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Editorial on the Research Topic

Phosphorus Along the Soil-Freshwater-Ocean Continuum

Phosphorus (P) is an essential element for all organisms. However, there is a P paradox, whereby
P concentrations considered deficient in some environments such as in agricultural soils are
considered excessive in freshwater, where they trigger eutrophication (e.g., Sims and Sharpley,
2005 and references therein; Elser and Bennet, 2011; Lougheed, 2011). Geographical imbalances
also occur, with excesses in Western Europe and North America and deficiencies in regions with
highly weathered soils, such as sub-Saharan Africa. There is a strong link between soil P stores
and P mobilization and transfer to receiving waters, termed the P transfer continuum (Haygarth
et al., 2005). Ensuring adequate P for crop production while minimizing water quality degradation
requires consideration of this continuum and an international, interdisciplinary approach. This
research topic brings together P studies in soil science, lakes, rivers, estuaries, and oceans, with 74
authors from 12 countries in Asia, Europe, and North America, and identifies key priorities for
future research.

In all ecosystems, P exists in many chemical forms. Inorganic P compounds include phosphate,
pyrophosphate, and polyphosphate, with organisms directly using phosphate (H2PO

−

4 orHPO2−
4 at

the pH range of most natural ecosystems). Organic P compounds contain a link to carbon (C), and
include orthophosphate monoesters [e.g., glucose 6-phosphate andmyo-inositol hexakisphosphate
(myo-IHP or phytate)]; orthophosphate diesters (e.g., nucleic acids, phospholipids); phosphonates
(e.g., aminoethyl phosphonate), and biological polyphosphates (e.g., ATP). In all environments,
P cycles geochemically and biologically. Geochemical processes include adsorption/desorption of
organic and inorganic P compounds with mineral particles, and precipitation with cations in
solution. In biological cycling, phosphate is taken up by organisms and converted to organic P
forms such as nucleic acids or is stored in cells as phytate or polyphosphate. This P can be released
by secretion or after cell death, and converted back to phosphate by mineralization, primarily
an enzymatic process involving P-specific enzymes (phosphatases). For more information on P
cycling, a number of review papers are available (e.g., Condron et al., 2005; Pierzynski et al., 2005;
Paytan and McLaughlin, 2007; Baldwin, 2013; Karl, 2014; Orihel et al., 2017).

There are similarities and differences in P cycling in terrestrial and aquatic ecosystems.
Terrestrial organisms obtain phosphate from the pool that is dissolved in the soil
solution, in the space between the solid components of soil (minerals and organic matter).
Here, P availability is limited by moisture. Easily-obtained (labile) phosphate is taken
up from the soil solution, then replenished by desorption, dissolution, or mineralization.
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Because terrestrial plants are fixed in place, strategies have
evolved to improve their P acquisition. This includes changes
in rooting structure or associations with rhizosphere microbes
and symbionts, which can enhance access to phosphate, or
production of phosphatases or organic acids to desorb P
compounds from mineral surfaces (Richardson et al., 2011).
Aquatic environments include sediments, benthic biofilms,
and the water column. In sediments, organic and inorganic
P compounds will be associated with mineral particles, algal
and bacterial biomass (particularly at the sediment-water
interface) and organic matter, or occur in aqueous form
in pore water. Phosphate and other P forms can exchange
with the water column through adsorption/desorption
and precipitation/dissolution, and through uptake and
remineralization by organisms in the sediment and in the
water column. Within the water column, organic and inorganic
P compounds can be dissolved, associated with colloids, or
associated with larger particulates including plankton (e.g.,
Paytan and McLaughlin, 2007; Orihel et al., 2017; Taylor and
Lean, 2018).

Although it can be the most limiting nutrient, or second
to nitrogen (N) in many environments, P cycling in terrestrial
and aquatic ecosystems in still poorly understood relative to C
or N, because P concentrations are orders of magnitude lower
than those of C and N, and due to methodological limitations.
Unlike C and N, P has no significant natural gaseous forms,
and only one stable isotope (31P), which can hamper tracing P
sources in the environment, but it does have two radioisotopes
(32P and 33P) that occur naturally or can be added as tracers.
Total P is determined by digestion of solids, or by inductively
coupled argon plasma optical emission spectroscopy (ICP-OES)
of liquids, and phosphate concentrations in liquids or extracted
samples are analyzed by colorimetric techniques such as the
molybdate blue method (Murphy and Riley, 1962). However,
characterization of specific P compounds requires advanced
techniques such as 31P-nuclear magnetic resonance (P-NMR)
spectroscopy or P-X-ray Absorption Near Edge Structure (P-
XANES) spectroscopy that are not readily available to all
researchers. Information about biological P cycling is also
limited, particularly the roles of specific organisms. The links
between the P cycle and those of other elements, including C and
N, are also poorly understood.

The papers assembled here provide important new
information to address knowledge gaps, and cover all aspects
of the soil-freshwater-ocean continuum. Liu et al. examined
P cycling in agricultural lands in Canada. Bol et al. and Reid
et al. addressed P transfer from agricultural land to water,

with Reid et al. assessing the components of P loss and
assessment tools, and Bol et al. discussing the need for more
integrated research efforts into the processes and mechanisms
controlling P loss. In aquatic environments, P cycling in lakes
was investigated by Thompson and Cotner; Anderson; and
Depew et al; in estuaries by Watson et al.; in rivers by Felgentreu
et al. and Gomes et al. and in oceans by Björkman et al.; Diaz
et al. and Djaoudi et al. Across disciplines, several themes
emerged. With respect to methods, colorimetric techniques were
frequently used. However, Felgentreu et al. assessed filtration
and colorimetric methods in river samples to improve routine
monitoring programs, while Djaoudi et al. used techniques
to improve the sensitivity of the Murphy and Riley (1962)
colorimetric technique to determine nanomolar concentrations
of dissolved inorganic P in the Mediterranean Sea. Liu et al.
and Watson et al. both used P-NMR to characterize organic
P forms, in soils and estuary sediments respectively, and Liu
et al. used P-XANES to characterize soil inorganic P species.
Oxygen isotope ratios of phosphate were used by Depew
et al. to identify sources of P to Lake Erie and pathways
of cycling.

Biological P cycling and P bioavailability in different
ecosystems was a common theme. Liu et al. identified microbial
communities in various agricultural soils, showing that
soil disturbance controlled P forms and cycling in these
ecosystems. Gomes et al. demonstrated that Amazon and
Changjiang river plume phytoplankton communities were
shaped by river N:P ratios. Björkman et al. assessed spatial
variability in the dynamics of inorganic and organic P
compounds in the North Pacific Tropical Gyre with radio
tracer techniques, while Diaz et al. estimated the lability of
model P compounds by diatom cultures and used proteomics
to examine phosphatase diversity. Anderson measured alkaline
phosphomonoesterase activities in freshwater microbial
communities, while Thompson and Cotner investigated
the bioavailability of dissolved organic P in lakes in
Minnesota and South Dakota; both studies linked P and C
biogeochemical cycles.

Thus, the articles in this research topic provide current and
interdisciplinary information about P forms and their cycling
along the soil-freshwater-ocean continuum, which is essential for
environmentally sustainable P use.
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