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In 1999, the consortium on Estimating the Circulation and Climate of the Ocean

(ECCO) set out to synthesize the hydrographic data collected by the World Ocean

Circulation Experiment (WOCE) and the satellite sea surface height measurements into

a complete and coherent description of the ocean, afforded by an ocean general

circulation model. Twenty years later, the versatility of ECCO’s estimation framework

enables the production of global and regional ocean and sea-ice state estimates, that

incorporate not only the initial suite of data and its successors, but nearly all data

streams available today. New observations include measurements from Argo floats,

marine mammal-based hydrography, satellite retrievals of ocean bottom pressure and

sea surface salinity, as well as ice-tethered profiled data in polar regions. The framework

also produces improved estimates of uncertain inputs, including initial conditions, surface

atmospheric state variables, and mixing parameters. The freely available state estimates

and related efforts are property-conserving, allowing closed budget calculations that are

a requisite to detect, quantify, and understand the evolution of climate-relevant signals,

as mandated by the Coupled Model Intercomparison Project Phase 6 (CMIP6) protocol.

The solutions can be reproduced by users through provision of the underlying modeling

and assimilation machinery. Regional efforts have spun off that offer increased spatial

resolution to better resolve relevant processes. Emerging foci of ECCO are on a global

sea level changes, in particular contributions from polar ice sheets, and the increased use

of biogeochemical and ecosystem data to constrain global cycles of carbon, nitrogen and
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oxygen. Challenges in the coming decade include provision of uncertainties, informing

observing system design, globally increased resolution, and moving toward a coupled

Earth system estimation with consistent momentum, heat and freshwater fluxes between

the ocean, atmosphere, cryosphere and land.

Keywords: ECCO, global ocean inverse modeling, optimal state and parameter estimation, adjoint method, ocean

observations, coupled Earth system data assimilation, ocean reanalysis, global ocean circulation

1. BACKGROUND

The central goal of the ECCO consortium is the production of
global ocean state and parameter estimates in support of climate
research. ECCO requires dynamical and kinematical consistency
of its products, in particular, conservation of mass, heat, and
salt throughout the estimation period. Avoiding shortcomings
identified in atmospheric reanalysis (e.g., Bengtsson et al., 2004,
2007) and making optimal use of the sparse observational
coverage calls for the use of smoothing methods from optimal
estimation theory (Wunsch and Heimbach, 2007, 2013; Stammer
et al., 2016). The ECCO method exploits information contained
in observations both forward and backward in time, while
avoiding unphysical perturbations of the time-evolving state that
is being constrained. It is the only method that has been found
to be practical and that avoids the shortcomings of reanalyses
and combines the very diverse ocean data sets that we now have
and will continue to collect. The underlying model serves as a
“dynamical interpolator” between and beyond the often sparse
and heterogeneously sampled observations (in space and time)
of various types.

Among ECCO’s early accomplishments was the production of
the first generation of near-global ocean state estimates, covering
the years 1992–1997 (Stammer et al., 2002, 2004; Stammer, 2003).
The latest ECCO solution can be used to produce climatologies,
based on most data available from the global observing system
since the early 1990s, not only for temperature and salinity,
but which also provides consistent three-dimensional flow fields
and connected dynamical variables (e.g., sea level and bottom
pressure), consistent surface forcing fields, and property budgets
to explore the underlying dynamics (e.g., Ekman and Sverdrup
transports, mixing, and vorticity fluxes) (Fukumori et al., 2018).
Self-consistency among the range of state variables is invaluable
for depictions of the global ocean, e.g., in terms of its overturning
circulation (Cessi, 2019).

2. THE PRESENT

2.1. The ECCO Central Production
The ECCO estimation framework in production today has
undergone a number of significant improvements and updates.
Extending over the period 1992–2015 (an update to 2017 is
currently under way), the latest product, ECCO version 4 release
3 (ECCOv4, Forget et al., 2015a; Fukumori et al., 2017), has
increased horizontal and vertical resolution and covers the entire
globe. The estimation framework has been extended to account
for uncertain model parameters that are now routinely part
of the inversion (Forget et al., 2015b). The production of the

next-generation ECCO version 5 at higher spatial resolution is
currently ongoing.

Observational data streams have vastly expanded (Fukumori
et al., 2017), and the ways in which these are ingested into
the estimation framework have been refined. The space-based
backbone consists of daily along-track sea level anomalies from
satellite altimetry (Forget and Ponte, 2015) relative to a mean
dynamic topography (Andersen et al., 2016), monthly ocean
bottom pressure anomalies from GRACE mascon solutions
(Watkins et al., 2015), monthly sea surface temperature fields
from passive microwave radiometry (Reynolds et al., 2002),
monthly sea surface salinity fields from Aquarius (Vinogradova
et al., 2014), and daily sea ice concentration fields (Peng et al.,
2013; Meier et al., 2017). Major in-situ observing systems used in
ECCO include the global array of Argo floats (Roemmich et al.,
2009; Riser et al., 2016), ship-based CTD and XBT hydrographic
profiles and gridded monthly climatological temperature and
salinity fields from the World Ocean Atlas 2009 (WOA09,
Antonov et al., 2010; Locarnini et al., 2010), tagged marine
mammals (Roquet et al., 2013; Treasure et al., 2017), and
ice-tethered profilers (ITPs) in the Arctic (Krishfield et al.,
2008). The versatility of the estimation framework enables the
inclusion of novel data sets, such as satellite and in-situ inferred
electric conductivity as a measure of ocean heat content changes
(Trossman and Tyler, 2019). Ocean mixing parameters have
been inferred from a subset of Argo, ITP, and hydrographic
observations (Cole et al., 2015; Whalen et al., 2015), and
are starting to be included in the observational data streams
[Trossman et al., in revision].

2.2. Selected Science Applications
Numerous scientific studies have been conducted with various
ECCO solutions, leading to new insights into the ocean’s role in
climate. Partial summaries are in Wunsch et al. (2009), Wunsch
and Heimbach (2013), and Fukumori et al. (2018). Here, we
highlight two research areas and related studies that have been
afforded by the latest ECCO solution. This review only allows for
a compressed discussion.

2.2.1. Ocean Heat Content Changes During the

Recent Surface Warming Slowdown (SWS) Period
Much attention has been given, both in the scientific literature
and in public media to the apparent warming slowdown in global
mean surface temperature (GMST) over the first decade of the
twenty-first century compared to the 1990s (e.g., Medhaug et al.,
2017). The focus on surface temperatures distracted from the
fact that a volumetric index such as vertical integrals of heat
content changes is a physically more complete climate indicator
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than (surface) area-based indices. In this context, Nieves et al.
(2015) identified issues with several ocean reanalysis products
in providing reliable vertical profiles of temperature changes.
Figure 1 shows decadal trends in global mean ocean temperature
as a function of depth over the periods 1993–2001, 2002–2010,
and the difference between the two, from ECCOv4 and two ocean
hydrographies. Decadal difference profiles are not available for
Argo, which only reached its global coverage in about 2006.
The figure is adapted from Nieves et al. (2015), which did
not provide any uncertainty estimates for the hydrographies.
Compared to the ocean reanalysis trends analyzed by Nieves
et al. (2015), which exhibits large deviations from hydrography,
ECCOv4 shows a more credible fit to hydrography trends
over much of the depth range 0–1,500 m. ECCO’s depicted
uncertainty (gray shading) represents the formal standard error
computed from a least squares linear trend fit to the monthly
ECCO values and scaled to account for the effective degrees of
freedom (i.e., residual autocorrelation) assuming the residuals
of the fit behave as a first-order autoregressive (AR1) process.
Note further that the two hydrographics are markedly different
in the upper 800 m. ECCOv4 also reproduces the apparent
slowdown in surface temperature trends as compared to an
optimally interpolated blend of in-situ and satellite SST data.
The analysis is set against the larger backdrop of full-depth
ocean heat content changes over the last few decades. The latest

ECCOv4 estimate produces a global mean heating rate of 0.48
± 0.16 W m−2, which includes a 0.095 W m−2 geothermal
flux (Wunsch, 2018). All uncertainties quoted are likely at lower
bounds as they do not account for systematic errors. A full-
depth analysis of vertical heat transport by Liang et al. (2017)
shows the global mean heat flux imbalances to be small residuals
of regionally large anomalies that underly contributions from
multiple centers of action, that cooling layers at depths may result
from adjustment to surface forcing centuries ago (Gebbie and
Huybers, 2019), and the need for accurate budget closure. The
use of Argo data since roughly 2006 and satellite altimetric data
from 1993 onward in combination with dynamical consistency
provides powerful constraints on the ECCO solution over the
estimation period.

2.2.2. Origins of North Atlantic Water Mass

Volumetric Variability
Quantifying Atlantic water mass variability in terms of its
volumetric composition over time provides a powerful diagnostic
for determining the relative role of diabatic (locally forced)
vs. adiabatic (induced via advection) processes (Forget et al.,
2011; Speer and Forget, 2013). An approach is to consider
the volume of water contained within temperature classes,
following Walin (1982). Such a study has been conducted
by Evans et al. (2017) over the period 2004–2011, which

FIGURE 1 | Decadal trends in global mean potential temperature as function of depth over the periods 1993–2001 (A), 2002–2010 (B), and their difference

(C), inferred from two hydrographies, three ocean reanalysis and the ECCOv4 state estimate. Black: ECCOv4 (gray shading indicates formal standard error, see main

text), dark blue: WOA (Levitus et al., 2012); red: Ishii (Ishii et al., 2005); purple: GODAS (Huang et al., 2010); green: SODA (Carton and Santorelli, 2008); light blue:

ORAS4 (Balmaseda et al., 2012); yellow: SST (Reynolds et al., 2002). Adapted from National Academies of Sciences, Engineering, and Medicine (2016)

(their Figures 4, 23).
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includes the marked reduction in the Atlantic Meridional
Overturning Circulation (AMOC) inferred at 26 N from the
RAPID mooring array (Roberts et al., 2013). Water mass
volume anomalies in temperature classes, V(θ , t), between 26
and 45 N (Figure 2, top panels) were derived from a gridded
Argo product (Roemmich-Gilson Argo Climatology, RGAC;
Roemmich and Gilson, 2009) and ECCOv4. Both products reflect
seasonal exchange of volume between the warmer surface waters
(θ >18◦C) and mode/central waters (θ between 10◦C and 18◦C),
as well as interannual variability in volumetric contributions of
subtropical mode water (θ ∼18◦C), among others. Determining
water mass transformation rates between temperature classes,
dV/dt, proves difficult for RGAC (Figure 2c), conceivably due
to aliasing when sampling the mesoscale eddy field, but is

feasible for ECCOv4 (Figure 2d). The analysis reveals negative
volume anomalies during the winters of 2009/10 and 2010/11.
For temperature classes larger than 15◦C these anomalies are
consistent with diabatic changes inferred from air-sea heat
flux diagnostics (Figure 2e). However, for temperatures below
15◦C, the adiabatic component as diagnosed from ECCOv4
(Figure 2f) explains the bulk of the volumetric census anomalies.
The study provides compelling evidence that wind-driven
transport anomalies led to a southward shift in the mean
structure of the interior subtropical gyre circulation, weakening
northward volume transport at 26 N. Evidence for the role
of such advective signals has previously been gathered across
an isolated line of latitude from the RAPID mooring array at
26 N (Cunningham et al., 2013).

FIGURE 2 | Top panels: Volume anomaly in temperature classes, V (θ , t), with respect to the time mean in the North Atlantic between 26 and 45 N from (a) RGAC and

(b) ECCOv4. Lower panels: Total monthly dV/dt between 26 and 45 N from (c) RGAC and (d) ECCOv4. Also shown in (e) is the diabatic contribution to (d) inferred

from monthly diathermal transformation due to air-sea heat fluxes, and (f) the adiabatic transformation in (d) implied by the volume change per temperature class due

transport divergence between 26 and 45 N. For details, see Evans et al. (2017). ©American Meteorological Society. Used with permission.
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2.3. Regional and Extended-Period Efforts
The tremendous computational cost involved in conducting
the nonlinear least-squares optimization problem as well as
the occurrence of strong nonlinearities have so far prevented
the production of global eddy-resolving decadal state estimates.
Instead, regional eddy-permitting estimates of limited duration
have spun-off. These include the Southern Ocean State
Estimate (SOSE, Mazloff et al., 2010), the Arctic Subpolar
gyre sTate Estimate (ASTE, Nguyen et al., 2017), as well
as estimates of the California Current System (Verdy et al.,
2014), the tropical Pacific (Hoteit et al., 2010; Verdy et al.,
2017), and the Gulf of Mexico (Gopalakrishnan et al., 2013).
The versatility of the underlying ECCO infrastructure has
facilitated these spin-offs. In turn, experience gained in the
regional efforts has benefited the global estimation. Other non-
ECCO related regional estimation efforts are summarized by
Edwards et al. (2015).

An emerging emphasis has been on coupled ocean-sea ice
estimation to account for Arctic and Southern Ocean sea ice.
Dedicated efforts to develop a dynamic/thermodynamic sea ice
model that fits within the estimation framework (Menemenlis
et al., 2005; Heimbach et al., 2010; Losch et al., 2010; Fenty
and Heimbach, 2013) led to an initial attempt at the global-
scale coupled problem (Fenty et al., 2015). A major focus of
ASTE is the finding of data used in Arctic research that are not
necessarily part of global data repositories and assessing their use
in state estimation (Nguyen et al., 2017). Emerging challenges
are the use of satellite observations of sea ice (and snow)
thickness, as well as remotely sensed drift data to constrain sea
ice velocities.

Restricting estimates to the period with available satellite
altimetric data limits the applicability of ECCO products for
studies of decadal variability. This issue led to a dedicated
effort by the German ECCO (GECCO) partners to extend
the estimation period back to 1952 (Köhl and Stammer,
2008). Now in its second generation, GECCO2 has extended
the period to cover the entire span of the available NCEP
reanalysis, but at the cost of sparse observational coverage
to constrain the solution prior to the 1990s. On these
long timescales, there are issues with convergence of the
optimization, which requires splitting the period into a number
of smaller assimilation windows (Köhl, 2014). The challenge of
quantifying uncertainties in the estimates that go along with
changes in the observing system is exacerbated in the long
state estimates.

2.4. Estimation Infrastructure, Data Access
and Analysis Tools
A key enabling technology of ECCO is the ability to generate
an adjoint version of the Massachusetts Institute of Technology
general circulation model (MITgcm) for various configurations
by means of algorithmic differentiation (Marotzke et al.,
1999; Heimbach et al., 2005). Adjoint code generation via the
open-source tool OpenAD (Utke et al., 2008) is being pursued.
All ECCO state estimates are free-running solutions to the
MITgcm and, as such, can be independently reproduced by users

interested in performing new experiments (e.g., ocean response
to idealized atmospheric wind stress forcing), determining the
impact of new data constraints, and generating problem-specific
model output (e.g., tracer dispersion). Extending the existing
set of model-data misfit constraints is facilitated by the “generic
cost” code framework introduced in ECCO v4. Instructions for
re-running the model and complete model configurations
(including parameters, initial conditions, atmospheric
boundary conditions) are provided alongside the solutions
(see Table 1).

ECCO products can be accessed via the ECCO webpage
(ecco.jpl.nasa.gov). We are currently working to host the
standard output fields on NASA’s Physical Oceanography
Distributed Data Center (PO.DAAC, podaac.jpl.nasa.gov), which
will allow users to access the state estimate using several
different technologies, including a new secure FTP-like interface
(PO.DAAC Drive), Open-source Project for a Network Data
Access Protocol (OPeNDAP), Thematic Realtime Environmental
Distributed Data Services (THREDDS), and so-called web
services enabling access via API protocols. A list of links
to data products, model configurations, analysis tools and
documentation is summarized in Table 1 in the Data Availability
Statement below.

3. THE FUTURE

With the increasing accuracy and skill of the ECCO state
estimates, new scientific frontiers come into view. Most of
these are related to capturing coupled variability, representing
secular changes, and closing property budgets across different

TABLE 1 | Links to ECCO products, configurations, and documentation.

ECCO Products

Latest product https://ecco.jpl.nasa.gov/products/latest/

(ECCO v4,r3)

All ECCO https://ecco.jpl.nasa.gov/products/all/

products

ECCOv4 release 3 documentation

User guide https://ecco.jpl.nasa.gov/products/latest/user-guide/

(website)

Evaluating tracer budgets http://hdl.handle.net/1721.1/111094

Reproduction https://eccov4.readthedocs.io/en/latest/

(on premise or AWS cloud)

Data http://hdl.handle.net/1721.1/120472

constraints

ECCOv4 release 3 analysis tools

gcmfaces https://gcmfaces.readthedocs.io/en/latest/

(Matlab)

ecco-v4-py http://ecco-v4-python-tutorial.readthedocs.io/

(Python)

xmitgcm https://xmitgcm.readthedocs.io/en/latest/

(Python)

MITgcm https://mitgcm.readthedocs.io/en/latest/

(source code)
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components of the Earth system (Buizza et al., 2018). In the
following, we sketch several coupled problems that appear on
the horizon.

3.1. Increased Horizontal Resolution
An increase in horizontal resolution in future ECCO products
is targeted to begin resolving the geostrophic eddy field and its
impact on the mean circulation. A drawback is the increased
degree of nonlinearity of the underlying estimation problem,
and the question over which time period the linearization
was implied by the adjoint model remains valid. Possible
limitations to long assimilation windows have been raised by
Lea et al. (2000) and Köhl and Willebrand (2002), among
others. A number of computational and practical solutions
in the context of estimating statistical properties rather than
nonlinear features (“eddy-fitting”) and stabilizing the adjoint to
improve controllability at high resolution have been proposed,
e.g., by Hoteit et al. (2005), Abarbanel et al. (2010), Wang et al.
(2014), and Gebbie and Hsieh (2017). Given the desire within
ECCO for maintaining long assimilation windows, i.e. dynamical
consistency, these methods are actively being pursued.

3.2. Coupled Ocean-Atmosphere
Estimation
A natural extension of ECCO consists in the coupled ocean-
atmosphere estimation problem, an avenue pursued by many
reanalysis groups today (see Penny et al. [this issue] for a detailed
review). Reasons include (i) the ability to close property budgets
across the coupled system, (ii) to enable dynamical feedbacks,
(iii) to obtain adjusted air-sea fluxes that are consistent with
both ocean and atmosphere dynamics, (iv) to infer a coupled
state that is balanced with respect to the underlying modeling
framework and thus potentially more suitable for initializing
extended predictions A major challenge consists in the disparity
between oceanic and atmospheric time scales, the time window
of validity of the model linearization, which in the atmosphere
amounts to synoptic time scales (and in the ocean to resolved
eddy turnover time scales), and implications for adjoint model
stability for long assimilation windows.

Initial efforts at extending the ECCO capabilities to a
fully coupled Earth system model are being conducted using
intermediate complexity atmosphere/land models, such as the
PlaSim model (Fraedrich et al., 2005; Blessing et al., 2014).
This coupled model, called CEN Adjoint Model (CENAM),
was put together such that an algorithmic differentiation
tool can be used to construct its adjoint for state and
parameter estimation purposes. Stammer et al. (2018) present
a pilot study for computing adjoint sensitivities of the
coupled climate system. To overcome strong nonlinearities,
synchronization with observations approaches from dynamical
systems theory are being explored to stabilize the adjoint model
(Abarbanel et al., 2010; Lyu et al., 2018).

Complementary efforts to understand sensitivities of the
ocean to the atmospheric state from a high-end atmospheric
model are being conducted in preparation for coupling
(Strobach et al., 2018). Other avenues using weak or hybrid

coupled assimilation as well as approximate adjoints are also
being pursued.

3.3. Coupled Ocean-Ice Sheet Estimation
There is mounting evidence that the increased mass loss from
the polar ice sheets, Greenland (WCRP Global Sea Level Budget
Group, 2018) and Antarctica (The IMBIE team, 2018), observed
over the last two decades is linked to ocean circulation changes
that have brought about warmer waters to the grounding zones
of marine-terminating glaciers and ice shelves. Concerns over
the implications of rising sea levels call for the joint treatment
of the coupled ocean-ice sheet system. Substantial progress is
being made, both with asynchronous coupling between the
MITgcm and the Ice Sheet System Model (ISSM, Seroussi
et al., 2017) as well as with synchronous, property-conserving
coupling between the MITgcm’s ocean and ice stream/shelf
model (Goldberg et al., 2018; Jordan et al., 2018). The availability
of adjoint models of all of these components, along with at least
annually resolved satellite observations at Antarctica’s marine
margins, offer the prospect of developing a tightly coupled,
skillful estimation system.

3.4. Coupled Ocean-Biogeochemistry and
Ecology Estimation
The advent of profiling floats equipped with biogeochemical
(BGC) sensors presents a revolution in data density for
constraining BGC and ecosystem models. The software exists
to assimilate these measurements along with remote sensing of
ocean color into models (e.g., Gregg et al., 2009; Song et al., 2016;
Verdy and Mazloff, 2017). BGC ocean property observations
constrain many aspects of the Earth system, such that coupling
not only informs the carbon system and ocean health, but also
improves many other components of the Earth system models.
Another thrust is the development of the ECCO-Darwin project,
which combines physical and biological observations with the
coupled framework of the eddy-permitting ECCO and Darwin
ecosystem models (Follows and Dutkiewicz, 2011), but with
significant remaining obstacles (Dutkiewicz et al., 2018).

3.5. Uncertainty Quantification (UQ) and
Optimal Observing Network Design
Although formally an integral part of state and parameter
estimation, deriving formal uncertainties accompanying
the optimal estimates adds another level of computational
complexity (National Academies of Sciences, Engineering, and
Medicine, 2012). This has so far prevented most ocean reanalysis
(or estimation) projects from dealing comprehensively with UQ.
In the context of derivative-based estimation, identification of
key metrics (or quantities) of interest enables the development
of a formal chain that propagates the uncertainties from
observations and uncertain parameters (priors) through the
inference (i.e., posterior uncertainties at the optimal estimate) to
the derived metrics of interest (Kalmikov and Heimbach, 2014,
2018). This Hessian-based framework lends itself to conducting
optimal observing system design studies (see Fujii et al., under
review) that provide valuable information on the optimal
placement of available observational assets to maximize their
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utility in constraining key oceanographic quantities of interest
(Köhl and Stammer, 2004).

3.6. Synergistic Use of Products and Model
While the state estimates are the central product of ECCO
estimation, the virtue of their physical consistency is best
realized by their analysis in conjunction with the underlying
ocean general circulation model. The state estimates provide
descriptions of the ocean, whereas the model affords its
explanation; e.g., why is the ocean state what it is and why does
it change as it does? As experience is gained, application of state
estimation is expanding from drawing inferences from sampling
the estimates akin to observations to quantitatively analyzing
processes by utilizing the complete physics embodied in the
model. Examples of such include analyses of property budgets
that are closed without unresolved components (e.g., Buckley
et al., 2015; Piecuch et al., 2017; Ponte and Piecuch, 2018), tracing
origins and fate of ocean water masses (e.g., Fukumori et al.,
2004; Gao et al., 2011; Qu et al., 2013) and quantifying causal
mechanisms controlling the ocean (e.g., Fukumori et al., 2015;
Pillar et al., 2016, 2018; Jones et al., 2018; Smith and Heimbach,
2019). The model’s adjoint offers a unique tool in such efforts by
providing an efficient means to evaluate physical dependencies
among different quantities of interest. While the fidelity of state
estimation will continue to evolve, existing systems provide a
means to understanding and explaining what they do already
resolve of the ocean. The full exploitation of state estimation
requires a holistic approach and is ripe for innovation.

4. CONCLUDING REMARKS

The past two decades have seen substantial progress in the
development and production of rigorous global ocean state
and parameter estimates in support of climate research. That
development has relied in part on the availability of continuous
climate-quality records of quasi-global coverage, beginning
with satellite altimetry (since 1992), satellite gravimetry (since
2003), and hydrographic profiles from the Argo float program
(globally since ca. 2006). Sustaining such observing systems
over long periods of time to build a climate record is a key
imperative of ocean and climatemonitoring (National Academies
of Sciences, Engineering, and Medicine, 2017). The underlying
computational estimation approaches used in the model-data
synthesis serve several purposes: (i) they extract optimal
information from the sparse and heterogeneous observational
streams that constitute the Global Ocean Observing System
(GOOS), (ii) they provide a quantitative framework for
hypothesis testing andmodel parameter calibration, and (iii) they

enable a quantitative understanding of the underlying dynamical
and physical processes that have been learned jointly from
observations and models. Much of what these approaches offer,
for rigorous climate model calibration and initialization, remains
under-explored. Realizing their full potential faces substantial
practical hurdles but is indispensable for tackling important
issues in ocean climate science. Increasing horizontal resolution
and moving toward a comprehensive coupled Earth system
estimation framework are major thrusts for the decade ahead.
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