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The data and results of the UK second application of the OSPAR Common Procedure

(COMP) for eutrophication were used as a case study to develop a generic system (i) to

evaluate an observational network from a multi-variable point of view, (ii) to introduce

additional datasets in the assessment, and (iii) to propose an optimized monitoring

program to help reduce monitoring costs. The method consisted of tools to analyse,

by means of simple statistical techniques, if any reduction of the available datasets could

provide results comparable with the published assessments, and support a reduced

monitoring program (and limited loss in confidence). The data reduction scenarios

included the removal of an existing dataset or the inclusion of freely available third-party

data (FerryBox, satellite observations) with existing datasets. Merging different datasets

was problematic due to the heterogeneity of the techniques, sensors and scales, and

a cross validation was carried out to assess possible biases between the different

datasets. The results showed that there was little margin to remove any of the available

datasets and that the use of extensive datasets, such as satellite data, has an important

effect, often leading to a change in assessment results with respect to the thresholds,

generally moving from threshold exceedance to non-exceedance. This suggested that

the results of the original assessment might be biased toward sampling location and time

and emphasized the importance of monitoring programmes providing better coverage

over large spatial and temporal scales, and the opportunity to improve assessments by

combining observations, satellite data, and model results.

Keywords: nutrients, chlorophyll, eutrophication, assessment, OSPAR, optimization, monitoring

INTRODUCTION

Marine monitoring is an essential element of reporting and assessment of the marine environment
and provides insight into coastal and ocean processes, as well as scientific support for management.
Sustained, reliable and good quality in situ observations are needed for model and satellite
calibration, validation, forecasting, environmental and ecological assessments, but they can come
with significant economic costs. Optimization of the monitoring systems and improvement of their
cost-effectiveness have become a priority and a subject of international concern in the recent years,
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as demonstrated by the numerous projects that have dealt
with this topic. Some examples only in Europe are the
projects ODON (Optimal Design of Observational Networks,
2003–2006), OPEC (Operational Ecology, 2012–2014), JERICO
(Toward a Joint European Research Infrastructure network for
Coastal Observation, 2011–2015), and its continuation JERICO-
NEXT (2015–2018) and JMP-EUNOSAT (Joint Monitoring
programme of the Eutrophication of the North Sea with Satellite
data, 2017–2019). An interesting summary on the assessment and
optimal design of ocean observing networks in Europe together
with the short, mid-term and long-term objectives can be found
in She et al. (2016). The design of an observational network
requires an existing knowledge of the system, which generally
rests on the existence of a good dataset (Fu et al., 2011) which
provides an optimal number of observations over space and time
to answer a specific purpose. In this sense, a first step for the
design of an optimal monitoring programme is the assessment of
the existing ones, for which two different methods are frequently
applied: statistical and dynamic methods (see She et al., 2006;
Fu et al., 2011). The statistical methods are generally based on
a multi-indicator approach (She et al., 2006): they include the
system error, sampling error (North and Nakamoto, 1989; She
and Nakamoto, 1996), noise-to-signal ratio (Meyers et al., 1991;
Smith andMeyers, 1996; Guinehut et al., 2002), effective coverage
(She et al., 2007), explained variance (Fu et al., 2011) or the
field reconstruction error, which is mainly based on the optimal
interpolation method (see, for instance, She and Nakamoto,
1996).

The dynamic methods use models and data assimilation
techniques in the design of optimal observing systems. The
most commonly used tools are Observing System Experiments
(OSEs), in which the actual observations are assimilated to
produce nowcasts and forecasts, and the Observing System
Simulation Experiments (OSSEs), that use models to simulate
future observing systems before being deployed, and analyze
the impact on the forecasts by assimilating or not these virtual
observations (see, for instance, Oke and O’Kane, 2011).

In this paper we focus on the optimization of the
monitoring systems for the eutrophication assessments in the
United Kingdom. Eutrophication is defined as: “the enrichment
of water by nutrients causing an accelerated growth of algae and
higher forms of plant life to produce an undesirable disturbance
to the balance of organisms present in the water and to the quality
of the water concerned” (from theUrbanWasteWater Treatment
Directive (UWWTD [(EC, 1991a)]; Borja et al., 2010; Foden
et al., 2011). Diverse approaches to monitoring are employed
depending on the regulatory requirements: the Nitrates Directive
(EC, 1991b), the Water Framework Directive (WFD, EU, 2000),
the Oslo Paris Convention (OSPAR) or the Marine Strategy
Framework Directive (MSFD, EU, 2008), which is the key policy
driver for future assessments of eutrophication status (see Borja
et al., 2010; Painting et al., in preparation). Assessments are
generally based on the same key indicators (e.g., nutrients,
chlorophyll, dissolved oxygen) and principles, but may differ in
terms of the assessment area. For instance, in the UK the WFD
is applied to estuaries (typically with a salinity <30) and coastal
water bodies within 1 to 3 nm of the coastal baseline and MSFD
and OSPAR assessments focus on coastal and offshore waters

that extend beyondWFD areas and generally have salinities >30.
Assessments may also differ in terms of time periods assessed or
the focus on trends or impacts of nutrient enrichment in terms of
exceeding assessment levels. A comparative review of the details
of the different regulations applied in UK waters, the procedures
used for evaluating the eutrophic status of the different water
bodies and the employed thresholds on each of the assessments
can be found in Tables 3–5, respectively, of Devlin et al. (2011;
see also Borja et al., 2010; UK National Report, 2017; Painting
et al., in preparation).

We used data and results from the second application of the
OSPARCommon Procedure for the assessment of eutrophication
(OSPAR COMP2, hereafter) in the coastal and offshore waters of
the UK portion of the southern North Sea. The OSPAR COMP2
covered the years 2001–2005 and was selected as a case study
as the final data set and assessment results have been published
by OSPAR (OSPAR, 2008) and Foden et al. (2011). The overall
aim was to evaluate the monitoring system employed for this
assessment and how it could be improved.

A heuristic approach to the evaluation of the monitoring
system has been considered in this case, mainly consisting of
analyzing scenarios of different dataset aggregations (including
or excluding certain datasets, etc.) and their impact on the
OSPAR COMP2 results.

The specific aim was to evaluate whether we could obtain
similar results (keeping the quality in terms of confidence and
representativeness) to the COMP2 assessment by using less data
(or, in other words, by identifying and removing redundant data)
or third party data (such as FerryBox or satellite chlorophyll),
thus reducing the costs of monitoring for future assessments.

The methods proposed here do not fall into the category
of the dynamic methods above, since we did not use models
or data assimilation techniques. Nor do our methods fall
strictly into the category of statistical methods, although the
employed techniques provide some indirect information on
the effective coverage. Indeed, analyzing whether the current
monitoring systems cover the relevant spatio-temporal scales,
and considering how to avoid issues related to autocorrelation
and combining datasets in order to provide a robust and unbiased
assessment for eutrophication assessment is beyond the scope
of this paper and will be addressed in Collingridge et al. (in
preparation).

This paper addresses the following questions applied to
eutrophication assessments:

• What impact does each dataset have on the results? i.e., Would
we obtain the same assessment results if we excluded certain
datasets?

• Does the addition of new platforms (not included in the
assessment, such as FerryBox or satellite data) change the
conclusions of the assessment significantly?

MATERIALS AND METHODS

Indicators
The primary indicators of eutrophication status analyzed in the
OSPAR COMP2 are the concentration of nutrients, chlorophyll,
and dissolved oxygen. Further details on the OSPAR criteria used
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FIGURE 1 | Areas assessed in England and Wales for OSPAR COMP2. The

red dots indicate areas where the full COMP2 was applied. East Anglia is

highlighted for being the focus area of this paper.

to assess eutrophication can be found in Foden et al. (2011). In
this paper, we focus on two of these indicators: winter nutrient
concentrations [dissolved inorganic nitrogen (DIN), which is the
sum of nitrate, nitrite, and ammonium] and growing season
chlorophyll concentrations. Dissolved oxygen was excluded from
the analysis because it constituted a much smaller dataset.

Assessment Areas
Thirteen marine areas were assessed for eutrophication under
OSPAR in England and Wales (see Figure 1), although the
full OSPAR COMP2 was only applied to eight areas (marked
with a red dot in Figure 1). The remaining five areas were not
assessed further after the application of a screening procedure
that identified them as non-problem areas.

For this study, we selected one of the assessed areas—East
Anglia—where an extensive dataset was available. Only the data
within this geographical region were analyzed here.

Datasets for the OSPAR COMP2
Assessment
The description of all the datasets used for the OSPAR COMP2 in
East Anglia, together with the assessment itself, is given inOSPAR
(2008). The available datasets for DIN and chlorophyll were taken
from across the UK estuarine, coastal, and offshore monitoring
programs.

Datasets for Winter DIN
Three different datasets were available for winter DIN:

• Data collected by the UK Environmental Agency following the
requirements of the WFD. Notation wfd was used to refer to
this ship-based dataset.

• Data provided by CEFAS to the UK National Marine
Monitoring Programme (NMMP). This dataset was named
sap to refer to the internal CEFAS database “Sapphire” that
contained these data before migration to a more modern
system. It is a ship-based dataset.

• Data from the CEFAS Warp SmartBuoy, located in the
Thames. This constitutes the only high frequency data record
(mean daily values were used for this assessment) of the three
sets considered. Details on the SmartBuoy sampling methods
and the accuracy of this dataset can be found in Mills et al.
(2003); Greenwood et al. (2010) and Johnson et al. (2013).
Notation sbu was used for this dataset.

Figure 2A shows the spatial distribution of all data used for the
DIN assessment in East Anglia. Estuarine waters (salinity <30)
and inshore coastal waters are mainly covered by the wfd dataset,
whereas sap and sbu mainly cover the coastal (salinities ≥30
and<34.5) and offshore water bodies (salinity≥34.5). Figure 2B
represents the distribution in time (along the assessment years)
of the available datasets. The distribution of data was not
homogeneous over time, with 2002 and 2004 better represented
than the rest of the years, and 2005 being especially poor in
terms of data availability. Focusing on the different datasets, the
number of observations from wfd was highest for 2001, 2002,
and 2004, but it is very variable along time and very scarce in
2005. The sbu dataset is quite homogeneous in time, and it is the
most important dataset in 2003 and 2005. The sap dataset is the
smallest of the three.

Datasets for Growing Season Chlorophyll
WFD and Warp SmartBuoy data were available for assessments
of growing season chlorophyll. The spatial coverage of these
datasets did not extend to the full assessment area, with
data mainly confined to the coast (Figure 2C). The temporal
distribution of the data was not homogeneously distributed
between the assessment years (Figure 2D): the number of
observations was highest in 2004 and lowest in 2005. The
wfd dataset showed an increase in the number of observations
between 2001 and 2004, and dropped to zero in 2005. The sbu
dataset was quite homogeneous along time.

Additional Datasets
For the assessment of chlorophyll, two additional datasets were
explored:

• The Cuxhaven-Harwich FerryBox chlorophyll data 1. This
ferry line was operative in the period 2002–2005. It was the first
Ship of Opportunity in which a FerryBox system was installed
(see Petersen et al., 2011). Continuous data (temperature,
salinity, chlorophyll, oxygen saturation, and pH, nutrients,
etc.) were recorded en-route at a temporal resolution of∼20 s,
which corresponds to a data point every 550m, on average. In
order to reduce the number of observations and the spatial and

1http://www.ferrybox.com/
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FIGURE 2 | Datasets for the DIN and chlorophyll assessment of East Anglia (COMP2). (A) Spatial distribution of DIN observations. (B) Temporal distribution of DIN

observations per year and dataset. (C) Spatial distribution for chlorophyll observations and (D) temporal distribution of chlorophyll observations per year and dataset.

temporal autocorrelation, the data were averaged considering
a time interval of 10min, which reduced the spatial resolution
to a data point every 3.6 km on average, with a total number
of 3,278 observations in the assessment period. Sensitivity
analysis were carried out to investigate the effect of the
averaging period (1min, 10min, 30min, and 60min) on the
assessment results (only for the aggregation scenario wfd+fbx
described below). We will use the notation fbx to refer to this
dataset.

• The MODIS daily chlorophyll satellite images. Daily
composites of chlorophyll data captured by the MODIS-aqua
sensor and processed at IFREMER with the OC5 algorithm
(Gohin et al., 2002) were available at a horizontal resolution
of 1.1 km during the period 2002–2005. In order to assign
a value of salinity to each satellite chlorophyll observation,
the results of a model that covered the assessment area
were considered. In this way, the modeled salinities were
interpolated at the positions of the satellite observations on a
daily basis. Details of the model setup and its validation can
be found in van Leeuwen et al. (2015) or Ford et al. (2017).

The satellite chlorophyll data are called sch throughout this
paper, and comprise a total number of 419151 observations
for the assessment period, which is more than two orders of
magnitude higher than the number of observation used for the
OSPAR COMP2 assessment of chlorophyll (see Figure 2D).

Statistical Techniques for the OSPAR
COMP2 Assessment
Statistical Techniques for the Assessment of DIN and

Chlorophyll
Table 1 summarizes the assessment statistics together with the
thresholds applied to the two indicators considered in this paper.
The mean winter DIN was normalized to salinity to account
for the gradients caused by river inputs that affect the nutrient
concentrations. In the OSPAR COMP2, mixing diagrams were
used to assess the winter concentrations of DIN (with winter
defined as the months of January, February, November, and
December of the same year) during the period 2001–2005 (see
Foden et al., 2011). The mixing diagrams are used to plot
concentrations of DIN against salinity each year, and to calculate
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linear regressions (Figure 3). All ranges of salinities (from
estuarine to offshore) are considered to construct the mixing
diagrams. From the linear regression equations, a normalized
mean nutrient concentration is calculated for reference salinities
for coastal and offshore waters of 32 and 34.5, respectively.
Finally, the normalized mean values are compared against the
defined salinity-normalized nutrient thresholds.

Chlorophyll is assessed using the 90th percentile value during
the growing season owing to the distribution of chlorophyll data.
The 90th percentile value of the data accounts for the variability
and skewness of data associated with episodic high bloom periods
and sampling frequency (see Devlin et al., 2007; OSPAR, 2008;
Foden et al., 2011).

These statistics were only applied when more than 5
observations were available in any time period being assessed (per
year, or for the whole assessment period), as was done in Foden
et al. (2011) and OSPAR (2008).

Estimating Confidence
Three measures of confidence were used/applied in this paper:

a) Confidence in the representativeness of the data
b) Confidence in the metrics
c) Confidence relative to the threshold

All three measures combined give information on the confidence
in the assessment. Most of the methods that will be described
hereafter are different from those employed in the OSPAR
COMP2, and are mainly based on the guidelines published in
Annex 8 of OSPAR (2013). It is not the purpose of this paper
to compare the confidence obtained using these methods with
those published in the OSPAR COMP2, but to have a measure
that allows for a comparison of the effect on amodern assessment
of the different optimization scenarios that were applied to the
data (see section Aggregation scenarios).

Confidence in the Representativeness of
the Data
The confidence in the representativeness of the data was
analyzed in terms of temporal representativeness, spatial
representativeness and number of data points.

The representativeness of the available data in time over
the assessment period (2001–2005) was calculated taking into
account the methodology described in the guidelines published
in Annex 8 of OSPAR (2013) and Brockmann and Topcu (2014).
The method does not only account for the temporal coverage of
the data, but also for the resolution at which large, fast changes
(gradients) are sampled. The idea is that if the gradient is flat,
not many measurements are necessary to sample the variability
and a gap in the measurements would not result in a significant
loss of representativeness. However, if the gradient is steep, we
would need a higher frequency of sampling to be able to capture
the variability, and a gap would have more weight in reducing the
representativeness.

The Brockmann and Topcu (2014) method consists of
dividing time and/or space into regular intervals/cells and
checking whether all of the intervals have been sampled. If an
interval has been sampled, it gets the full confidence of 100/N,

with N the number of intervals/cells in which the time/space has
been divided. Thus, if all the intervals/cells have been sampled,
the final representativeness is 100% (

∑N
1 100/N).

If an interval is not sampled, it gets a reduced score
that depends on the difference in gradient between the next
sampled cells (calculated as a percentage of the overall gradient)
and the number of connected empty cells. In general, the
representativeness of an empty interval is given by:

R = OR− G ∗ n ∗
OR

100
(1)

with R the representativeness of the empty interval (%), OR
the full representativeness of the interval (%), n the number of
empty intervals, and G the maximum difference between min-
max values of the nearest sampled cells divided by the overall
difference in min-max (in %). This is a slight modification of
G with respect to Brockmann and Topcu (2014) and follows
Annex 8 of the guidance (sections B1 and B2, OSPAR, 2013).
If R is negative, it is assigned a score of 0, since it is not
contributing to the overall representativeness. For this study, the
width of the temporal intervals for the calculation of the temporal
representativeness was chosen to be 1 month. Notice that, since
we evaluated the temporal representativeness only for the winter
months for DIN (January, February, November, and December)
and the growing season for chlorophyll (March to September),
the empty intervals for which the closest available data were
located more than 6 months appart were assigned a score of
zero to avoid calculating gradients with data corresponding to
different years.

The spatial representativeness was assessed by dividing the
assessment area into 1× 1 km grid cells and counting the number
of cells that were occupied by observations from the different
dataset combinations and dividing this result by the total number
of grid cells in the polygon corresponding to the assessment
area for the whole assessment period. The results are also given
as a percentage. In this case, the gradient steepness was not
considered in the calculation of the spatial representativeness.
Note that the results are expected to depend on the selected
temporal/spatial discretization.

Confidence in the Metrics
We can provide a confidence rating of the statistics/metrics
by calculating the uncertainty associated with the metrics used
in the assessments (averages, percentiles, etc.). In general, the
uncertainty of the metrics will increase with the variability of
the observations and decrease with an increasing number of
observations. In the present paper, each metric has an associated
95% confidence interval, which was considered as a proxy for the
uncertainty.

Differences in the confidence in the metrics of the aggregation
scenarios with respect to the actual OSPAR COMP2 assessment,
which will be called the reference assessment from now on, were
calculated by considering the change in the width of the 95%
confidence intervals.
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TABLE 1 | Statistics applied to DIN and Chlorophyll and assessment thresholds.

Indicator Statistics/metrics used Thresholds

Coastal waters (> = 30

and < = 34.5)

Offshore waters

(>34.5)

DIN Mean winter DIN, µM (November to February) 20 15

Chlorophyll 90th percentile in the growing season, µg/l (March

to September)

15 10

FIGURE 3 | Mixing diagrams and linear regression adjustment for DIN in East Anglia (OSPAR COMP2), years 2001 to 2005 (A–E).

Confidence Relative to the Threshold
In order to limit the risk of mis-classification as non-problem
area, a metric is provided to estimate the confidence level
with respect to the threshold. Sections A5 and A6 of Annex
8 in OSPAR (2013) provide different methods to calculate
the confidence in the classification depending on whether
assessments are based on means or on percentiles.

For assessments based on means (i.e., DIN), two methods are
considered:

1. Calculation based on a fixed confidence level (e.g., 90 or
80%). The test consists of calculating the upper 90% (or
80%) confidence limit (using a one-sided t-distribution) and
checking if the obtained value is below the reference threshold.
If this is the case, then we can answer YES with a 90% (or 80%)
confidence to the question: Is this a non-problem area?

2. Calculation based on a variable confidence level. In this case
we need to calculate “the largest a priori chosen confidence

level that would lead to the conclusion that the test values
are below the classification limit.” In other words, in this case
we provide the width of the confidence interval (which is the
difference between the threshold value and the mean) and we
need to calculate the confidence level, which is done by means
of the survival function considering a one-sided t-distribution.

In the case of assessments based on percentiles (i.e., chlorophyll
assessment), the confidence is calculated as the cumulative
probability of the binomial distribution:

Cumulative probability : P
(

x < k
)

=

k−1
∑

x=0

(n

x

) ( p

100

)x (

1−
p

100

)n−x
, (2)

where n is the total number of observations, k are the
observations below the threshold, which is defined by the p
percentile (90th percentile in our case).
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This cumulative probability is the confidence level for the
conclusion that the p percentile is less than value number k.
Consequently, if k of n observations are below the classification
limit, this confidence level also applies to the conclusion that the
p percentile is less than the classification limit (OSPAR, 2013).

The Optimization Approach
As an initial step toward the optimization of the monitoring
systems, we applied heuristic techniques to assess the
observational system that was used for OSPAR COMP2,
although they can be easily extended to other assessments.
The techniques consisted of analyzing several scenarios of
aggregation of the available datasets (see sections Datasets for
winter DIN and Datasets for growing season chlorophyll) for
each of the studied variables (DIN and Chlorophyll). In addition,
alternative datasets provided by different observational platforms
were available for chlorophyll (FerryBox and satellite data) for
the period 2001–2005, allowing for an analysis of the impact on
the assessment of using higher spatial- and temporal- resolution
datasets. Using additional datasets like FerryBox or satellite
chlorophyll involves merging data from different sensors that are
not necessarily cross-validated. For this reason, we have carried
out a cross-validation exercise among the different datasets to
give a quantitative evaluation of the existing mismatch. Finally,
all the aggregation scenarios were compared to the reference
assessment.

Aggregation Scenarios

For DIN
Of the three datasets considered for the DIN assessment (see
section Datasets for winter DIN), two are operated by Cefas: sap
and sbu. Therefore, we focused on evaluating the importance of
these two datasets. The scenarios were:

• Assessment of individual datasets: this scenario gave an idea of
the influence of each dataset in the final assessment.

• Aggregation of wfd+sap: this scenario was intended to exclude
and thus evaluate the importance of the high frequency
measurements provided by the SmartBuoy.

• Aggregation of wfd+sbu: in this case, we excluded and thus
evaluated the relevance of the sap dataset in the OSPAR
COMP2 which contains more points in the offshore area than
the other two datasets (see Figure 2).

For chlorophyll
Only two datasets were available for the OSPAR COMP2
assessment of chlorophyll in East Anglia: wfd and sbu. We used
two additional datasets to analyze their effect on the assessment:
the Cuxhaven-Harwich Ferrybox chlorophyll data and MODIS
daily chlorophyll satellite images (see section Additional datasets
for more details).

The aggregation scenarios that were studied for chlorophyll
were:

• Assessment of individual datasets.
• Aggregation of wfd+fbx, to evaluate if the SmartBuoy data

could be replaced by FerryBox data.

• Aggregation of wfd+sch, as above but considering the
replacement of the SmartBuoy data by satellite data.

• Aggregation of wfd+sbu+fbx, to study the effect on the
assessment of adding FerryBox data

• Aggregation of wfd+sbu+sch, to study the effect on the
assessment of adding satellite chlorophyll data.

• Aggregation of wfd+sbu+fbx+sch, to study the effect on the
assessment of using both FerryBox and Satellite chlorophyll
data.

Cross-Validation Between Datasets
Merging datasets obtained from different sensors requires an
analysis of the similarity between the available measurements.
In this section we introduce a cross-validation tool quantifying
the degree of mismatch between the different datasets compared
one by one. The cross-validation tool was applied to all the
DIN and chlorophyll datasets and consisted of the following
steps: (a) spatial gridding of the study area considering a 1
× 1 km grid, (b) finding the points belonging to two different
datasets that coincide in the same grid at the same time
(considering a daily resolution), (c) calculation of the number
of crossing points, correlation, root-mean square error (RMSE),
and standard deviation to determine the matching between
datasets.

Metrics for Comparing the Aggregation Scenarios
To analyze the importance of a certain dataset for the
eutrophication assessment and, ultimately, to answer the
questions posed in the Introduction (see section Introduction),
we needed to compare the results of the different aggregation
scenarios with a reference which, in this case, was the original
OSPAR COMP2 eutrophication assessment. We used the
following criterion: an aggregation scenario will be considered
“similar to” the reference if the assessment result for the analyzed
variable lies within the 95% confidence interval of the reference
assessment.

RESULTS

Cross-Validation of the Different Datasets
For DIN, all the space/time matchings between wfd and sap, wfd
and sbu, and sap and sbu occurred in the Thames estuary adjacent
to the Warp SmartBuoy in accordance with the distribution of
DIN observations in Figure 2A.

All chlorophyll data locations, including the additional
datasets, are given in Figure 4A. The positions of the space/time
matchings for chlorophyll between wfd and sbu, wfd and sch, sbu
and sch, and fbx and sch, are shown in Figures 4B–E, respectively.
No space/time matching between wfd and fbx and sbu and fbx
were found.

The statistics for all these matchups were represented
by means of normalized Taylor diagrams (Taylor, 2001, see
Figure 5). The number ofmatchups for each dataset combination
is also included.

For DIN, all dataset combinations were positively correlated
(>50%, see the circles in Figures 5A,B), but with a low number
of matching points and, especially in the case of the comparison
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FIGURE 4 | (A) Datasets for the chlorophyll assessment of East Anglia (COMP2) together with the two additional datasets: FerryBox (fbx) and satellite chlorophyll (sch)

explored in the scenario testing (see section Aggregation scenarios). (B–E) Space and time matching between the different datasets.

FIGURE 5 | Taylor diagrams showing the statistics of the cross validation between the different datasets. (A) Statistics for the cross validation of wfd with sbu and sap

for winter DIN (circles) and of wfd with sbu and sch for chlorophyll (squares). (B) The same for sbu with sap for winter DIN (circle), and sbu with sch for chlorophyll

(square). (C) Cross validation of fbx with sch. The number adjacent to each point represents the number of matching points for each cross validation.

between sbu and sap, different variability, and high RMSE.
In the case of chlorophyll, the number of matchups was
reasonably high for all the cross-comparisons, except for wfd
and sbu, which had only 19. The worst statistics were obtained
for the cross validation of wfd and sch (see Figure 5A). The
number of matchups in space was quite large with respect to
the total number (56 crossing points), meaning that very few
data points matched at different times at the same location.
The opposite happened for the cross-validation of sch with

sbu, which represented a unique point in space for which a
large number of temporal matches occurr. In this case, better

matching statistics were obtained compared to wfd and sch

(compare the purple square in Figure 5B with the same in
Figure 5A). The comparison of fbx and sch (Figure 5C), with

the largest number of matching points, resulted in a slightly

higher RMSE than for the cross validation of sbu with sch, but
the representation of the variability was better, with a similar
correlation.

Reduced Sampling Scenarios and Use of
Additional Datasets
Winter DIN
The results of the OSPAR COMP2 assessment for winter DIN
(wfd+sap+sbu), i.e., the reference scenario, and the different
aggregation scenarios are given in Table 2 for each of the
assessment years and the whole assessment period for the
coastal and offshore regions in East Anglia. The confidence
in the metrics and confidence relative to the thresholds were
reported by the 95% confidence interval and the confidence in
the threshold column, respectively, for each of the water types
(coastal/offshore) and each of the aggregation scenarios.

A representation of the assessment results and the confidence
in the metrics is shown in Figure 6A (coastal waters) and
Figure 6B (offshore waters), where the impact of aggregating the
different datasets is clearly seen.

The confidence in the representativeness of the data used to
produce the assessment results is summarized in Table 3, with
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FIGURE 6 | Bar plot showing the results of the OSPAR COMP2 assessment for DIN in coastal waters (A) and offshore waters (B) together with the 95th confidence

intervals. Each bar represents one of the analyzed data aggregations given in section Aggregation scenarios. The red line shows the assessment threshold.

TABLE 3 | Temporal and spatial representativeness of the winter DIN reference dataset and all the aggregation scenarios.

wfd+sap+sbu

(Reference)

wfd sbu sap wfd+sap wfd+sbu

Temporal representativeness (%) 100 70 90 65.93 90 100

Spatial representativeness (%) 6.68 6.06 0.026 0.72 6.68 6.06

Figure 7 showing the number of available data for the reference
and the aggregation scenarios in the selected temporal intervals
(see Figure 7A). This figure also shows an illustration of the
monthly averaged, minimum and maximum time series for the
reference and the wfd aggregation scenarios (see Figure 7B),
which gives an idea of the steepness of the gradients. The shaded
areas correspond to the gaps in the wfd dataset. The scores (in
percentage) for each of the time intervals of the wfd dataset
following Brockmann and Topcu (2014) (see section Estimating
confidence) are plotted in Figure 7C. Notice that the gaps for
November and December 2003 are assigned a score zero because
the closest available observations correspond to February 2003.
In this case, the calculation of a gradient between February 2003
and January 2004 to produce a reduced score would not be
meaningful. The same argument was applied to assign a score
zero to December 2014. The total temporal representativeness for
wfd in Table 3 is the result of summing the percentages for all the
temporal intervals in Figure 7C.

A summary of the changes of the different scenarios with
respect to the reference assessment is given in Table 6.

The reference assessment for DIN—wfd+sap+sbu—was
characterized by good temporal representativeness (100%)
and not so good spatial representativeness (6.06%, see
Figures 2A, 7A). However, the number of observations was
not homogeneous over time (see Figure 7A, blue bars), with
good coverage in 2002 and few data in 2005, or space (see
Figure 2A), with higher coverage closer to the coast and in the
Thames Estuary.

The results of the assessment for the coastal region are
shown in Table 2 and Figure 6A. The assessment threshold was

exceeded in all years and over the whole assessment period. In
offshore waters (Table 2 and Figure 6B), the mean did not exceed
the threshold in 2003. The assessment for the whole period
also indicates that the threshold was exceeded. For all the years
and the overall assessment, the confidence in the metrics was
relatively high, as indicated by the small confidence intervals.

All the considered reduction scenarios led to overall
assessment results for DIN that were aligned with the reference
assessment for both the coastal and offshore waters (see Table 6).
Only in the case of the aggregation scenario wfd+sbu were
overall results within the 95% confidence interval of the reference
assessment (see Tables 2, 6 and Figure 6). In other words, only
wfd+sbu led to overall results similar to the reference in the sense
of section Metrics for comparing the aggregation scenarios. On a
year-to-year basis, wfd+sbu also provided similar results to the
reference for all the years except 2005 in the coastal waters (the
year for which less data were available, see Figure 7A), and for
all years except 2003 and 2005 in the offshore waters. Notice
that, although the results are similar to the reference in 2004 for
offshore waters in the sense of section Metrics for comparing
the aggregation scenarios, there is a change with respect to the
assessment results, leading to non-exceedance. This aggregation
scenario (wfd + sbu) slightly reduced the confidence in the
metrics (<10% for coastal waters and <13% in offshore waters)
but the spatial and temporal representativeness remained almost
unchanged.

For the rest of the aggregation scenarios there was an
important reduction (>28%) in the data representativeness
(either in time or space) and/or in the confidence in the metrics,
implying that some of the relevant spatio/temporal scales have
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FIGURE 7 | (A) Temporal coverage: number of data per time interval of the DIN reference dataset and all the aggregation scenarios. (B) Monthly averaged time series

of winter DIN concentration (solid line), and minimum and maximum monthly values (dashed lines) for the reference dataset and aggregation scenario wfd.

(C) Representativeness score of each temporal interval following Brockmann and Topcu (2014). Since the number of intervals is 20, the maximum score per interval is

5% (100/20). The scores for the reference (wfd+sap+sbu) are not included because all the intervals get the maximum score.
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TABLE 5 | Temporal and spatial representativeness of the chlorophyll reference dataset and all the aggregation scenarios.

wfd+sbu

(Reference)

wfd sbu Wfd+fbx wfd+sch wfd+sbu+fbx wfd+sbu+sch Wfd+sbu+fbx+sch

Temporal representativeness (%) 97.63 68.15 98.83 94.56 94.08 98.08 97.32 98.08

Spatial representativeness (%) 9.62 9.62 0.026 14.83 81.41 14.83 81.41 81.65

TABLE 6 | Summary of the changes with respect the reference assessement of the different aggregation scenarios.

Dataset

aggregations

Water bodies Aligned with

initial

assessment?

Result within the 95th

confidence interval of

the initial assessment?

Change in the

Confidence in the

metrics

Change in the

confidence relative

to the threshold

Change in the confidence

in the data

representativeness

Temporal Spatial

DIN

wfd Coastal Yes No =

Offshore Yes No n/a n/a

sbu Coastal Yes No =

Offshore Yes No

sap Coastal Yes No =

Offshore Yes No

Wfd+sap Coastal Yes No = =

Offshore Yes No =

Wfd+sbu Coastal Yes Yes = =

Offshore Yes Yes =

CHLOROPHYLL

Wfd Coastal Yes No = =

Offshore Yes No

Sbu Coastal No No

Offshore Yes No =

Wfd+fbx Coastal No No

Offshore Yes No =

Wfd+sch Coastal No No

Offshore Yes No =

wfd+sbu+fbx Coastal No No

Offshore Yes No =

wfd+sbu+sch Coastal No No

Offshore Yes No =

Wfd+sbu+ Coastal No No

fbx+sch Offshore Yes No =

Arrows pointing upwards (downwards) indicate an increase (decrease) with respect to the reference, and the color scale indicate the percentage of change (blue, <10%, green, between

10 and 25%, and red, more than 25%).

been lost. However, there were still periods of time when certain
datasets presented coverage in time and space similar to the
reference assessment (see Figures 2A, 7A), and hence similar
results coincident with these periods of high data coverage. These
were 2002 and 2004 for the coastal waters in scenario wfd, 2003
for the coastal and offshore waters with sap and 2002, 2003, and
2004 for the coastal waters, and 2003 for the offshore waters with
wfd+sap.

Chlorophyll
Table 4 gives the results of the OSPAR COMP2 assessment for
chlorophyll (wfd+sbu) and for all the aggregation scenarios.
It is interesting to notice that, given that the assessment for

chlorophyll is based on a percentile (90th percentile), the 95%
confidence intervals are not symmetrical, so we provided the
width of the lower and upper confidence intervals. Figures 8A,B
depict the results of the assessment for the coastal and offshore
waters, respectively. The confidence in the representativeness of
the data used for the assessment is summarized in Table 5 (plots
not shown).

The reference dataset—wfd+sbu—showed good
representativity in time (97.63%), although the
representativeness in space was <10% (see Table 5). The
sbu dataset was spread quite homogeneously in time, and it
was the only available dataset in 2005. On the other hand, wfd
presented high variability in terms of number of data points,
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FIGURE 8 | Bar plot showing the results of the OSPAR COMP2 assessment for chlorophyll in coastal waters (A) and offshore waters (B) together with the 95%

confidence intervals (notice that the confidence intervals are not symmetrical because they are confidence intervals of percentiles). Each bar represents one of the

analyzed data aggregations given in section Aggregation scenarios. The red line shows the assessment threshold.

with 2004 the year for which more data were available (e.g., see
Figure 2D). The results of the assessment for the coastal regions
are shown in Table 4 and Figure 8A. The assessment threshold
was exceeded for all the years in the combined period, except
for 2005, with very low confidence relative to the threshold
(<16%). An exceptionally high value was obtained in 2004,
due to intensive sampling in June 2004 coinciding in time and
space with a massive phytoplankton bloom at the northern part
of the East Anglia region (see Figure 9). For offshore waters,
the results never exceeded the threshold, during the whole
assessment period, with very high confidences relative to the
threshold.

For chlorophyll, the reduction scenarios consisted of
analyzing the individual datasets that comprised the reference
scenario (wfd and sbu). In the case of wfd, the overall results
of the assessment were aligned with the reference, although
not providing similar results in the sense of section Metrics for
comparing the aggregation scenarios (see Table 6). Removing the
sbu dataset led to a decrease in the temporal representativeness
(30%), and reduced the variability of the dataset, causing an
increase in the confidence in the metrics (65%). Wfd alone
produced similar results to the reference in years 2002, 2003, and
2004 in coastal waters, and in 2002 and 2003 in offshore waters
(the only 2 years for which the number of data was enough to
carry out the assessment), but led to a result different to the
reference in years 2001 and 2003 in coastal waters (no threshold
exceedance vs. threshold exceedance in the reference assessment,
see Table 4 and Figure 8).

Using the sbu dataset alone resulted in a change in the
assessment results for coastal waters (the threshold was not
exceeded), but not for offshore waters. In the latter case, the
results were not similar to the reference according to section
Metrics for comparing the aggregation scenarios (see Table 4).
It was not surprising that removing the wfd dataset had more
impact in the coastal waters, because most of the samples were
collected in this water body (see Figure 2). The associated loss in

spatial representatitivity was high (see Table 5). Sbu data alone
could produce results similar to the reference assessment for
years 2003 and 2005 in coastal waters (we recall that for 2005
it was the only available dataset), and 2003, 2004, and 2005 in
offshore waters, but the results were different for 2002 and 2004 in
coastal waters (seeTable 4 and Figure 8). Notice that the years for
which the sbu results were different to the reference assessment
are the same as those for which wfd alone produced similar
results, meaning that for these years, only wfd was covering the
relevant spatio/temporal scales.

The rest of the studied scenarios for chlorophyll consisted of
the utilization of additional datasets. For all these scenarios the
results of the overall assessment in coastal waters were opposite
to the reference assessment, always resulting in no threshold
exceedance. On the contrary, the offshore waters were aligned
with the results of the reference assessment, although never
within the 95% confidence interval (seeTables 4, 6 and Figure 8).
In all the cases, the inclusion of additional datasets led to an
increase in the spatial representativity (>25%), in the confidence
in the metrics (>65%, mostly in coastal waters) and in the
confidence relative to the threshold (>99%, seeTable 6), and only
a slight change in the temporal representativeness.

All scenarios that included sch (wfd+sch, wfd+sbu+sch, and
wfd+sbu+fbx+sch) were biased to this dataset for being the
biggest one, and all of them produced opposite results to the
reference assessment for years 2002, 2003, and 2004 in coastal
waters, and only similar results to the reference assessment for
year 2004 in offshore waters (see Table 4).

When sbu was replaced by fbx (scenario wfd+fbx), the
results were similar to the original assessment in 2004 for
offshore waters. If fbx was combined with the original dataset
(wfd+sbu+fbx), years 2004 and 2005 became similar to the
reference in the offshore waters, although 2002 became different
to the reference (no threshold exceedance) in the coastal waters.
It is important to notice that no fbx data were available for
years 2001 and 2003 and that the results in Table 4 were
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obtained considering an averaging interval of 10min for the fbx
data. The results of a sensitivity test for aggregation scenario
wfd+fbx showed that different averaging intervals led to different
assessment results. In general terms, the shorter the averaging
interval, the lower the 90% percentile values. For example,
different averaging intervals for coastal waters resulted in 90th
percentiles for the chlorophyll assessment of 6.2 (1min average
interval), 13.2 (10min average interval), 21.9 (30min average
interval), and 30.4 (60min average interval), compared with the
33.76 value of the reference assessment (see Table 4). It was
beyond the scope of this paper to investigate themost appropriate
averaging interval that guarantees that all temporal and spatial
autocorrelations are removed, and should be the subject of
further research.

DISCUSSION

The consideration of different dataset aggregation scenarios can
test if different scales of eutrophication monitoring effort can
deliver similar results without significantly affecting confidence
and representativeness in assessments. These reduced scenarios
can provide cost efficiencies but need to be considered in
terms of the adequacy of the reduced datasets. Here we
discuss the various options using the questions posed in the
Introduction.

What Impact Does Each Dataset Have on
the Results? i.e., Would We Obtain the
Same Assessment Results if We Excluded
the SmartBuoys (sbu) or the Ship-Based
Sampling (sap)?
Winter DIN
The outcomes of the winter DIN assessment showed that none
of the individual datasets (wfd, sbu or sap) can individually
reproduce the results of theOSPARCOMP2 assessment for either
single years or the whole period, thus showing that none of
them are redundant in the calculation of the assessment statistic
(normalized mean). Moreover, either sap or sbu data would be
necessary for the assessment of the offshore waters, which is not
possible with the wfd data alone, since they cover only the coastal
waters.

The availability of estuarine data (covered by the wfd
dataset) was crucial for the results of the assessment given the
way the normalized means are calculated (see Figure 3). For
instance, in 2001 and 2002 (see Figures 3A,B), wfd included
low salinity/lower nitrate data, which were less available in
2003 (see Figure 3C). This led to steeper slopes in the mixing
diagram in 2003 and, hence, higher values of DIN that reflected a
lack of observations, and not necessarily a situation of nutrient
enrichment. Similarly, in 2004 and 2005, when no estuarine
data were available (Figures 3D,E). The mixing diagrams for

FIGURE 9 | Spatial distribution of chlorophyll observations in time for different assessment years. The red circle shows where the strongest bloom was captured in

June 2004.

Frontiers in Marine Science | www.frontiersin.org 15 January 2019 | Volume 5 | Article 503

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


García-García et al. Optimizing Monitoring Programs: A Case Study

years 2001 and 2002 suggest that the salinity/DIN gradients
from the estuaries to the offshore waters are strongly spatially
variable within the East Anglia region. Therefore, splitting this
region into more meaningful areas in terms of river plume
dynamics, hydrodynamics, etc. would probably have led to
a more realistic eutrophication assessment. Assessment areas
delineated based on ecologically relevant typologies (salinity,
extent of the river plume, ecohydrodynamic characteristics) have
been explored in a detailed case study for the Thames and
Liverpool Bay area (Greenwood et al., submitted) . Also, the use
of smaller assessment areas in inshore coastal waters has been
found to provide better information for managers and policy
makers (Elliott, 2013). In the most recent UK OSPAR assessment
(OSPAR COMP3, UK National Report, 2017), estuarine data
were not considered for the calculation of the normalized means,
resulting in a more consistent comparison of results from year to
year.

Chlorophyll
For chlorophyll only two datasets were available for the OSPAR
COMP2: wfd and sbu. As for DIN, neither of them could,
on their own, produce similar results to the reference for all
years, meaning that both datasets were providing important
information to the assessment.

The nature of the variability in chlorophyll maxima in time
and space makes chlorophyll difficult to sample, even with
continuous sampling devices such as the SmartBuoy. The way
the chlorophyll assessment is designed can lead to false non-
exceedance results for different reasons. For example:

• A phytoplankton bloom may occur at a specific location and
time that may be missed by the monitoring platforms [i.e., a
strong bloom was captured in June 2004 but not in any other
assessment year (see Figure 9)]

• Even if a bloom was detected by the monitoring network,
many other observations could reduce the value of the 90th
percentile.

Wider Implications
If the SmartBuoy was removed, although we could get results
similar to the original assessment in terms of threshold
exceedance, they would not lie in the 95% confidence interval of
the reference because of the loss of temporal representativeness.
Removing the SmartBouy (data) would save approximately £70 k
per year, but would result in an increase in the uncertainty
due to the decreased temporal representativeness. This higher
uncertainty would result in lower confidence in the assessment
outcomes. As an aside, the SmartBuoy programme as a whole
contributes to increased scientific knowledge in the area by
providing long-term time series on environmental changes, data
for satellite, andmodel calibration and validation, etc. Since 2002,
more than 60 peer-reviewed papers have been published using
SmartBuoy data.

The removal of the ship-based sampling did not seem
to significantly affect the results of the assessment for DIN,
except for 2005 in coastal waters, and 2003 offshore (these are
water body/year combinations for which data are particularly

scarce). A substantial amount of these data is collected during
SmartBuoy turn-around cruises, and used to calibrate SmartBuoy
observations. Hence, reducing SmartBuoy deployments would
also reduce the volume of available ship-based data. In addition
to SmartBuoy calibration, this dataset is used for the validation of
satellite and FerryBox data.

The conclussions with respect to the relevance of each dataset
presented here are only valid for the East Anglia Regional Sea.
We cannot anticipate if some datasets would be redundant or
not in other assessment areas because of the different dynamics
and hence, characteristic spatio-temporal scales. However, the
employed methodology is easily and quickly applied to other
regions and assessments.

The statistical techniques proposed in this paper allow for
a preliminary assessment of the monitoring system based on
simple methods. In particular, we are able to evaluate if a
dataset is redundant or not. A dataset is redundant if it covers
spatio-temporal scales that have already been covered by other
available datasets. This information is relevant and constitutes
an important step toward the optimization of the monitoring
system, but with this methodology we still do not quantify
to which extent the relevant spatio-temporal scales have been
covered by the available datasets. The calculation of the temporal
and spatial representativeness presented in this paper gives a
partial idea of the data coverage (notice however that lower
values would be expected if they were combined in a 3D matrix:
longitude x latitude x time), but not of its effectiveness in covering
the relevant scales. More sophisticated statistical techniques, such
as the effective coverage and the explained variance (see She et al.,
2007; Fu et al., 2011) or assimilative model-based methods (OSEs
and OSSEs, see She et al., 2007; Oke and Sakov, 2012; Turpin
et al., 2016) could be used for this purpose, although this was
beyond the scope of this paper.

Does the Addition of New Platforms (Not
Included in the Assessment, Like FerryBox
or Satellite Data) Significantly Change the
Conclusions of the Assessment?
Added Value
According to the results in section Chlorophyll, when the
high frequency platforms are considered in the assessments,
either by replacing the SmartBuoys (aggregation scenarios
wfd+fbx and wfd+sch) or by combining them with the existing
datasets (aggregation scenarios wfd+sbu+fbx, wfd+sbu+sch,
and wfd+sbu+fbx+sch), the conclusion of the assessment
changes significantly, especially in coastal waters. Indeed, in
coastal waters a change in the comparison with the thresholds
occurs, leading to non-exceedance results when the assessment
reported exceedance. The results are less dramatic in offshore
waters, for which the assessments using fbx or sch are similar
in some years and, when they are not, at least they do not
demonstrate a change in the comparison with the threshold.

The high frequency platforms are providing information at
scales that are not covered by the available monitoring. But we
need to be able to explain the differences with the reference
assessments by identifying the issues with the aggregation of the
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different data sources and the weaknesses of the assessment tools
that are being used for chlorophyll currently.

Data Quality and Quantity Considerations
FerryBox and satellite chlorophyll observations are gathered
using different sensors and methodologies from in-situ
observations and this is the reason why we cross-validated
the different datasets to estimate possible biases that could
be affecting the final solution. The cross-validation exercise
carried out in section Cross-validation of the different datasets
could not give information about the degree of comparability
between FerryBox and the in-situ datasets as there were no
common points. However, fbx could be compared with sch,
resulting in statistics like those for the comparison of the
in-situ datasets (see, for instance, the statistics for wfd+sbu
vs. fbx+sch in Figures 5A,C). However, according to the
information in the FerryBox website2, the sensors to obtain
the chlorophyll concentrations in the FerryBox (fluorometers)
need major improvements to account for the dependence of
the measurements on the physiological needs of phytoplankton
and on the prior illumination, and this would increase the
uncertainty of this dataset. FerryBox data have been collected
in recent years by the Research Vessel “Cefas Endeavor,” and
calibrated against in-situ observations. These high quality data
were not available for the OSPAR COMP2, but they constitute
an additional and reliable dataset that can be used for future
assessments.

In the case of the satellite chlorophyll, the cross validation
exercise showed that its temporal variability is comparable with
that of sbu (Figure 5C). However, when we compare the sch
dataset with wfd we get high bias and RMSE (see Figure 5A).
Most of the matchups between these two datasets (see Figure 4C)
are influenced by the Thames river plume, and to a lesser extent,
other rivers (Orwell, Stour, Colne, and Blackwater), therefore
these results are not surprising, since satellite chlorophyll
products tend to perform less well in turbid waters.

In the case of the FerryBox, data are gathered as the ship
moves, with a temporal resolution of 20 s. This implies a huge
amount of information that would be biasing the assessments
to the observations on the FerryBox routes. For our particular
study, we decided to average the data using a time interval of
10min, which considerably reduced the number of data points,
and increased their distance. However, this averaging procedure
did not guarantee that all the temporal and spatial correlations
were removed from the dataset, for which specific investigations
would be required.

Satellite chlorophyll observations constituted the largest
dataset in terms of combined temporal and spatial coverage. In
this paper, we have considered daily products gridded at 1 km
resolution. Several problems occur with the merging of satellite
observations with other datasets. Firstly, retrieval of Level-
2 products in coastal waters, where suspended sediment and
CDOM co-occur with phytoplankton, is inherently complicated
by the optical complexities of these waters (see Qin et al.,
2007; Petus et al., 2010; Prieur and Sathyendranath, 2018).

2https://www.ferrybox.com/about/sensors/index.php.en

However, advances are being made toward the development
of reliable satellite products generated with the appropriate
algorithms for the different water types (i.e., the EU funded
JMP EUNOTSAT project), which will reduce the current
associated uncertainty. Secondly, the huge amount of data can
dilute any information from other datasets, which may be
more reliable. This raises questions about the accuracy of the
classical assessment, and on the influence and interpretation
of the statistics used. In this sense, the incorporation of high
frequency observations into the assessment might require the
consideration of smaller assessment areas or revisiting the
actual thresholds, which are based on much less observations.
Finally, clouds and other artifacts reduce coverage of the
relevant areas, which reduces the availability of data, and
may introduce bias toward conditions associated with clear
weather.

CONCLUSIONS

We conclude that all the in-situ datasets used in the OSPAR
COMP2 assessment were relevant to replicate the results of the
initial assessment, with almost no margin to reduce costs without
increasing the uncertainty in the eutrophication assessments
and impacting on the ability of the data to deliver the OSPAR
assessment requirements. The only case in which a reduction
was acceptable was aggregation scenario wfd+sbu for the DIN
assessment, since the removal of the sap dataset had almost no
impact on the confidence representativeness of the data and the
confidence in the metrics.

The spatial and temporal coverage and the methods used
in the eutrophication assessment were biased toward certain
times and locations where the sampling was more intensive. This
was evident in the different annual outcomes, such as the DIN
assessment in 2002 resulting in a lower assessment value than the
consecutive years as more estuarine sites were sampled, or the
chlorophyll assessment, that resulted in a higher value in 2004
than all other reporting years due to the sampling of a bloom.

In order to avoid these biases, an in-situ sampling programme
which is more homogeneous in time and space would be
required, but is not feasible due to cost. The incorporation of
remote sensing and model data, which are currently not used
in the eutrophication assessments, could provide the required
resolution but need to be integrated with the appropriate
methods. The aggregation of in-situ, satellite and modeling
data offers the appropriate integration of available datasets to
ensure cost efficient monitoring programs collecting data at the
appropriate frequency. There would be a need for each dataset to
account for its own uncertainty.

In this paper we have made an initial merging test between
in-situ and satellite chlorophyll data that resulted in big changes
in the assessment results. This was caused by the fact that
the satellite chlorophyll was a massive dataset that contained
many more low chlorophyll values (outside blooms) than high
chlorophyll values, which lowered the 90th percentile. This might
be an indication that the classical assessment methods should be
revisited, but it first requires a more in depth study focused on
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the best way to aggregate in-situ, remote sensing and model data,
which is in preparation (Collingridge et al., in preparation).
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