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Habitat restoration is an important tool for managing degraded ecosystems, yet the
success of restoration projects depends in part on adequately identifying preferred
sites for restoration. Species distribution modeling using a machine learning approach
provides novel tools for mapping areas of interest for restoration projects. Here we
use stacked-species distribution models (s-SDMs) to identify candidate locations for
installment of manmade reefs, a useful management tool for restoring structural
habitat complexity and the associated biota in marine ecosystems. We created
species distribution models for 21 species of commercial, recreational, ecological, or
conservation importance within the Southern California Bight based on observations
from long-term reef surveys combined with high resolution (200 m × 200 m) geospatial
environmental data layers. We then combined the individual species models to create
a stacked-species habitat suitability map, identifying over 800 km2 of potential area for
reef restoration within the Bight. When considering only the 21 focal species, s-SDM
scores were positively associated with observed bootstrap species richness not only
on natural reefs (linear model: slope = 0.27, 95% CI = 0.17–0.36, w = 1), but also
this result was supported by two independent test datasets. The predicted richness
from this linear model was associated with observed species richness when considering
only the focal species on manmade reefs (linear model: slope = 0.52, 95% CI = 0.13–
0.92, w = 1) and also when considering 204 other non-focal species on both natural
and manmade reefs in southern California (slope = 3.65, 95% CI = 2.93–4.37, w = 1).
Finally, our results demonstrate that the existing manmade reefs included in our study on
average are located in regions with habitat suitability that is not only less suitable than
natural reefs (t-value = –5.4; p < 0.05), but also only slightly significantly better than
random (p < 0.05), demonstrating a need for more biologically informed placement
of manmade reefs. The stacked-species distribution model provides insight for marine
restoration projects in southern California specifically, but more generally this method
can also be widely applied to other types of habitat restoration including both marine
and terrestrial.
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INTRODUCTION

Increasing habitat loss and degradation worldwide threatens
many of the world’s species (Foley et al., 2005), resulting in
population declines (Bender et al., 1998), loss of genetic diversity
(Sih et al., 2000), and even species extinctions (Barnosky et al.,
2011). Habitat restoration is an important tool for managing
degraded ecosystems (Polak and Saltz, 2011), in an effort to
restore and prevent species loss (Pavlik, 1996). Yet, habitat
restoration initiatives are not always successful (Fischer and
Lindenmayer, 2000; Godefroid et al., 2011). One key factor
that influences the success of habitat restoration projects is the
quality of sites chosen for management (Bottin et al., 2007).
For example, manmade habitat structures can fail when placed
in areas with non-ideal environmental conditions (e.g., Frissell
and Nawa, 1992). To prevent such failures, it is crucial that
we develop and test methods for identifying candidate sites for
habitat restoration.

Species distribution modeling (a.k.a. ecological or
environmental niche modeling) has been proposed as tool
for identifying sites for habitat restoration (Pearce and
Lindenmayer, 1998) and is increasingly being utilized for
this purpose (Rodríguez et al., 2007). Using observation data in
conjunction with spatially gridded environmental data, species
distribution modeling identifies environmental predictors of
species occurrence, creating a model that is then projected across
the landscape to identify other areas of suitable habitat (Elith
and Leathwick, 2009; Elith et al., 2011). Species Distribution
Models (SDMs) have been used to predict optimal sites for
restoration for a wide variety of species, including plants (Yang
et al., 2013) and animals (Pearce and Lindenmayer, 1998;
Wilson et al., 2011). Yet, while many of these efforts focus on
single keystone or focal species (e.g., Pearce and Lindenmayer,
1998; Wilson et al., 2011; Yang et al., 2013), for some degraded
habitats, restoration is needed for entire communities (Palmer
et al., 1997). Stacked-SDMs, where SDMs are first created for
individual species and then combined, provide an opportunity to
identify suitable habitat across multiple species. Stacked-SDMs
have been used for studying spatial patterns of environmental
suitability across a range of taxa (Dubuis et al., 2011; Guisan and
Rahbek, 2011; Hof et al., 2012; Calabrese et al., 2014; Hof and
Svahlin, 2016; da Mata et al., 2017).

Here we implement stacked-SDMs (s-SDMs) to predict
optimal locations for the placement of manmade reefs to
restore habitat for shallow rocky reef-associated marine fish,
invertebrate, and algal communities. To conduct this research, we
take advantage of long-term reef survey datasets (Caselle et al.,
2015; Pondella et al., 2015a; Zahn et al., 2016) to build SDMs for
the entire extent of rocky reefs within the Southern California
Bight (SCB). The rocky reefs of the SCB are a habitat of particular
interest because this region is on par with some of the most highly
productive ecosystems in the world (Hubbs, 1960; Horn and
Allen, 1978; Pondella et al., 2005; Horn et al., 2006). Here, cool
waters of the California current from the north meet with warm
waters from the south to create a set of unique environmental
conditions that support a wide variety of marine species (Horn
and Allen, 1978; Bograd and Lynn, 2003; Pondella et al., 2005;

Horn et al., 2006; Hamilton et al., 2010). Naturally occurring
hard substrates make up the base of rocky reef habitats from
which wide ranging giant kelp forests (Macrocystis pyrifera) grow,
providing extensive habitat for many marine fish, invertebrate,
and algal species (Graham, 2004; Stephens et al., 2006). Yet at
the same time, this productive ecosystem is located next to one
of the world’s largest megacities, Los Angeles (Nicholls, 1995).
As a result, there is intense anthropogenic pressure exerted on
this critical ecosystem, including overfishing (Love, 2006; Zellmer
et al., 2018), habitat modification due to landslides (Kayen
et al., 2002) or development (Ambrose, 1994), and pollution
(Schaffner et al., 2015).

Manmade (artificial) reefs have long been used as a successful
option for restoration of marine ecosystems (Bohnsack and
Sutherland, 1985; Bohnsack et al., 1994). Many hard substrates
create manmade reefs, from purposefully designed quarry rock
structures to breakwalls, pier pilings, and even sunken shipwrecks
(Morris et al., 2018). When standardized, comparisons with
natural reefs suggest that manmade reefs can sustain similar
levels of species richness and abundance (Carr and Hixon, 1997;
Pondella et al., 2002, 2006). Further, some of the best manmade
reefs, for example tall quarry rock reefs with high rugosity and
steel oil platform structures with extensive spatial coverage, even
show evidence of sustaining higher productivity than natural
reefs (DeMartini et al., 1994; Johnson et al., 1994; Claisse et al.,
2014; Granneman and Steele, 2014; Pondella et al., 2015b). By
using environmental data and SDMs to select preferred sites for
placement of such manmade reefs, it may be possible to further
optimize restoration efforts.

Yet, creating species distribution models for manmade reef
restoration poses some unique challenges. Species distribution
modeling has been used to study a number of marine
ecosystems (Brodie et al., 2018) and for the conservation
of marine species (Robinson et al., 2017), including for
habitat restoration. For example, Adams et al. (2016) created
SDMs for eelgrass restoration. However, rocky reef ecosystems
differ from systems like eelgrass communities as they require
specific habitat structures that are largely independent of
environmental conditions – rocky infrastructure can and is
built in many different places (e.g., manmade reefs, breakwalls,
jetties; Morris et al., 2018) – and themselves are not constrained
by environmental conditions. Further, such projects are time
consuming and costly, requiring a significant amount of
planning, collaboration, and management. Thus, it is necessary to
establish an approach for identifying preferred candidate sites for
rocky reef infrastructure by modeling environmental constraints
of species found inhabiting these reefs.

To investigate the utility of SDMs for optimizing the
placement of manmade reefs, we created individual-SDMs for 21
species and combined them to create stacked-SDMs to identify
hotspots for habitat suitability across multiple species. We
validate this approach for identifying candidate sites for habitat
restoration by assessing whether the s-SDM values for reefs are
positively associated with observed richness of the 21 focal species
from reef surveys on already established manmade reefs as well as
for an independent dataset of non-focal species that includes 204
fish, invertebrate, and algal species on all surveyed reefs. If SDMs
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provide an accurate tool for identifying candidate sites, then we
would expect multi-species habitat suitability from the s-SDM to
increase with observed richness of established manmade reefs.

MATERIALS AND METHODS

Species Distribution Modeling
To determine optimal habitat for each of the focal species, we
utilized species distribution modeling using a machine learning
approach in the program MaxEnt (Phillips et al., 2006a). This
approach allows us to develop a model of habitat suitability
for each species based on the environment in places where
each species has been observed (Elith and Leathwick, 2009). We
can then project that model over all other locations to identify
additional suitable habitat. To construct SDMs, we first collated
observation data for each of the focal species and downloaded
and created spatial environmental data layers.

Observation Data
We initially chose 39 fish, invertebrate, and algal species for
this analysis that are targeted commercial or recreational species
(CDFG, 2001) or of particular ecological concern for the
SCB (Supplementary Table S1), including representative fish
(e.g., Rockfish, Sebastes sp.), invertebrate (e.g., Red sea urchin,
Mesocentrotus franciscanus), and algal species (e.g., Giant kelp,
Macrocystis pyrifera). Spatial locality information was collected
for each of the focal species from long-term monitoring surveys
from the Vantuna Research Group (VRG; Pondella et al., 2015a;
Zahn et al., 2016), Channel Islands National Park Kelp Forest
Monitoring Program (KFM; Kushner et al., 2013), and the
Partnership for the Interdisciplinary Studies of Coastal Oceans
(PISCO; Hamilton et al., 2010; Caselle et al., 2015; Pondella et al.,
2015a). These observations were made from transect surveys on
rocky reefs across the entire SCB at 296 sites during 35 years from
1982–2017 (Kushner et al., 2013; Caselle et al., 2015; Pondella
et al., 2015a; Zahn et al., 2016). In short, divers conducted
subtidal surveys up to 30 m deep with a depth-stratified random
sampling design at each site in which randomly located transects
were sampled using four methods: (1) fish density and size
distribution are recorded along 30 m belt transects on the reef,
in the midwater and in the top section of the water column if
kelp canopy is present, (2) density of large (>2.5 cm) motile
invertebrates and macroalgae recorded along 30 m “Swath”
transects, (3) percent cover of sessile invertebrates, turf algae,
and habitat characteristics are estimated using uniform point
contact along 30 m transects on the reef and (4) size frequency
data for commercially and ecologically important invertebrates
(Kushner et al., 2013; Caselle et al., 2015; Pondella et al., 2015a;
Zahn et al., 2016). We used only presence and absence data from
these surveys.

We divided the dataset into localities from natural rocky
reefs (578 sites) and manmade reefs (38 sites). The natural reef
data were split into training and test data (described below),
whereas the manmade reef data were used only for validating
the models. To prevent spatial bias, we used spatial thinning
to remove points within 1km of one another. Spatial thinning

was completed using the “spThin” R package (Aiello-Lammens
et al., 2015). Only species with at least 30 unique observed
localities on natural reefs greater than 1km apart were included
in subsequent analyses. The SDM method used in this study,
MaxEnt (described below), is less sensitive to small sample sizes
(10–30) than other distribution modeling methods available,
although caution should still be taken in interpreting models with
the smallest sample sizes (Wisz et al., 2008). Preliminary analyses
of species with fewer than 30 unique observations resulted in
SDMs with low support. Of the initial 39 focal species, 21 had at
least 30 unique observed locations at least 1 km apart (Table 1).
These 21 species included 16 fish, six invertebrates, and one
algal species.

Environmental Data
Spatially gridded environmental data was collected for the
entire SCB. We used six environmental variables at a resolution
of 200 m2, including: aspect, bathymetry, mean annual
Chlorophyll-A (ChlA), distance to the 200 m isobath (a
proxy for upwelling potential), slope, and mean annual sea
surface temperature (SST). For bathymetry, we used a seafloor
bathymetry digital elevation model (DEM) which is a product
of the California Department of Fish and Wildlife Bathymetry
Project. This coastwide 200 by 200 m DEM was clipped to
the extent of the Southern California Bight. Seafloor aspect
and slope were derived from the bathymetry DEM using the
Aspect and Slope tools in ArcMap 10.3. We collated data
from MODIS-derived sea surface temperature (SST; degrees
Celsius) and Chlorophyll-A (ChlA; mg·m−3) from the University
of California San Diego, Scripps Institution of Oceanography
Photobiology Group1. The raw data consists of 15 day averages
throughout the California Current Large Marine Ecosystem. We
took the mean of each year from 2002–2017 and then took
the grand mean of all years. Both SST and ChlA were down-
sampled in R using the bilinear method. All data layers were
projected to the WGS 1984 UTM Zone 11N coordinate system
to limit distortion. We masked each of the environmental layers
using the 45 m isobath contour to restrict all analyses to only
cells with average depths shallower than or equal to 45 m,
since all reef survey observation data is limited to this region.
We tested for correlations among each of the environmental
variables at each of the unique locations from the thinned
dataset using Pearson Correlation Coefficient. None of the 15
pairwise comparisons of the six environmental variables were
highly correlated at observed focal species localities, with |
r|≤ 0.5 for all.

Reef presence across the SCB was identified based on a
composite of hard-bottom substrate and historical kelp canopy
cover (Williams et al., unpublished; Zellmer et al., 2018). We
created a second stack of environmental data layers with all
variables masked by reef presence. This masked raster stack was
used to build individual-SDMs on current established reefs and
then the full raster stack was used to project the individual-SDMs
across the remaining area in order to identify candidate sites for
restoration in the SCB.

1http://spg.ucsd.edu

Frontiers in Marine Science | www.frontiersin.org 3 February 2019 | Volume 6 | Article 3

http://spg.ucsd.edu
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00003 February 9, 2019 Time: 18:6 # 4

Zellmer et al. Species Distribution Modeling for Ecosystem Restoration

TABLE 1 | Best fit MaxEnt model selected for each of the 21 focal species.

Species Common Name RM AUC Mean AUC Diff. AUC w K n

Sebastes caurinus Copper Rockfish 3 0.87 0.84 0.04 0.51 15 54

Haliotis corrugata Pink Abalone 5 0.86 0.80 0.08 0.58 8 63

Paralabrax nebulifer Barred Sand Bass 4 0.85 0.82 0.07 0.90 11 57

Haliotis fulgens Green Abalone 4 0.85 0.78 0.10 0.70 9 58

Sebastes serriceps Treefish 6 0.84 0.81 0.05 0.92 6 69

Sebastes mystinus Blue Rockfish 3 0.84 0.80 0.05 0.99 13 73

Sebastes serranoides Olive Rockfish 3 0.82 0.77 0.08 0.91 8 80

Panulirus interruptus California Spiny Lobster 3 0.82 0.74 0.09 0.46 15 102

Sebastes miniatus Vermilion Rockfish 5 0.81 0.76 0.05 0.67 8 48

Sebastes carnatus Gopher Rockfish 5 0.81 0.76 0.05 0.52 8 64

Sebastes atrovirens Kelp Rockfish 4 0.81 0.77 0.05 0.82 11 111

Sebastes chrysomelas Black and Yellow Rockfish 7 0.80 0.77 0.05 0.53 2 59

Sebastes auriculatus Brown Rockfish 5 0.80 0.76 0.07 0.99 8 41

Megathura crenulata Giant Keyhole Limpet 7 0.80 0.78 0.06 0.34 8 117

Kelletia kelletii Kellet’s Whelk 6 0.80 0.74 0.09 0.20 10 112

Semicossyphus pulcher California Sheephead 4 0.79 0.76 0.05 0.41 12 128

Macrocystis pyrifera Giant Kelp 4 0.79 0.76 0.05 0.33 14 123

Scorpaenichthys marmoratus Cabezon 7 0.78 0.73 0.06 0.40 5 56

Paralabrax clathratus Kelp Bass 7 0.78 0.76 0.05 0.43 9 126

Ophiodon elongatus Lingcod 6 0.78 0.69 0.11 0.71 4 42

Mesocentrotus franciscanus Red Sea Urchin 6 0.78 0.76 0.05 0.30 8 120

All candidate models tested allowed for all feature classes to be used (LQHPT) but varied in the regularization multiplier (RM). AUC is the Area Under the Curve for the
full dataset. Mean AUC is averaged across each of the iterations for only the training data. Diff AUC is the mean difference in the AUC values between the training data
and the test data. w is the Aikaike weight. K is the number of parameters included in the MaxEnt model. n is the total number of unique observations of each species on
natural reef sites prior to splitting into training and test datasets.

Individual-SDMs
Individual SDMs were developed for each species using MaxEnt
v. 3.4.1, a presence-only machine learning approach to modeling
species distributions (Phillips et al., 2006b) called through the R
programming language (R Core Team, 2015). MaxEnt includes
two options, feature classes and a regularization multiplier, to
customize models and control overparameterization. Feature
classes are a transformation of the environmental variables
to enable modeling of complex relationships and include
linear, product, hinge, threshold, and quadratic (Elith et al.,
2010), whereas the regularization multiplier adds a penalty
for overparameterization (Elith et al., 2010; Shcheglovitova
and Anderson, 2013). By default, MaxEnt allows all feature
classes to be selected in training the model and uses a
regularization multiplier of one as determined by optimization
from empirical studies across a variety of species (Phillips
and Dudík, 2008). However, these parameters need to be
optimized for each species to prevent overly simplified or
overly complex models (Radosavljevic and Anderson, 2014;
Morales et al., 2017). Thus, we utilized a model selection
approach to compare models based on the corrected Akaike
information criterion (AICc) approach for SDMs developed by
Warren and Seifert (2011) and implemented in the “ENMeval”
R package (Muscarella et al., 2014). For each species, we
tested a set of 12 candidate models each with a different
regularization multiplier (1–12, increasing by one) and allowed
all feature classes in each model. We used the “block” method

for model evaluation to account for spatial autocorrelation.
This approach divides the data into four spatial blocks. The
model is then run four times with three blocks set as training
data and one block set as test data for each iteration and
evaluation metrics are then summed across the iterations
(Muscarella et al., 2014).

Models were evaluated first by comparing the mean Receiver
Operating Characteristic Area Under the Curve (AUC) for the
training data to the test data. This value measures the true positive
rate to the false positive rate at varying thresholds for classifying
habitat suitability. AUC values close to one indicate good fit of
the model to the data whereas an AUC value of 0.5 indicates
the model is no better than random. Comparing the AUC values
for the training to test data allows us to validate how well the
models fit an independent dataset, thus smaller differences in
the training and test data AUCs indicate better transferability. In
addition, we calculated AICc scores to compare the 12 candidate
models for each species, allowing us to evaluate the fit of each
model while accounting for the number of parameters in each
model. The model with the lowest AICc score was considered
a best model of the candidate models (Burnham and Anderson,
2002) and was used for subsequent analyses. To identify suitable
habitat for reef restoration, the best-fit model was then projected
across the entire study area using the complementary log-log
link (cloglog) function, which is more appropriate for estimating
probability of presence than the previous MaxEnt default, a
logistic transformation (Phillips et al., 2017).
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Stacked-SDMs
To create a model for predicting preferred locations for
manmade reefs that optimizes suitability across most of our
focal species, we constructed a stacked-species distribution
model (s-SDM) by combining each of the individual-
SDMs. To do this, we simply added together each of the
individual-SDMs as derived by Calabrese et al. (2014). We
selected this approach as opposed to combining thresholded
binary habitat suitability classification, since combining
thresholds has been shown to result in biased s-SDMs
(Calabrese et al., 2014).

S-SDM and Species Richness
To assess the quality of the SDMs for identifying high quality
habitat for restoration, we evaluated the extent to which
the s-SDM is associated with species richness. We calculated
observed species richness at each reef site and tested for a
positive linear relationship with the s-SDM score for each reef
site using linear regression. We performed this analysis first at
all of the natural reef sites for the 21 focal species and then
used the linear regression to predict species richness at already
established manmade reef sites (test dataset 1) and at all reef sites
for 204 other non-focal fish, invertebrate, and algal species (test
dataset 2).

Species richness was calculated using only the VRG reef
survey data (Pondella et al., 2015a; Zahn et al., 2016) to
ensure standardized sampling. To quantify species richness, we
estimated species richness using the R “vegan” package using
the bootstrap estimator, since sites were surveyed an uneven
number of times. We calculated bootstrap species richness for
all fish and swath (algae and invertebrate) surveys separately
then added the estimates together for each site. We used
linear regression to statistically evaluate the relationship between
observed bootstrap species richness and s-SDM scores. We
include two covariates in the model to account for variation
in quality of individual reef sites, depth zone and standard
deviation (SD) of reef relief. Depth zone describes the different
depths at which a reef was surveyed: inner (∼5 m), middle
(∼10 m), outer (∼15 m) and deep (∼25 m). Reef relief
was measured at 31 points along each survey transect and a
higher standard deviation of these relief measurements indicates
greater fine scale habitat heterogeneity. The linear regression
was evaluated using AICc by comparing to a null model with
SD relief and depth zone alone. The linear model was then
used to calculate predicted species richness at manmade reef
sites. Observed versus predicted bootstrap richness at manmade
reef sites was evaluated using linear regression and AICc by
comparing to a null model. In addition, we tested whether
predicted values from the linear model were correlated with
observed bootstrap richness for the 204 other non-focal fish,
algae, and invertebrate species surveyed at all reef sites. This
additional independent dataset allows us to test not only the
validity of the model but also whether the focal species list
is sufficient to predict restoration sites for the reef-associated
communities or if only applicable to the species included in
the model.

Identifying Candidate Restoration Sites
To identify candidate sites for reef restoration, we isolated regions
where there is high predicted habitat suitability across multiple
species but no existing reefs using the reef data layer. High
predicted habitat suitability was defined as the s-SDM score at
or above which the linear model predicts species richness as
equal to half the number of focal species. We calculated the
proportion of cells with an s-SDM score above this threshold
for the entire study region as well as for only cells outside of
existing reef areas. Cells outside of existing reef areas with greater
than the s-SDM threshold are considered candidate regions for
installation of manmade reefs, whereas cells within existing reef
areas with greater than the s-SDM threshold are considered
candidate regions for restoration or rehabilitation of existing
reef habitat.

Existing Manmade Reef Quality
Assessment
We further assessed the predicted habitat suitability of already
established manmade reef sites in the SCB to determine the
current quality of restored habitats. We extracted s-SDM scores
for all manmade reefs in our study region (n = 21) and for
all natural reef survey sites (n = 250) and calculated the mean
for both. We compared mean s-SDM scores for manmade
and natural reef sites with a t-test. We then conducted a
permutation analysis by randomly sampling sites across the
study region (n = 21) and calculating the mean value of the
s-SDM at those sites iterated 1000 times. We then compared
the mean s-SDM value of the manmade sites as well as the
mean s-SDM value of the natural sites to the distribution to
quantify significance. As habitat restoration may be limited to
areas where reefs do not currently exist and therefore random
selection of sites may be artificially biased as being more
suitable, we recalculated the null distribution from only areas
in the SCB where there is no existing reef habitat and reran
the analyses.

RESULTS

Individual-SDMs
For each species, we selected the best fit model (1AIC = 0) from
the 12 candidate models with varying values for the regularization
multiplier (Supplementary Figures S1–S21). Based on mean
AUC values for the test data, all models predicted test
observations well (mean AUC range: 0.69–0.84; Table 1) and
were not overfit (difference between training and test AUC
range: 0.04–0.11; Table 1). The optimal regularization multiplier
selected for each species was higher than the default value
in MaxEnt (1) and ranged from 3–7 (Table 1). Of the
nine environmental predictors, Slope (52%), Distance to 200m
(22.6%), and Bathymetry (8.7%) on average contributed the most
to each of the individual-SDMs (Figure 1). This pattern was
consistent among fish and algae species, although for invertebrate
species, Distance to 200 m contributed more on average than
Slope (Figure 1).
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FIGURE 1 | Percent contribution of each of the six predictor variables to the individual-SDMs. Interquartile ranges shown for the three taxonomic groups, algae (red
circles), fish (green triangles), and invertebrates (blue squares).

FIGURE 2 | Stacked-Species Distribution Model (s-SDM) showing predicted multi-species habitat suitability at a resolution of 200 × 200 m and within the 45 m
isobath in the Southern California Bight. Individual-SDMs were created for 21 focal fish, invertebrate, and algal species across existing reef habitat and then
projected across the entire study region. The individual-SDMs were then added together to create an s-SDM. Existing reef habitat shaded with white. Color ramp
shows s-SDM scores.

Stacked-SDM
The s-SDM showed high variation in predicted multi-species
habitat suitability across the Southern California Bight coastline

for the 21 focal species (Figure 2). Approximately 38.7%
(1132 km2) of the studied region included habitat that is
predicted to be suitable for many of the focal species. In general,
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TABLE 2 | Linear regression results comparing s-SDM score with observed bootstrap species richness.

Dataset Predictor Estimate SE 2.5% CI 97.5% CI AICc 1AICc w

Natural Reef Focal Intercept 7.10 0.79 5.55 8.64 1650.44 0 1

s-SDM Score 0.27 0.05 0.17 0.36

SD Relief 2.39 0.89 0.64 4.14

Depth Zone - Inner –4.09 0.59 –5.25 –2.93

Depth Zone - Middle –3.30 0.60 –4.49 –2.12

Depth Zone - Outer –2.10 0.61 –3.31 –0.90

Manmade Reef Focal Intercept 2.71 1.59 –0.83 6.26 49.07 0 1

Predicted Bootstrap Richness 0.52 0.18 0.13 0.92

All Reef Non-Focal Intercept –3.80 3.28 –10.25 2.64 2569.91 0 1

Predicted Bootstrap Richness 3.65 0.37 2.93 4.37

The s-SDM model used was based on 21 focal species. The linear model was calculated first for only the natural reef sites for just the 21 focal species (Natural Reef
Focal), and the linear model was then used to calculate predicted species richness values for already established manmade reef sites (Manmade Reef Focal). Predicted
and observed bootstrap species richness were compared with linear regression. The association between predicted and observed bootstrap species richness was also
evaluated for 204 additional non-focal fish, algae, and invertebrate species (All Reef Non-Focal). 1AICc is reported relative to the null model tested for each dataset.

average habitat suitability was lower inside bays and higher
along points and around islands. The model identified multiple
regions with high average predicted habitat suitability that do
not already contain reef habitat (Figure 2). After removing
cells with existing reef habitat, there remained approximately
33% (804 km2) of the remaining study region that included
habitat that is predicted to be suitable for many of the
focal species.

For the focal species on natural reefs, the model including
s-SDM scores and the two covariates, SD relief and depth
zone, better predicted observed bootstrap species richness
than the null model with only the two covariates (w = 1;
Table 2 and Figure 3). Observed bootstrap species richness
increased with increasing s-SDM scores (R2 = 0.22, slope = 0.27,
95% CI = 0.17–0.36). When this model was used to predict
species richness for the established manmade reefs, there
was high support for a relationship between observed and
predicted species richness (slope = 0.52, 95% CI = 0.13–
0.92, w = 1; Table 2 and Figure 4A). Similarly, predicted
species richness values from this linear model were positively
associated with observed bootstrap species richness when
considering 204 other non-focal fish, invertebrate, and algal
species that were surveyed on both natural and manmade
reefs (slope = 3.65, 95% CI = 2.93–4.37, w = 1; Table 2
and Figure 4B).

Quality of Existing Manmade Reefs
To assess the habitat suitability of previously established
manmade reefs, we extracted the s-SDM score for each
survey site and compared s-SDM scores among natural and
manmade reefs to one another and relative to a random
distribution. Manmade reefs (mean = 8.7) significantly differed
on average from natural reefs (mean = 14.2) in s-SDM
scores (t-value = –5.4, P-value = 1.8e–05; Figure 5A).
Manmade reefs had an average s-SDM score that was slightly
although significantly greater than randomly selected sites, both
when the entire study region was considered (Figure 5B)
and when only areas with no existing reef was considered
(P-value < 0.01) (Figure 5C).

FIGURE 3 | Linear relationship between predicted s-SDM score and observed
bootstrap species richness for the 21 focal species. The linear regression was
completed for the 21 focal species on all natural reef sites (circles) at four
depth zones: inner (∼5 m), middle (∼10 m), outer (∼15 m) and deep (∼25 m).
Established manmade reef sites (triangles) for reference. Colors indicate
standard deviation (SD) of relief at each reef site, from low (blue) to high (red)
fine scale habitat heterogeneity. 95% confidence intervals of the regression
lines are shown in gray.

DISCUSSION

Improving the success of habitat restoration projects is a
necessity as ecosystems worldwide continue to face increasing
anthropogenic pressures and habitat loss. This need is
especially great in marine ecosystems, due to increasing
coastal urbanization (Dafforn et al., 2015; Morris et al., 2018).
Species distribution modeling can be used as an important
tool in identifying the best places where habitat restoration is
likely to be successful by identifying suitable habitat (Pearce
and Lindenmayer, 1998). Here we apply this method to the
ecosystem level by calculating individual species distribution
models for 21 focal species from shallow rocky reefs and stack
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FIGURE 4 | Linear relationship between predicted and observed bootstrap
species richness for two independent datasets based on the best fit model for
natural reefs. Predicted versus observed species richness for (A) the 21 focal
species on established manmade reefs and (B) the 204 non-focal fish, algae,
and invertebrate species on all reef sites, including natural and manmade, at
four depth zones. Colors indicate mean standard deviation (SD) of relief at
each reef site, from low (blue) to high (red) relief. 95% confidence intervals of
the regression lines are shown in gray.

these SDMs to identify areas with suitable habitat for a majority
of the species. Our results illustrate a number of potential areas
within the Southern California Bight – an area with immense
human pressure due to proximity to major metropolitan areas –
where habitat is predicted to be suitable for the majority of our
focal species, including many areas that do not already contain
natural or manmade reefs (Figure 2 and Supplementary Figures

S1–S21). This approach allows us to identify sites for habitat
restoration using organism-based habitat considerations rather
than simply landscape-(or seascape-)based considerations,
which is crucial when restoring habitat for multiple species
(Miller and Hobbs, 2007).

Moreover, when the individual-SDMs were combined
together as the s-SDM, there was a positive linear relationship
between s-SDM scores and observed bootstrap species richness
on the natural reefs when considering only the 21 focal species
(Table 2 and Figure 3), and this relationship was validated by
two independent datasets. First, the predicted richness values
from this linear model were associated with observed bootstrap
species richness at manmade reefs when considering only the
21 focal species (Table 2 and Figure 4A). Second, the predicted
richness values from this linear model were also correlated
with increases in observed species richness when considering
all other 204 fish, invertebrate, and algae species surveyed on
Southern California shallow rocky reefs (Table 2 and Figure 4B).
Thus, by identifying crucial focal species and combining
distribution models for each of these species, it is possible to
identify areas that may support greater species richness. For
restoration projects in which species diversity or richness is a
primary goal (Wortley et al., 2013), this method may provide
an opportunity for managers to successfully select more-ideal
locations for restoration.

While species richness generally increases with increasing
s-SDM scores, there is a high degree of variability, particularly
for sites with the highest s-SDM scores. This pattern suggests
that additional factors influence suitability of a site beyond
just environmental suitability. While our approach identifies
environmental suitability and potential locations for habitat
restoration, suitability does not guarantee success on its own
(Higgs, 1997). Additional factors that need to be considered
when selecting sites, include: habitat design (Baine, 2001),
species relationships (e.g., Jude and Deboe, 1996), cultural
needs (Higgs, 1997), and public participation and socioeconomic
factors (Wortley et al., 2013). With Species Distribution Models,
species relationships are especially important to consider as
SDMs do not inherently account for ecological relationship such
as competition and predation (Freeman and Mason, 2015). Thus,
some variation could be explained by which species are present at
particular reefs.

Additionally, and possibly alternatively, the variation in
species richness of high quality sites may instead reflect habitat
degradation. For instance, highly suitable sites may be overfished
(Zellmer et al., 2018) or exposed to pollution (Schaffner et al.,
2015). In fact, some of the natural sites for which there is lower
than expected species richness despite high s-SDM scores include
some of the more degraded reef sites in our study (high s-SDM
score, low richness; Figures 3, 4B). Since many of the best
predicted s-SDM scores are on or near existing reefs, our results
suggest that there may be immense opportunity for restoring
natural reefs as opposed to simply building manmade structures
in areas where rocky reefs did not previously exist. In other
words, it is important to consider the difference between habitat
“restoration” or “rehabilitation” versus habitat “conversion”
(Erftemeijer and Lewis, 1999). Restoring previously existing reefs
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FIGURE 5 | Mean s-SDM scores of existing manmade reefs relative to natural reefs and compared to random. (A) Boxplot of differences in s-SDM scores for natural
(blue) and manmade (red) reef sites. Mean s-SDM score was calculated for the already existing solitary manmade reefs within the SCB (n = 21, blue line) and for
each of the natural reef sites (n = 250, red line). The means were compared to a permuted distribution of 21 randomly selected sites iterated 1000 times.
(B) Random sites chosen from anywhere in the SCB. (C) Random sites chosen from only areas with no existing reef.

may not only be more cost effective, but as our results suggest,
may also be more likely to succeed based on habitat suitability.

Further, the variability observed could also be explained by
the physical structure and design of reefs. Previous research
has shown that reef structure is an important component of
restoration success (Baine, 2001; Pondella et al., 2006). Consistent
with this previous research, our analyses suggest that even
when environmental conditions are suitable, reef structure may
influence species presence as predicted species richness was more
accurate for purposefully designed manmade reef structures
as opposed to unintended manmade reef structures. Thus,
once candidate sites are selected based on habitat suitability,
restoration should be done in conjunction with expert opinion
as to the specific design of manmade reefs.

Regardless of the specific causes of the variability, our model
provides an estimate of areas that are predicted to be suitable
for multiple species, suggesting that at least some of the focal
species could persist in these locations. Conservation managers
should consider the locations identified by this model as a set

of candidate locations from which they can then select sites
after considering these other factors. Thus, this approach adds
an additional tool to help managers consider holistic success of
habitat restoration. However, while the s-SDM identifies sites
where there is high habitat suitability across a majority of the focal
species, for some species, such as rare or endangered species (e.g.,
Abalone, Haliotis sp.), more directed conservation measures may
be necessary. For such species, the individual-SDMs can be used
to help in identifying diverse sites for ecosystem restoration.

Interestingly, the manmade reefs included in this study that
are already established in the SCB are in regions that are on
average not only less suitable than natural reefs, but are in
regions only slightly more suitable than sites selected at random
(Figure 5). For example, some manmade reefs are placed in
gently sloping, sandy-bottom regions. If these reefs had been
placed in areas with higher predicted habitat suitability, then it
is possible more species could be observed. While we do still
observe some species at these locations (Pondella et al., 2015a;
Zahn et al., 2016), the lack of habitat suitability suggests that

Frontiers in Marine Science | www.frontiersin.org 9 February 2019 | Volume 6 | Article 3

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00003 February 9, 2019 Time: 18:6 # 10

Zellmer et al. Species Distribution Modeling for Ecosystem Restoration

these manmade reefs may be hosting sink populations (van
Horne, 1983; Smallwood, 2001). Based on these results, there
is strong evidence that habitat restoration may have the most
potential when completed at sites with degraded reefs (e.g.,
inundated by landslides) as opposed to constructing reefs far
from existing reef structures. Not only are these more distant
sites potentially less suitable, but also have lower connectivity
with existing, productive reef habitat (Pondella et al., 2018). With
clear predictions for habitat suitability across multiple species,
managers can be best prepared to advocate for selection of
appropriate sites.

Future Directions
To ensure that habitat restoration is successful in these locations,
future studies should focus on continued monitoring and
follow up research. While habitat restoration has become an
essential tool in conservation biology, long-term assessments
of restoration success remain limited (Godefroid et al.,
2011; Wortley et al., 2013). Further, future research should
consider species specific differences in how they contribute to
community biodiversity and success. Finally, species distribution
modeling also offers an opportunity to assess how habitat
suitability might vary under future global environmental
change (Peterson et al., 2002). As global environmental changes
continue to occur, it is crucial to consider how those changes
influence the goals of habitat restoration (Higgs et al., 2014).
Future research should focus on assessing changes in habitat
restoration priorities based on potential changes in habitat
suitability across multiple species under numerous possible
climate scenarios.
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