward-looking attack strategy, whereby
prey is detected and approached from below. It is likely that
multiple prey approach and capture techniques are employed by
individuals, depending on factors, such as light, bioluminescence
and seasonal progressions in prey type, and abundance and
density. Antarctic marine predators seem to employ active-search
hunting rather than ambush (sit-and-wait) strategies, although
a passive-gliding approach from above the prey target has been
recently documented in elephant seals (Jouma’a et al., 2017).
Using time-depth data in conjunction with animal-borne video,
Krause et al. (2015) reported novel observations on foraging
leopard seals such as unique prey-specific hunting tactics when
targeting Antarctic fur seal pups and fishes including stalking,
flushing, and ambush behaviors.

Prey Density and Quality
Drawing mainly from the OFT framework, a large research effort
has focused on developing indices from diving telemetry data
of predators that can provide information on prey quality or
density.

For example, if animals reduce transit time in a patch, then
changes in basic components of the dive, such as descent and
ascent rates, might be indicative of patch quality, where rates
increase when patch quality is high (Thompson and Fedak, 2001).
Steep descent and ascent angles may assist to reduce transit time.
In general, deeper dives are associated with steeper angles and
higher transit rates, and may be the result of more predictably
distributed prey at greater depths, as may be the case over shelf
areas (Pütz et al., 2006) or at the base of the mixed layer in
oceanic areas (Georges et al., 2000). There is some support for
the optimality expectation using in situ measurements of patch
quality (as determined from relative body lipid content, high
quality areas being indicated from lipid gain): female southern
elephant seals from Macquarie Island descended and ascended
faster in high-quality patches than in low quality patches (Thums
et al., 2013). However, this was not achieved by increasing speed
or dive angle, but rather the relative body lipid content was an
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important predictor of dive behavior (e.g., Thums et al., 2013;
Richard et al., 2014; Jouma’a et al., 2015).

Similarly, a straightforward interpretation under an
optimality framework might expect maximized time spent
at the bottom of a dive to represent greater prey density and/or
quality and enhanced foraging benefit for marine predators.
Many indices have been derived to investigate bottom time
relationships (Table 3) attempting to account for deeper dives
in the water column that necessarily take more time, with less
time subsequently to be spent at the bottom. These include dive
residuals (Bestley et al., 2015), residual bottom time (Dragon
et al., 2012), and residual “first bottom time” (Bailleul et al.,
2008). The latter attempts to translate classical first passage
time (Fauchald and Tveraa, 2003), widely used to analyse
area-restricted search in horizontal movements, into the vertical
dimension.

Validation with external datasets has not clearly resolved
whether longer bottom phases are indicative of higher or
lower prey quality or density, and hence foraging success. For
example, short-term measurements of head jerks in southern
elephant seals using accelerometers suggested increased prey
capture attempts with increased bottom durations (Gallon et al.,
2013). However, in Antarctic fur seals, the relationship between
head jerks and dive metrics—including bottom duration—varied
markedly with temporal scale (i.e., dive to all-night scale) (Viviant
et al., 2014). In a related study, Viviant et al. (2016) showed
Antarctic fur seals adjust their time in the dive bottom phase
mainly according to prey patch accessibility (depth) and their
physiological constraints (behavioral aerobic dive limit), rather
than their prey encounters (mouth-opening events). In king
penguins, heart rate loggers showed increased heart rates, and
hence energetic costs, associated with shorter dive durations,
shorter bottom times, and longer surface durations (Halsey
et al., 2007b). Similar patterns in elephant and Weddell seals
appear to represent high activity dives in higher quality areas
(Bestley et al., 2015). Furthermore, faster descent speeds, shorter
dive durations, and reduced bottom times in higher-quality
habitat were linked to body condition indices of elephant seals
(Thums et al., 2013). Longer dive and bottom durations occurred
when patches were of relatively low quality consistent with
the predictions of the marginal value theorem (MVT, Charnov,
1976). Qualitative support for the MVT has also been provided
for Adélie penguins, with opposing effects of patch-quality on
duration at the dive- (positive) and bout- scale (negative),
respectively (Watanabe et al., 2014). The way predators balance
their dive budgets in terms of transit speed, bottom duration,
and surface intervals is likely a function of interacting factors,
such as the quality, size, vertical distribution and behavior of the
prey, and the optimal approach will be changeable with prey-
switching as discussed above. Bottom durations may also differ
markedly between habitats—benthic, epipelagic or midwater—
with potentially longer bottom phases during benthic dives (e.g.,
gentoo penguins, see Kokubun et al., 2010).

The complexity of diving depth profiles has been widely
investigated to make inferences about feeding activities. In
particular, the vertical undulations or “wiggles”—changes in
swim direction occurring at depth—are indicators of prey

encounter rates or prey capture attempts. These are commonly
simply counted (e.g., Bost et al., 2007), although a number
of metrics have been developed to evaluate vertical sinuosity
of dives (e.g., Dragon et al., 2012) and optimally allocate
segments within dives as “hunting” or “transit” time on the
basis of sinuosity thresholds (e.g., Heerah et al., 2014, 2015).
Validations of such depth variations as feeding proxies have been
based on various external measurements including oesophageal
temperature (Adélie and king penguins, Bost et al., 2007),
stomach temperature (southern elephant seals, Horsburgh et al.,
2008), and accelerometers to detect mouth opening events (king
penguins, Hanuise et al., 2010; Antarctic fur seals, Viviant et al.,
2014). These studies generally reported good correspondence
between dive profile variations and other more direct measures
of feeding activity. However, not all vertical undulations are
prey encounters, not all encounters have an undulation, and
only a proportion of prey encounters result in capture and
ingestion. Consequently, in free-living animals it remains difficult
to validate the actual success of prey encounters or capture
attempts as unsuccessful attempts may still result in ingestion
of cold water. Thus, the above mentioned variables ought to be
consideredmainly as indicators of forage effort rather than forage
success.

Prey Consumption
A key question with regard to dynamics of ecosystems is how
much food is eaten by marine predators. To obtain actual
information on foraging success requires ancilliary data to
simple dive traces. Short-term direct observations of feeding
activity can be obtained with tag-mounted cameras (Mori et al.,
2005; Watanabe and Takahashi, 2013). As mentioned briefly
above, methods like stomach or oesophageal temperature sensors
for seabirds (Bost et al., 2007, 2015; Hanuise et al., 2010)
and seals (Austin et al., 2006; Horsburgh et al., 2008; Kuhn
et al., 2009) can provide information on prey capture attempts;
since birds and mammals in the SO have a higher core body
temperature than their prey, their stomach temperature drops
during ingestion (Wilson et al., 1992). However, unsuccessful
attempts may still result in ingestion of cold water and need to be
clearly distinguished from successful feeding events. Head or jaw
mounted accelerometers and speed sensors have also been used
to provide feeding proxies in several seal species (Weddell, Naito
et al., 2010; Antarctic fur, Iwata et al., 2012; southern elephant,
Gallon et al., 2013; Guinet et al., 2014; Richard et al., 2014;
Vacquié-Garcia et al., 2015), and penguins (king, Hanuise et al.,
2010; chinstrap and gentoo, Kokubun et al., 2011).

Typically, feeding telemetry delivers smaller sample sizes; the
data series are more complex, difficult to obtain and short-
term relative to TDR time-series. Also, issues still remain to be
solved on how to keep the sensors in place. Therefore, efforts
have been made to develop predictive models from the feeding
indices that may be applied across longer dive time-series to
estimate prey items from time-depth data alone (e.g., Simeone
and Wilson, 2003; Horsburgh et al., 2008; Viviant et al., 2010;
Labrousse et al., 2015). For example, Labrousse et al. (2015)
developed predictive models for Prey Encounter Events using
high-resolution accelerometer data and used these to predict
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TABLE 3 | Examples of derived dive parameters to investigate diving patterns, foraging behavior, and physiology of SO marine predators.

Derived parameters Question Explanation Examples of usage

Dive rate or dive frequency Diving intensity Number of dives per unit time (e.g., per hour of night or day;

per bout; per trip).

Staniland et al. (2010), Antarctic fur seals.

Vertical distance or vertical

extent (VD or VE)

Diving intensity Total vertical distance traveled (m or km) summed or averaged

per unit time (per hour, bout, night, 24 h etc.). For example:

cumulative dive depth × 2 per night divided by night period

(units of km h−1)

Pütz et al. (2006), southern rockhopper

penguins; Zimmer et al. (2008a,b),

emperor penguins; Lea et al. (2002),

Antarctic fur seals

Dive residual Measure of relative

forage effort

Residuals obtained from Linear Mixed Model (random slope

and intercept per individual):

dive duration ∼ dive depth

Bestley et al. (2015) southern elephant,

Weddell, Antarctic fur, and crabeater seals.

Residual bottom time (RBT) Measure of relative

forage effort

Residuals from multivariate linear regression:

Bottom time ∼ maximum dive depth + dive duration

Dragon et al. (2012) southern elephant

seals.

Residual first bottom time

(rFBT)

Measure of relative

forage effort

Modification of the First-Passage Time (FPT) approach using

the RBTs described above. The variance of the RBTs is

calculated within circles of increasing radius (r), as

Var[log(t(r))], where t(r) is the sum of the absolute values of the

RBTs. The spatial scale of most intensive search behavior

determined via the maximum peak in variance. Once this

scale was determined, the sum of the residuals (not absolute)

is calculated within each circle to give rFBT values.

Bailleul et al. (2008) southern elephant

seals.

Wiggles Foraging behavior Detected as anomalies in diving profiles: when an animal is

spending some time at a particular depth, and traveling up

and down while at this depth (zig-zags).

Hanuise et al. (2010) king penguins.

Bottom sinuosity Foraging behavior Calculated as the total distance swum in the bottom of the

dive divided by the sum of the Euclidean distances from the

depth at the beginning of the bottom phase to the maximum

depth and from there to the depth at the end of the bottom

phase:

Bottom sinuosity =
Bottom Distanceobserved
Bottom Distanceeuclidean

Dragon et al. (2012) southern elephant

seals

Hunting time (HT) Foraging behavior Iterative application of a broken stick algorithm to identify the

optimum number of segments per dive, and allocation of dive

segments as “hunting” or “transit” using a threshold value

(0.9) of vertical sinuosity.

Heerah et al. (2014) southern elephant

seals and Weddell seals.

Prey encounter events (PEE) Inference about

foraging attempts (prey

encounter but not

necessarily capture

success)

Coefficients from a Generalized Linear Mixed Model applied

to multiple dive parameters (dive duration, bottom duration,

hunting-time, maximum depth, ascent speed, descent speed

of subsequent dive, track sinuosity, and horizontal speed)

used to predict PEE.

Labrousse et al. (2015) southern elephant

seals.

Proportion of observed dive

time to the standard dive

time (POS)

Diving behavior

optimality

Proportion of observed dive time to the standard dive time,

obtained by adopting a rate maximization model.

Mori (2012) Chinstrap penguins

Surface residual Measure of dive cost Linear Mixed Model fitted to minimum post-dive surface

interval (SI) observed for each (binned) dive duration (random

slope and intercept per individual). Residual then calculated

as the difference between observed and predicted values:

log(1+(SIobs–SIpred )/SIpred ).

Bestley et al. (2015) southern elephant,

Weddell, Antarctic fur, and crabeater seals.

Dive efficiency (DE) Optimal diving DE = bottom time/(dive duration + post-dive surface interval) Lee et al. (2015) gentoo penguins.

Dive:pause ratio Dive cycle

management and time

allocation

The ratio of dive duration (time underwater) to time at the

surface: (t + τ )/s where dive duration includes the time spent

foraging (t) and the round trip travel time (τ ) from the foraging

area to the surface.

Houston (2011) seabirds and marine

mammals.

these events for low-resolution dive profiles available over longer
periods. Informative variables included ascent speed, maximum
depth, bottom time, and horizontal speed (pelagic strategy),
compared with just ascent speed and dive duration (demersal
strategy).

These modeling approaches may greatly increase the utility of
both data types and provide some indicator of feeding activity
over whole migration trips. However, information on actual

feeding success is available in very few cases for free-living
animals. One high-profile example is how buoyancy changes
associated with relative lipid content measured from drift dive
data in elephant seals (northern, Crocker et al., 1997; Robinson
et al., 2010; and southern, Biuw et al., 2003; Bailleul et al.,
2007; Thums et al., 2008, 2013; Gordine et al., 2015), with
changes in passive vertical drift rates, provide an integrated in
situmeasure of foraging success. This approach has given insight
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into the location and charactersitics of successful Southern Ocean
foraging areas (Biuw et al., 2007; Hindell et al., 2016), and
was incorporated into population-level models integrating the
physiological and movement ecology of predators (Schick et al.,
2013; New et al., 2014). Efforts have been made to validate
relationships between descent rates and drift rates (Richard et al.,
2014), which represent a promising extension of inference to
basic dive profiles and potentially broader application across
other species. A recent study on Antarctic fur seals (Jeanniard-
du-Dot et al., 2017) incorporated information of prey capture
attempts into an energetics framework to estimate foraging
efficiency and the consequences for reproductive success (pup
growth). Such applications, linking individual foraging behavior
with demographic consequences (see also Hiruki-Raring et al.,
2012), are important avenues for future biotelemetry research in
the Southern Ocean.

Overall, relatively simple dive data streams continue to
provide increasingly powerful insights into marine predator
foraging. However, when used alone these telemetry data remain
largely limited to providing information on effort. Dive metrics
cannot confirm success; indeed dive metrics (e.g., residuals:
positive and negative from a fitted relationship) may be obtained
from an animal that in fact fails to forage at all. Combined usage
of TDRs with other devices that provide more direct observations
(e.g., accelerometers, miniature cameras, speed turbines, internal
sensors), even on a subset of individuals, greatly assists in
maximizing inference. In addition, the caveats of inferring from
dive data may be alleviated by combining data from different
sources, such as isotopes and DNA methods (diet), mass or lipid
gain (success), reproductive outputs (energetic costs) thereby
achieving a broader perspective on the foraging of Southern
Ocean marine predators.

INTRINSIC DETERMINANTS OF
DIVING—PHYSIOLOGICAL INFERENCE

The foraging strategies adopted by marine predators are not
only dictated by prey abundance and distribution but also
by intrinsic factors, such as oxygen stores, metabolism, body
size, and age (Kooyman and Ponganis, 1998; Costa, 2007;
Ponganis et al., 2009; Ponganis, 2011; Castellini, 2012; Elliott,
2016). Relatively few data have been collected on the at-sea
metabolism of marine birds and mammals given the practical
difficulties of collecting respiration and activity data in the field.
Consequently, much of what is known has been inferred from
simple dive data. Information on dive duration and post-dive
surface intervals provide valuable insights into diving metabolic
rate, and on how animals balance time underwater using oxygen
stores with time on the surface replenishing them, i.e., dive
cycle management. Determining how these intrinsic factors scale
with size, sex or age of the animal are key questions that
remain largely unanswered. This section discusses how the use
of classic dive data information provides valuable insights into
dive energetics and the physiological adaptations of SO marine
animals, drawing also upon examples from temperate species in
a few cases.

Physiological Determinants and
Constraints
Castellini (2012) and Ponganis and Kooyman (2000) reviewed
the physiological adaptations among marine mammals and polar
seabirds, respectively. We provide a summary here as a base for
the following discussion. Many animals dive, but deep divers
face a number of challenges, such as the increase in pressure
with the resultingmechanical compression of tissue and gas-filled
spaces, and the lack of ad libitum access to oxygen (Kooyman and
Ponganis, 1998; Costa, 2007; Ponganis, 2011). The former is to
some extent dealt with using morphological adaptations, such as
flexible rib cages (e.g., Cozzi et al., 2010) and collapsable lungs
(e.g., Falke et al., 1985; McDonald and Ponganis, 2012), while the
lack of continuous access to oxygen requires a complex suite of
physiological adaptations.

A number of adaptations evolved convergently among marine
mammals and seabirds to enable deep diving, but there are also
important differences, for example with regard to the distribution
of oxyen stores in the body and the reliance on anaerobic
metabolism (see below). These animals depend on adaptions that
increase intrinsic oxygen stores. Body size is one factor which
influences both oxygen storage and metabolic rate or oxygen use
(e.g., Noren and Williams, 2000). Furthermore, to expand their
breath holding capacity, deep divers have large volumes of blood.
For example, in Weddell seals about 14% of their body weight
is due to blood; this is 63 l for a 450 kg seal, or 140ml kg−1

(Zapol, 1996). In comparison, in humans blood makes up only
about 7% of body weight (Zapol, 1996). In penguins, the blood
volume is less than in seals; emperor penguins comprise about
100ml blood per kg body weight (Ponganis et al., 1997a), and
for Adélie penguins the value is about 93ml kg−1 (Lenfant et al.,
1969).

Oxygen stores are also increased through increased
concentrations of the oxygen-carrying proteins hemoglobin
(Hb, in blood) and myoglobin (Mb, in muscle). The size
of the total oxygen store and the proportions in which it is
compartimentalized differ among species. Weddell seals have
26 g 100 ml−1 Hb and 5.4 g 100 g−1 Mb (Ponganis et al., 1993).
In comparison, Adélie penguins 16 g 100 ml−1 Hb (Lenfant
et al., 1969) and 3.0 g 100 g−1 Mb (Weber et al., 1974). Although
hemoglobin concentrations in emperor penguins are similar to
those of Adélie penguins (18 g 100ml−1), their Mb concentration
is twice as heigh (6.4 g 100 g−1) (Ponganis et al., 1997b). The
three major compartments are the respiratory and vascular
systems and muscles. Generally, marine mammals carry most
of their oxygen stores in the blood and muscle tissue, but again
there are species specific differences. The percentage distribution
of oxygen among Weddell seals (body mass ∼ 400 kg) is 66%
in blood, 29% in muscle and only 5% is available through
the respiratory system. For the smaller Californian sea lions
(Zalophus californianus) (∼35 kg) the values are 45, 34, and
21% for blood, muscle, and respiratory system, respectively
(Kooyman and Ponganis, 1998). In comparison, Adélie penguins
(∼5 kg) store most of their oxygen in the respiratory system
(45%), and only 29% in blood and 26% in muscle tissue. The
larger emperor penguin (∼25 kg) has values more similar to
the sea lion with 34 and 47% oxygen in blood and muscle,
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respectively, and only 19% in the respiratory system (Kooyman
and Ponganis, 1998).

The regulation of oxygen use during dives underlies complex
physiological processes and depends on a variety of factors, such
as dive depth and duration, level of muscle activity (Hindle et al.,
2010), and body temperature (Kooyman and Ponganis, 1998).
Air-breathing diving vertebrates adjust oxygen consumption
through a process known as the “dive response,” a process
characterized by a drop in heart rates, decreased blood perfusion
of organs (except the brain) and a drop in body temperature
(Butler and Woakes, 2001); the result is an overall reduction
of oxygen consumption. The dive response essentially manages
how long an animal can stay submerged, how much oxygen it
has available, and the rate at which this oxygen is consumed.
Since in deep diving endotherms a great concentration of oxygen
is stored in the muscles (see above), the reduction of the
blood flow causes a hypoxia facilitating the oxygen dissociation
from myoglobin. This mechanism enhances aerobic metabolism
in exercising muscles, despite the reduced blood flow during
diving (Davis, 2014). If oxygen stores become depleted during
a dive, animals can switch to anaerobic metabolism. However,
anaerobic production of energy (glycolysis) is less efficient than
aerobic pathways as less adenosine triphosphate (ATP, high-
energy molecule) is produced and the muscle tissues accumulate
lactic acid. Excessive amounts of lactic acid result in metabolic
acidosis and consequently severe depression of the heart and the
central nervous system (Wildenthal et al., 1968; Siesj, 1988). To
remove lactic acid the animal must pay an oxygen debt. This is
commonly achieved by spending extended periods at the surface
to re-oxygenate tissues (Kooyman et al., 1980) which in turn
can reduce foraging time and limit opportunities (Butler, 2006).
However, it can be advantageous for individuals to incur such a
metabolic debt.

The change from aerobic to anaerobic metabolism is
determined by the Aerobic Dive Limit (ADL), i.e., the time an
animal can remain submerged before levels of lactate exceed
those present when an animal is resting (Kooyman, 1985). Post-
dive partial pressures of oxygen in venous blood (PO2) were
measured in free-living Weddell seals and bottlenose dolphins
(Tursiops truncatus) and ranged from 15–20 mmHg (Ridgway
et al., 1969; Ponganis et al., 1993) which is less than the values
obtained from terrestrial mammals after intense exercise (27–
34 mmHg; e.g., Taylor et al., 1987). Among free-diving emperor
penguins, PO2 levels were <20 mmHg in 29% of dives and
even dropped to 1–6 mmHg at times (Ponganis et al., 2007).
Blood oxygen stores were also nearly completely exhausted in
northern elephant seals (M. angustirostris) in whom venous PO2
was recuded to 2–10mmHg after dives that lasted>10min (Meir
et al., 2009). To withstand such extreme levels of hypoxemia
various adaptations such as an enlarged density of capillaries are
necessary, but these are not yet fully understood (Ponganis et al.,
2007). Some species constantly exceed their estimated ADL. In a
review of 6 marine predators at South Georgia, all species except
Antarctic fur seals (≤5%), frequently surpassed their estimated
ADL (Boyd and Croxall, 1996). Benthically feeding otariids [e.g.,
Australian sea lions (Nephoca cinerea)] tended to exceed their
ADL more often than pelagically foraging species (e.g., Antarctic

fur seals, Costa et al., 2004). Female southern elephant seals went
beyond their calculated ADL in 40% of dives, in comparison
with only 1% in males (Hindell et al., 1992). Emperor (20% of
dives, Butler, 2004), king (20% of dives, Kooyman et al., 1992)
and gentoo penguins (40–50% of dives, Williams et al., 1992)
also regularly exceeded their ADL, as did Macquarie shags (P.
purpurascens) (e.g., 19% of male dives, Kato et al., 2000) and
blue-eyed shags (36% of dives; Boyd and Croxall, 1996). The
pattern of few anaerobic dives observed among fur seals might
be consistent with the maintenance of a high metabolic rate while
diving, whereas the bimodality observed in other species suggests
fundamentally different strategies may be used to regulate oxygen
consumption between short and long dives (Boyd and Croxall,
1996). More recent work has focused on anatomical adaptions
and dive capacity (Meir et al., 2008; Ponganis et al. 2009; 2010b;
Wright et al., 2014). However, little has been done to empirically
determine the ADL for any Southern Ocean species.

Longer post-dive surface intervals do not always indicate an
oxygen debt. Even after aerobic dives, the time required to re-
oxigenate tissues may be longer after extended dives due to the
mechanical restrictions of respiration and airway structure. The
“dive:pause ratio” measures the ratio of dive duration to time at
the surface. Larger ratios indicate that post-dive surface intervals
are long relative to the dive, reflecting the relatively greater
time required to replenish oxygen stores. Cormorants have to
spend more time at the surface after longer dives, resulting in a
dive:pause ratio equal to 1 (Lea et al., 1996). Gentoo penguins
have a dive:pause ratio for deep dives of 1.2–2.2 and of 0.3–0.4
for shallow dives (Williams et al., 1992).

Elephant seals did not have appreciably longer surface
intervals even for the longest dives; irrespective of the preceding
dive, surface intervals last typically only 2–3min (Hindell et al.,
1992). This was considerably shorter than the 50min surface
intervals made by Weddell seals known to have exceeded their
ADL (Kooyman et al., 1980). This provides strong evidence
that many, if not all, of the female elephant seal dives that
surpassed their calculated ADL were in fact aerobic. Thus, the
diving metabolic rate of elephant seals may be less than the
allometrically derived estimates of metabolic rate used in the
calculation of the ADL. Reduced metabolic rate during diving
is a well-known consequence of the dive reflex, and the simple
metric of dive depth and PDSI can be used to infer the magnitude
of this reduction, at least in aerobic dives. The estimate of
the metabolic rate in emperor penguins, which was relatively
low when foraging, could be used to calculate with a better
approximation the ADL for this species than the O2 store data
(Nagy et al., 2001). This has implications for energetic models
commonly used in ecosystem and fisheries models, as deep diving
predators may use less energy than expected from allometric
estimations.

Basic diving data (dive and surface duration), along with
estimates of total body oxygen stores and metabolic rate, can
provide the basis for quantifying dive limits of an individual.
These may address fundamental bio-physiology questions for
species-specific studies and also be relevant for those focussing
on broader ecological questions and ecosystem energy flow
studies (Williams et al., 2000). Data loggers can also provide
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insights into the mechanisms that underpin the dive response.
Simple time depth data are insufficient to demonstrate some
types of behaviors, but augmentation with an additional sensors
(such as velocity from accelerometers) expands the capacity
for inference. For example, accelerometers in combination with
TDRs revealed that southern elephant and Weddell seals use
strategies, such as passive sinking and burst-glide swimming, to
reduce their oxygen consumption during diving (Hindell et al.,
2000;Williams et al., 2000). Kerguelen shags (P. verrucosus) adapt
their stroking activity depending on the body buoyancy variation
(Cook et al., 2010). A similar mechanism is used by cetaceans
(whales, Acevedo-Gutiérrez et al., 2002; dolphins, Williams et al.,
2017).

Behavioral Mechanisms as Proxies for
Physiological Mechanisms
An animal’s buoyancy plays an important role in diving;
increased buoyancy provides challenges for animals during
descent and is energetically expensive, given that animals require
additional work, for example, to maintain their position in the
water column (Webb et al., 1998). However, buoyancy varies at
a range of temporal scales, firstly within an individual annual
cycle (e.g., gestation in elephant seals, Crocker et al., 1997)
and also throughout its life as an animal grows and develops
different traits (e.g., becoming a dominant male for elephant
seals, Galimberti et al., 2007). Buoyancy can, however, also be
used as ameasure of an animal’s body condition because lipids are
less dense than water making fatter animals more buoyant than
leaner conspecifics (Miller et al., 2012). Some species perform
“drift” dives where they stop swimming and are stationary in the
water column. The rate and direction of drift has been related to
the animal’s total lipid content at that time (Biuw et al., 2003).
This means that spatio-temporal dynamics of lipid gain (and
loss) can be measured, identifying regions of poor and good
foraging. An analysis of elephant seal drift data from many of
the major breeding sites indicated that some regions such as the
Antarctic Circumpolar Current frontal systems in the Atlantic
sector may be better quality habitat than other sectors of the
SO. For example, seals from the declining Macquarie Island
population had to travel for over a month to reach prime habitats
(Biuw et al., 2007). Finer-scale measurements of burst and glide
behavior have also been used to measure changes in buoyancy,
opening the use of this approach to a wide range of species
(Williams et al., 2000; Oliver et al., 2013; Jouma’a et al., 2015).

Tri-axial accelerometers were employed to measure overall
dynamic body acceleration (ODBA) which is considered a
proxy for energy expended by animals during different diving
phases (Wilson et al., 2006; Gleiss et al., 2011). Acceleration is
used to measure movement, and since muscle motion involves
oxygen consumption, acceleration could be used as a proxy
for O2 consumption itself. When foraging, Magellanic penguins
descended faster than they ascended, which means their descent
phase was energetically much costlier than their return to the
surface (Wilson et al., 2010). Previous studies conducted on
cormorants and pinnipeds have shown howODBA offers a better
estimation of energy expenditure than doubly labeled water

method (Wilson et al., 2006; Fahlman et al., 2008) or flipper
stroke evaluation (Jeanniard-du-Dot et al., 2016). However,
ODBA is best used for quantifying energy during individual
diving phases only rather than the full foraging trip (Wilson
et al., 2010) because it might be affected by animal mass, number
of strokes, and the relationship between heart rate and O2

consumption (e.g., change of heart rate during dive response).
Other sensors can measure an animal’s physiology more

directly. Heart rate can be measured with externally (Hindell
and Lea, 1998; Elmegaard et al., 2016) or subcutanerously
(Meir et al., 2008; Wright et al., 2014) mounted electrodes or
acoustic transmitters (Green et al., 2005). Heart rate loggers
can demonstrate the degree of bradycardia during diving and
anticipatory tachycardia before PSDI (Wright et al., 2014). In
elephant seals, heart rates can drop to lower than 10 beats min−1,
even during active dives (Andrews et al., 1997). The degree of
bradycardia is negatively related to dive duration, so that longer
dives have lower heart rates once they pass a certain threshold
duration. If the relationship between heart rate and metabolic
rate is known, heart rate can be used to estimate metabolic rate
during an animal’s time at sea (see Green, 2011 for a full review).
This approach has been used successfully for several species of
penguin (Froget et al., 2002; Green et al., 2005, 2009b; Meir et al.,
2008). It requires an initial calibration of the heart rate/metabolic
rate relationship, usually in a laboratory, followed by deployment
of the heart rate loggers that record heart rate continuously.
Based on this approach, the field metabolic rate of macaroni
penguins has been estimated to be 9·03 ± 0·39W kg−1, three
times the estimated Basal Metabolic Rate (Green et al., 2002). The
utility of using heart rate to measure metabolic rate is hampered
by technical issues such as device attachment, as well as the need
for the relationship to be calibrated in the lab for each individual
(Butler et al., 2004).

In summary, even simple dive data can provide valuable
insights into how diving animals manage their oxygen stores
and the implications that this has for diving metabolic rate.
Nonetheless, more complex data streams are required to address
these questions in a fully quantative way. Additional sensors,
such as accelerometers and heart rate recorders, can quantify
energy expenditure. However, to obtain accurate estimates
laboratory based calibrations are likely to be needed (Green
et al., 2007), and the logistic difficulties of doing this in the
Antarctic may explain why this has rarely been done on Southern
Ocean species. Understanding the underlying mechanisms that
control metabolism requires even more specialized equipment,
for example to enable serial blood samples to measure oxygen
levels (McDonald and Ponganis, 2013). For this work, the isolated
hole experimental paradigm is something that is well suited to
Antarctic field studies, at least for some species (Ponganis et al.,
2010a, 2011), and it is to be hoped that more of this work will be
conducted in the future.

PERSPECTIVES AND EMERGENT AREAS

The aim of this review was to examine the foraging behavior and
physiology of marine mammals and seabirds of the SO using data
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loggers as the main method for collecting the information. The
last decade has seen substantial progress in this endeavor, and
we now have a solid understanding of these factors for many SO
birds and mammals. However, as certain questions are answered,
others emerge and a number of key areas are a focus for further
work; in this final section we highlight some of these.

Adopting a question-based approach, as we have done in
this review, helps to provide a framework so there is a logical
flow for how dive analyses may be carried out, depending
on the biological or ecological question that is driving the
research. Obviously, a massive suite of diving variables is
available to be utilized in such analyses, and there is a
proliferation of approaches used to infer foraging behavior and
diving physiology. Advancements in analytical and statistical
approaches, together with generally increasing sample sizes, are
providing improved tools for learningmore about diving ecology.
An excellent example is the now readily accessible software
for implementing mixed-effect models (e.g., Wood and Scheipl,
2017; Pinheiro et al., 2018). These enable inferences to be made
at the individual level (via the random effects), as well as at the
population level (via the fixed effects) while taking account of
individual variability. Such techniques provide an appropriate
analytical framework for researchers to deal with large, serially
(spatially and temporally) correlated, and individual-based
datasets, and are increasingly being adopted. Advancements
in computationally efficient approaches for fitting models with
discrete latent states to time series data, which have been widely
used in animal movement modeling (Langrock et al., 2012;
Michelot et al., 2016), may similarly promise a step-function in
improving capabilities for dive analyses in the near future (e.g.,
Quick et al., 2017). Finally, hierarchical approaches, enabling
information from multiple data sources to be integrated, are
also available (Clark, 2007) and present important opportunities
particularly for population-level analyses which we return to at
the close of this section.

An important research area this review has considered
only incidentally is the association of animal diving with
the physical environment. This is largely beyond our scope
since the vast majority of telemetry studies investigating how
the environment influences the foraging and physiology of
Southern Ocean marine predators (i.e., bottom-up processes)
do so by integrating spatially-explicit movement (location) data
with external habitat information (e.g., from satellite remote
sensing, and/or oceanographic models). However, significant
advances have been made over the last decade through
the in situ collection of environmental data by animal-
borne sensors, which has opened our eyes to the subsurface
environment in a way that is not possible from remotely-
sensed data. A prime example is the improved knowledge of
how elephant seals use specific water masses and oceanographic
features obtained from high-quality temperature-salinity profiles
collected onboard tags (e.g., Biuw et al., 2007; Labrousse et al.,
2015; Hindell et al., 2016). Other novel approaches include
the usage of onboard light-levels (Guinet et al., 2014) to
infer bio-optical properties of the water column, including
phytoplankton concentrations (Jaud et al., 2012; O’Toole et al.,
2014), as well as direct fluorometry measurements (Guinet

et al., 2013) to evaluate productivity influences on animal
foraging. These clearly demonstrate the benefits gained from
collecting environmental information onboard the same tag
that is collecting the behavioral (dive) information. The
coupling of oceanographic studies with ecological studies is
an opportunity that has not reached its full potential yet,
but this growing area likely warrants a review in its own
right.

Our improved understanding of the at-sea vertical
movements, foraging strategies and prey distributions now needs
to be placed into a larger population and community context.
This has three components. The first upscaling is to combine
multiple species-specific studies to obtain community level
assessments of diving behavior. This approach is increasingly
being adopted in tracking work in the SO (Friedlaender et al.,
2011; Thiebot et al., 2012; Raymond et al., 2015; Reisinger
et al., 2018) and is providing powerful insights into regions
that are of particular ecological significance. However, this only
applies to the horizontal dimension (latitude and longitude),
and dive studies will enable this approach to move into a third
dimension—depth (e.g., Hindell et al., 2011). An integrated
understanding of how diving animals use the water column will
enable us to identify key features, such as the deep scattering
layer (Naito et al., 2013), thermoclines (Bost et al., 2015) and
specific water masses (Biuw et al., 2007) that are important to the
community of diving predators. This can be matched to highly
resolved modern Regional Ocean Models (e.g., Malpress et al.,
2017) to estimate how access to prey and foraging efficiencies
may change into the future.

Upscaling can also be in a temporal sense. Long time series of
diving data sets enable us to address questions of environmental
determinants of foraging success and prey distribution (see
Trathan et al., 1996; Hindell et al., 2017). Data-logging has the
potential to play a key role in ecological monitoring (IMOS
reference, Hussey et al., 2015), but this requires long-term
funding, which in the past has been difficult to secure for tagging
studies.

Better linkage of diving and location data will also lead to
better understanding of habitat usage of SO bird and mammals.
Describing and modeling of key habitats has been a focus
of research for a long time but emerging statistical methods
are now able to integrate diving behavior into movement
models. For example, Bestley et al. (2015) incorporated several
diving indices (dive residual, surface residual) into a state-
space movement model to study at-sea foraging behavior. There
was a general tendency for the probability of switching into
“resident”movement state to be positively associated with shorter
dive durations (for a given depth) and longer postdive surface
intervals (for a given dive duration), potentially indicating high
energy diving. A growing body of literature demonstrates that
simplistic interpretations of optimal foraging theory, based only
on horizontal movements, do not directly translate into the
vertical dimension in dynamic marine environments. Analyses
that incorporate dive data can test more sophisticated models
of foraging behavior. Further efforts to integrate multiple data
streams (e.g., movement, haulout, diving activity) and thereby
represent more realistic movement behaviors (such as at-sea
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resting) can also lead to improved at-sea activity budgets (Russell
et al., 2015; Bestley et al., 2016).

Currently bio-logging studies remain somewhat limited in
their scope given that most still focus largely on observations
of individual animals that are then extrapolated across the
population. This is mainly because instruments are expensive
and consequently sample sizes are small. But with increasing
availabilty of inexpensive GPS loggers, light sensors, and
accelerometers it is increasingly possible to achieve large samples.
A related question is how many individuals need to be tagged
to obtain a population level measure while still minimizing the
number of animals that are equipped. Several studies of habitat
use have approached this by making cumulative area curves
(sequentally increasing the number of animals and calculating the
total area used) (Hindell et al., 2003; Arthur et al., 2017). Our new
insights into foraging at sea also need to be linked to demography
and population level consequences. For many SO species,
broad-scale relationships between demographic performance
parameters, such as breeding success and recruitment in relation
to climate variables (e.g., ice extent and ocean temperature),
are well established for some species — Adélie penguins and
ice at the western Antarctic Peninsula (Smith et al., 2003), and
elephant seals and the Southern Ocean oscillation index (Le
Boeuf and Crocker, 2005). But the proximate drivers of these
relationships are not clear. Tagging studies have the potential
to bridge this gap. For example, the diving behavior of female
Antarctic fur seals is linked to prey availabilty, and forage
location, diving activity, diet, and foraging efficiency all change
significantly between years as ocean conditions vary (Lea and
Dubroca, 2003; Lea et al., 2006). In warmer years, mothers
dive deeper and make longer foraging trips. This reduces both
maternal and pup body condition, and surpresses pup growth
rates (Lea et al., 2006). Increasingly sophisticated approaches are
enabling diving behavior to be linked into energetics (Jeanniard-
du-Dot et al., 2017) and predator-prey (Hiruki-Raring et al.,
2012) frameworks to estimate reproductive consequences at the

population level. These expand important research avenues as
biotelemetry in the Southern Ocean enters its mature phase.
Finally, linking at-sea behavior to demography and population
level consequences that are now much more feasible will provide
an advance on traditional individual-based studies and provide
an overaching view of how behavior is linked to population
growth and persistence.
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