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The lesser sandeel, Ammodytes marinus, is a key forage fish species in the North Sea.

Mean lengths and abundances of sandeels have declined steeply since the 1990’s

and these are associated with declining breeding success of various seabird species

on the east coast of Scotland, especially kittiwakes. The declining lengths have led

to a mismatch between the peak in food demand arising from chick rearing, and the

appearance of appropriately sized young sandeels in the foraging areas of the birds.

A 10-year time series of sandeel larval samples between 2000 and 2009 offer a rare

opportunity to analyze trends in spawning and hatch dates and determine whether they

contributed to changes in mean lengths. By analyzing the abundance, length, and age

distributions of sandeel larvae we were able to determine the temporal distribution of

hatching rates each year, and back-track to the likely spawning dates of the sandeels.

Estimated spawning dates showed no evidence of correlation with environmental cues

such as tidal or lunar phases. However, hatch end dates varied by 20 days over the 10-

year period and were correlated with the date of the seasonal minimum of sea bottom

temperature. We show a significant decline between growth rate and 0-group length

between 2000 and 2009, and suggest that changes in food quality and availability, rather

than shifts in hatch dates, are likely to be responsible for current declines in the availability

of sandeels to seabirds.
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INTRODUCTION

Ongoing climate change is causing significant changes in the phenology of marine organisms
(Edwards and Richardson, 2004; Thackeray et al., 2010). These changes have a number of effects at
the level of interactions between species, with mismatches between the timing of life cycle events
being suggested as a major driver of recruitment in some species (Beaugrand et al., 2003; Platt et al.,
2003). Significant oceanic warming is likely unavoidable this century (Intergovernmental Panel on
Climate Change (IPCC) WGI, 2007). Therefore, understanding the environmental drivers of the
timing of life cycle events is a key challenge of current marine biology and ecology. Phenological
changes in prey that trigger changes in predator abundance are referred to as bottom-up trophic
cascades (Carpenter et al., 1985; Pace et al., 1999; Polis et al., 2000; Heath et al., 2014). In the North
Sea, the connection between seabirds and sandeels provides an illustrative example of a trophic
cascade. Here a reduction in sandeel quality and availability has likely contributed to the decline in
seabird breeding numbers (MacDonald et al., 2015).
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Sandeels are small lipid rich fish that account for
approximately 25% of North Sea fish biomass (Christensen
et al., 2013). A. marinus, hereafter sandeels, is the most abundant
sandeel, usually comprising more than 90% of the sandeel fishery
catch (Macer, 1966; Goodlad and Napier, 1997). Off the Scottish
east coast, 0-group sandeels play a key role in the diet of the
chicks of several seabird species during the breeding season
(Wanless et al., 1998, 2004; Lewis et al., 2001; Lahoz-Monfort
et al., 2011). In some years, several seabird species feed their
chicks a diet comprised almost exclusively of 0-group sandeels
(Lewis et al., 2001). Seabirds are influenced by a number of
factors, including total abundance and timing of seasonal
abundance peaks in 0-group sandeels (Wright, 1996; Frederiksen
et al., 2006, 2007). In addition, seabirds are sensitive to 0-group
energy value (Wanless et al., 2004; Wilson et al., 2004; Burthe
et al., 2012). This energy value is mostly determined by sandeel
length, which is why poor breeding success has often occurred
in years when length is smaller than average (Wright, 1996;
Lewis et al., 2001). Hence, it is a concern that 0-group length has
been declining for the past few decades off the Firth of Forth
(Wanless et al., 2004; Frederiksen et al., 2011).

Several mechanisms could drive a long-term decline in 0-
group length. Changes in larval mortality with respect to hatch
date could explain this decline if mortality of early hatching
larvae gradually increased. Other mechanisms that could drive
this decline are changes in spawning and hatching dates.
Additionally, a decline in length could arise from decreasing
growth rate of sandeels between hatching and sampling as
0-group, hereafter referred to as juvenile growth rate. Only
Frederiksen et al. (2011) have attempted to address which
mechanisms have caused this decline in 0-group size. This study
used data on sandeels caught by Atlantic puffins Fratercula
arctica andContinuous Plankton Recorder (CPR) survey samples
to reconstruct changes in hatch date and juvenile growth rates
between 1973 and 2006 across the northwestern North Sea.
It was concluded that the principal driver of a reduction
in 0-group size between 1973 and 1995 was later hatching.
This would result in sandeels being younger, and therefore
smaller during seabird breeding season. Between 1996 and
2006 hatch dates were estimated to become earlier which
would lead to increases in length. However, length continued
to decrease, so declining growth rate must have been the
driver. The difficulty in using CPR data to estimate sandeel
hatch dates is that catches by the CPR sampler are low
and are conducted at 1-month nominal intervals. To correct
for this, catch data has to be aggregated over a large area.
However, this is problematic if there is large spatio-temporal
variation in hatching which is the case in sandeels (Lynam
et al., 2013). If large spatial variation in hatch timing exists,
then aggregating CPR data over a large area to correct for
small catches of sandeel larvae might result in a skewed
estimation of hatch date. In this case, it is wise to derive
hatch dates from a single location, so long as there is high
temporal resolution.

The mechanisms underpinning spawning and hatching are
poorly understood. This is largely due to a lack of long-
term data, which makes it difficult to analyse correlations

with environmental variables such as temperature. Spawning
has been recorded directly in December and January (Macer,
1966; Reay, 1970; Gauld and Hutcheon, 1990; Bergstad et al.,
2001). Temperature can be a major driver of spawning time
(Carscadden et al., 1997) or not at all (Gordoa and Carreras,
2014). The little we do know about spawning mechanisms
is gathered from the pacific sandeel (A. hexapterus). This
species occasionally spawns en masse during the high tide
period (Pentilla, 1995).

Hatching in A. marinus occurs well in advance of the spring
bloom (Coombs, 1980; Wright and Bailey, 1996). There are two
main drivers of hatch date—a temperature-dependent incubation
period and spawning date (Winslade, 1971). One of the few
studies on hatch date variability showed that large inter-annual
changes in hatching were not driven by temperature during the
incubation period. Instead, changes in spawning dates or oxygen
concentration were proposed as potential hatch date drivers
(Winslade, 1971). Recent laboratory work shows that the effect
of temperature on the duration of ovarian development, and
therefore spawning date, may be much greater than the effect on
the duration of embryonic development (Wright et al., 2017).

To carry out the analysis, we rule out changes in spawning
and hatch dates as potential drivers of declining 0-group
length between 2000 and 2009, and show that the decline is
likely caused by a reduction in juvenile growth rate. Further,
to determine whether spawning and hatching will become
earlier or later over time, which may subsequently reduce 0-
group length, we analysed possible environmental drivers of
sandeel spawning and hatching. If spawning and hatching are
environmentally cued, this would provide a buffer from future
temperature rises.

MATERIALS AND METHODS

Sandeel Sampling Locations
Sandeel samples were taken in two different monitoring sites
off the east coast of Scotland between 2000 and 2009, a larval
sampling site, and a juvenile and adult sampling site. Larval
sampling was conducted in a site off the northeast coast
of Scotland (56◦57.83′N, 002◦06.74′W, water depth = 45m;
Figure 1). For full sampling details of larvae, see Heath et al.
(2012). Sampling of larvae took place almost every week between
2000 and 2009 so the temporal coverage was satisfactory for
estimation of sandeel abundance. The least coverage occurred in
2004 when surveys did not take place in 5 weeks of the first half
of the year (1st January−1st July). Plankton were sampled with a
100 cm mouth diameter net of 350µmmesh. The net was towed
obliquely at a speed of 1m.s−1 to within ∼3m of the seabed
depth (45m). Upon recovery of the net, the whole catch was
washed into the cod-end. Temperature data was recorded during
each survey at 1 and 45m depths, respectively, using reversing
thermometers and CTD probes.

Juvenile and adult sandeel sampling was conducted in the
sandbanks off the Firth of Forth (between 56◦00′N and 56◦30′N
and 003◦00′W and 001◦00′W) (Open circles; Figure 1). In each
year, trawling was carried out between 0400 and 1800 h GMT
between late May and early July. Surveys covered the main
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FIGURE 1 | Location of larval (black traingle, 56◦ 57.83′N, 002◦ 06.74′W) and

juvenile and adult sampling (open circles) sites off the Scottish east coast. The

black diamond denotes the Isle of May seabird colony. The pale grey shaded

area indicates water depths between 30 and 70m, the range of depth

sandeels are most commonly found (Wright et al., 2000), and marks out the

three main sandbanks, Wee Bankie, Marr Bank, and Berwick’s Bank.

sandbanks, the Wee Bankie, Marr Bank, and Berwick’s Bank,
prime habitat for sandeels in this area (Proctor et al., 1998;
Pedersen et al., 1999). Sampling was undertaken by the FRV
Clupea for the majority of the study period (1997–2007), before
it was replaced by the FRV Alba na Mara (2008–2009). The range
of dates sandeels were caught was between the 25th May and
20th June (Table 1). No sampling took place in 2004. Juvenile
and adult sandeels were sampled with an International Young
Gadoid pelagic trawl with a 6mm mesh cod-end and a bobbin
ground gear.

Year-to-Year Changes in 0-Group Mean
Length Between 2000 and 2009
Changes in summer 0-group length were estimated from pelagic
trawl catch data (Table 1). The total catch in each trawl sample
was quantified (number caught per 0.5 cm size class). Length-
stratified subsamples were taken and otoliths were extracted
to determine age length keys for each cruise. Age (years) was
determined from otolith macrostructure using counts of annuli
(ICES, 1995). To generate probability distributions of age-given-
length for each 1mm length class in the sample, the continuation-
ratio logit method was applied to otolith data to produce smooth
age length keys (Kvist et al., 2000; Rindorf and Lewy, 2001; Stari
et al., 2010). Changes in distribution of age at a given length, as
a function of length, were estimated using Generalised Linear
Modelling. Fitting was performed using Maximum Likelihood
Estimation. For each sample, abundance-at-age-and length was
given by the product of abundance-at-length and probability of
age given length. This produced a matrix of abundance at age

TABLE 1 | The number of sandeels caught and aged from pelagic trawls.

Year Date Number of

individuals caught

Number of 0-group

otoliths measured

2000 15th−19th June 2626 235

2001 5th−9th June 5362 95

2002 15th−20th June 5584 248

2003 14th−17th June 5877 549

2005 25th−27th May 4759 103

2006 17th−19th June 231 22

2007 4th−10th June 6 0

2009 13th−15th June 1358 90

0-group sandeels were captured in 2000–2003, 2005–2006, and 2009. No survey took

place in 2004, and only six sandeels were measured for length in 2007. In addition, pelagic

trawling in 2008 caught no 0-group.

(columns) and length (rows). Mean length at age a (ML) was
given by

(

∑

i

fi,a

)−1
∑

i

Lifi,a (1)

where Li is length i (cm) and fi,a is the abundance of sandeels at
age a (years) and length i.

Hatch Date Estimation Between 2000 and
2009
For full details of the methodology employed to estimate hatch
date distributions, see Heath et al. (2012). Only larvae younger
than 7 days old are considered in the estimation of hatch dates.
This is because, unlike older larvae, that may have been imported
from distant spawning grounds, these newly hatched larvae are
likely to have originated exclusively from local spawning sites
(Figure 2). Note that year-to-year variation in larval growth
rate is unlikely to have a large effect on length-at-age of young
larvae. Therefore, the uncertainty associated with assuming a
fixed probability distribution of age given length, as done by
Heath et al. (2012), is likely to be minimal. We shall quantify this
uncertainty later in the Methods section. The 10, 50, and 90th
percentiles of the cumulative abundance of newly hatched larvae
were used as proxies for hatch start DHs, hatch median DHm, and
hatch end DHe, for each year.

Hindcasting Spawning Dates Between
2000 and 2009
Given hatch date, spawning dates were estimated by assuming a
temperature dependent egg development time. To achieve this, a
smooth (LOESS, span= 0.065) was fitted to the weekly resolution
time series of 45m temperature measurements, and interpolated
to daily intervals. Then, with egg incubation time as a function
of temperature (f (T), days), the estimated spawning day tspawn, is
described by the equation

∫ tspawn

thatch

f (T)
−1dt = 1 (2)
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FIGURE 2 | Mean abundance (m−2) of newly hatched larvae (age 3–7 days old when caught) at successive hatch intervals of (days 29–42, 43–56, 57–70, 71–84,

85–98, 99–112, 113–126, and 127–140).

where thatch is DHs, DHm, or DHe. f (T) was derived using
laboratory data on A. marinus egg incubation times (Régnier
et al., 2018). Using nonlinear regression, exponential functions
were fitted to the data to give the incubation time from spawning
to hatch start date (DHs), hatch median date (DHm), and hatch
end date (DHe), as a function of temperature.

f (T) = Ae−kT (3)

where f (T) is either the time to hatch onset (DsT ), the median
incubation time (DmT ), or the time to hatch cessation (DeT ). A is
the incubation time constant (days) and k is the inclubation time
slope (◦C−1). Values for A and k are provided in Table 2.

Estimating Juvenile Growth Rate Between
2000 and 2009
The overall growth rates of sandeels between hatch date and the
time of sampling as 0-group individuals, referred to as juvenile
growth rate, were estimated by using information on hatch dates
and 0-group length.

Estimated growth rate gl (mm day−1) was estimated in the
following way:

gl =
L− 5

a
(4)

where L is mean 0-group length (mm) and a is mean age
(days). Hatch length is assumed to be 5mm given that

TABLE 2 | Parameters for incubation times to hatch start, median and end dates,

estimated using egg incubation data for A. marinus (Régnier et al., 2018).

DsT DmT DeT

A (days) 76.8214 79.1164 90.3406

k (◦C−1) 0.1194 0.1106 0.1034

R2 0.984 0.981 0.967

The coefficient of determination is listed for each regression.

this is the length of the smallest larvae caught in CPR
samples (Frederiksen et al., 2011).

Environmental Cues for Spawning and
Hatching Between 2000 and 2009
Various environmental cues for spawning and hatching were
considered. First, the influence of absolute temperature on hatch
and spawning dates were investigated. Then, the existence of
lunar and tidal cues was investigated. Dates of new and full
moon, and tidal height at Aberdeen (15 km north of the larval
sampling site) between 2000 and 2009 were obtained from the
Xtide Prediction Server (Flater, 2017). The hypothesis of lunar
and tidal cued hatching/spawning was tested using the following
procedure: The length of the lunar cycle is∼29.53 days. lc, DH/S,
Dnt , and Dfm are defined as the period of the lunar cycle, hatch
date, spawning date, the date of the closest neap tide, and date of
the closest full moon date, respectively. Tidal phase is therefore
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defined as

phase = cos(4π lc−1(DH
S
− Dnt)),−1≤phase≤1 (5)

Hence, a phase value of one corresponds to a neap tide.
Hatch/spawning and neap tide dates are used to produce phase
values for each year in the study period. We define the mean 10-
year tidal phase as xobs. Ten random phase values are generated
from a uniform distribution with range lc

2 , and the mean phase
is calculated. This is repeated 10,000 times to derive a probability
distribution of the mean of 10 random tidal phases. The observed
10-year mean tidal phase xobs is compared with the distribution
to find the probability of observing a more extreme value, i.e.,
p = Pr(X ≥ xobs), where X is the mean of 10 phases. The
corresponding p-value for spring tide cued hatching/spawning
is simply 1 − p. Lunar cued hatching/spawning is tested in a
similar way.

Sensitivity of Hatch Day and Spawning Day
Estimates to Variability in Growth Rates
Between 2000 and 2009
The application of a fixed probability distribution of age given
length derived from the 2000–2001 otolith data in order to
transpose the abundance-at-length to abundance-at age in every
sample, carried the implicit assumption that there was no
variability in larval growth rates. This is despite evidence of
large variation in larval length-at-age between years (Wright and
Bailey, 1996). To assess the sensitivity of hatch and spawning
day estimates to inter-annual variations in annual average growth
rate, we conducted a bootstrap analysis in which age-length
probability distributions representing discrete variations from
the 2000–2001 average growth rate were randomly assigned to
all the samples collected in each sampling year. A set of 81
age-length probability distributions was generated to represent

FIGURE 3 | Changes in sandeel 0-group length between 2000 and 2009. The

solid line indicates a loess smooth through the data.

discrete annual growth rates in the range±20% of the 2000–2001
average rate in 0.5% intervals, by rescaling the measured lengths-
at-age of individual larvae in the otolith data set and repeating
the continuation-ratio logits analysis. Individual lengths were
rescaled according to:

Lg = Lmin + (L− Lmin) g (6)

where L was an individual length-at-age measurement in the
2000–2001 data set, Lminwas the minimum length in the data
set, Lgwas the rescaled length-at-age, and g was the growth
rate scaling factor ( 0.8 ≤ g ≤ 1.2, in intervals of
0.005). The generated distributions were indexed by integer
values in the range −40 to +40. We then repeated the process
of transposing abundances-at-length to abundances-at-age in
each sample through to calculating hatch and spawning dates,
having randomly assigned one of the 81 age-length probability
distributions to each year-set of samples. The assignment was
carried out by randomly drawing an integer index value for each
year from a unifrom distribution (see Supplementary Material).
This range of values was qualitatively selected to reflect the
scale of the most extreme inter-annual variation in growth rate
that might be expected from variations in temperature and
zooplankton abundances, and by reference to published data for
sandeel larvae (Wright and Bailey, 1996). This entire procedure
was iterated many times to generate a distribution of hatch and
spawning day estimates for each year in the study period.

RESULTS

Year-to-Year Changes in 0-Group Length
There was a pattern of decreasing length between 2000 and 2005,
with length increasing thereafter (Figure 3). Length decreased
from 6.7 cm in 2000 to 4.3 cm in 2005, then increased to 6 cm

FIGURE 4 | Year-to-year changes in spawning and hatch dates. The top three

lines show median hatch date (dotted grey line) enclosed by hatch start and

end dates (dashed and solid grey lines, respectively). The bottom two solid

lines show the estimated spawning interval derived by backtracking from hatch

dates. The bottom dashed line shows the estimated mean spawning date.
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in 2009 (Figure 3). This translates to a rate of decrease of 0.53 cm
year−1 between 2000 and 2005, and a rate of increase of 0.42 cm
year−1 between 2005 and 2009. The proportion of fish >7 cm
decreased substantially towards the end the decade. For example,
32% of 0-group sandeels exceeded 7 cm in 2000, compared to
only 11% in 2009.

Environmental Cues for Hatching
Median hatch date varied over the 10-year period between day
67 in 2009 and day 85 in 2008. The 10-year mean of median
hatch date was day 74 (standard deviation = 5 days) (Figure 4).
Hatch interval (90th−10th percentiles) varied between 23 days
in 2000 and 50 days in 2005 (mean duration = 38 days,
standard deviation = 8 days). Median hatch date at the larval
sampling site was significantly related to mean hatch dates
across the northwestern North Sea in 2000–2006 (54 to 59◦N,
and from 2◦W to 2◦E) (adjusted R2: 0.5, p < 0.05). Mean
difference between the two measures of hatch date was 5 days
(standard deviation= 2 days).

Annual minimum temperature (Tmin) varied between 5.7◦C
in 2001 and 6.9◦C in 2007 (Figure 5). Hatching occurred around
the day of annual minimum temperature (DTmin ).DTmin occurred
an average 12 days after hatch onset, and 8 days before median

hatch date. The relationship between the hatch end date and
DTmin was statistically significant (adjusted R2: 0.44, p < 0.03)
(DHe = 35.81 + 0.85 DTmin ) possibly suggesting at least some
larvae hatch in response to rising spring temperatures (Figure 6).
No significant relationships were found between median hatch
date andDTmin (p> 0.05), or hatch start date andDTmin (p>0.05).
Further, there was no relationship between hatch date and
temperature (Table 3). In addition, no significant relationship
was found between hatch date (DHs, DHm and DHe) and lunar
or tidal events (Table 3).

Drivers of Changes in 0-Group Length
Between 2000 and 2009
Juvenile growth rates followed a similar trend as 0-group mean
length between 2000 and 2009 (Figure 7, top panels). 0-group
length was significantly related to juvenile growth rate (Figure 7,
upper right panel) (adjusted R2: 0.71, p < 0.02) (L = 0.198 +

9.22∗gl). We found no significant relationship between 0-group
length and hatch median date (p > 0.05) (Figure 7, bottom left
panel), hatch start date (p > 0.05), or hatch end date (p > 0.05).

Growth rate declined by 27% between 2000 and 2005,
consistent with Frederiksen et al. (2011), who found a

FIGURE 5 | Spawning and hatch dates in relation to temperature. Shown is the temperature profile at 45m depth (dotted line) with overlaid spawning and hatch dates

between 10th January and 1st May. Filled circles denote the mean spawning and median hatch dates, respectively. Solid black lines denote the spawning and hatch

intervals, respectively.
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significant decline in growth rate between 2000 and 2006
(R2 =0.66, p < 0.02).

Hindcasting Spawning Dates Between
2000 and 2009
The estimated spawning interval was short compared to the
hatching interval (Figure 4, mean =14.9 days). Further, in 6 out
of 10 years, the two spawning day estimates diverged by 15 days
or less (Table 4). Mean spawning date was day 26.7 (S.D = 5.33
days), varying between day 18 in 2009, and day 38 in 2008. A high
proportion of variability was due to 2008 and 2009. Excluding
these years, the mean spawning date was day 26.375 (s.d. = 2.72
days). There was no evidence that spawning was triggered by
environmental cues (Table 3).

Uncertainty in Spawning and Hatch Day
Estimates
In our estimation of hatch and spawning days we assumed that
larval length-at-age for young larvae does not vary significantly
year-to-year and so assigned a fixed probability distribution of
age given length for all years, based on the otoliths collected
in 2000 and 2001. To assess uncertainty in our results as a
consequence of these assumptions we conducted a bootstrap
analysis of larval growth rate variability. Uncertainty in hatch
and spawning days is minimal, likely because inter-annual
variability in length-at-age of young larvae (age <7 days) is
negligible (Figure S1).

DISCUSSION

No trends in hatch or spawning dates were evident during
a period of declining sandeel length between 2000 and 2009,
suggesting other factors e.g., changes in food availability
are driving a reduction in sandeel length. However, we
must acknowledge uncertainties and limitations in our study.
We assumed that eggs undergo a temperature dependent
development time, however, lowered oxygen concentration
can delay egg development (Winslade, 1971). Moreover, in
addition to having a small number of years we analysed
variation in hatch and spawning days over a small area.
For our results to support the original hypothesis, we must
assume hatch and spawning days, and length-at-age does
not vary significantly across the Scottish east coast, even if
the latter varies considerably on the scale of the North Sea
(Boulcott et al., 2007; Boulcott and Wright, 2011).

Spawning does not appear to be synchronous. This is clear
from the differences in the observed hatch date interval and
the expected hatch date interval given a synchronous spawning
day (Régnier et al., 2018). The mean hatch duration of A.
marinus between 2000 and 2009 was 38.1 days under a mean
temperature of 6.33◦C. In contrast, synchronous spawning
should produce a hatch interval of approximately 9 days under
6.28◦C (Régnier et al., 2018). Spawning may not be synchronous
partly because larger A. marinus likely spawn earlier than smaller
individuals (Boulcott et al., 2017). Our model, which shows that
sandeels did not spawn en masse, is consistent with recent field

FIGURE 6 | Relationship between day of hatch end DHe and the day of annual

minimum temperature DTmin (DHe = 35.8097 + 0.8512 DTmin).

TABLE 3 | P-values for relationships between environmental events and hatching

and spawning using the statistical test outlined in the Material and

Methods section.

Neap tide Spring tide Full moon New moon Temperature

DS 0.808 0.192 0.614 0.386 0.485

DHs 0.127 0.873 0.356 0.644 0.681

DHm 0.258 0.742 0.283 0.717 0.986

DHe 0.914 0.0859 0.612 0.389 0.347

observations, which showed large females with hydrating oocytes
in December (Boulcott et al., 2017).

We found no evidence that spawning was environmentally
cued. However, this finding is possible since spawning date
appears to be related to sandeel size (Boulcott et al., 2017)
and smaller individuals may not be ready to spawn when
a temperature cue arrives. There is evidence for lunar and
semilunar cued sandeel spawning. For example, Daunt et al.
(2006) found distinct episodes of reduced foraging time in
European shags Phalacrocorax aristotelis that were exactly 1
month apart and hypothesised this was associated with lunar
cued sandeel spawning. Other sandeel species may spawn on
a semi lunar cycle. For example, Ammodytoides pylei and A.
tobianus spawn 3–5 days before a full moon (Thomopoulos,
1954; Randall et al., 1994). In addition, although Robards
et al. (1999) find no clear link between spawning and tidal
stage, 6 out of 8 observed spawning days occurred within
3 days of a neap tide (Flater, 2017). A similar forage fish,
Atlantic herring Clupea harengus, also spawn at neap tides
(Clarke and King, 1985; Hay, 1990).

Hatch end dates were associated with the shift from decreasing
to increasing temperature in spring (Figure 5). However, no
relationship was found between hatch median dates and the
day of annual minimum temperature, therefore the majority of
sandeels did not hatch in response to changes in the temperature
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FIGURE 7 | Drivers of changes in 0-group length between 2000 and 2009. The top left panel shows year-to-year changes in juvenile growth rate (mm day−1). The

top right panel shows that changes in juvenile growth rate (gl ) are significantly related to changes in 0-group length (L) (adjusted R2: 0.71, p < 0.02)

(L = 0.198+ 9.22*gl ). The bottom left panel shows that changes in median hatch date did not account for changes in 0-group length.

cycle. The relationship between hatch end dates and the day of
annual minimum temperature may indicate that at least some
sandeels hatch in response to the temperature cycle but we
cannot state this definitively. However, if true, it would be the
first evidence of temperature-phase cued fish hatching, which
is more common in reptiles and amphibians (Doody, 2011;
Spencer and Janzen, 2011; Warkentin, 2011). That no such
cue was found for spawning could be because, in comparison
to spawning dates, hatch dates appear to be very flexible.
Sandeels have an egg incubation period exceptionally longer
than other pelagic fish (around 40 days at 6.28◦C, Régnier
et al., 2018). In addition, there is moderate natural variability
in incubation rates at similar temperatures (Régnier et al.,
2018). There may be several reasons for a hatch cue. Newly
hatched larvae require adequate food supply in the form of
copepod nauplii (Ryland, 1964). Estimated median hatch dates
occurred in March, the time of peak egg production in the
important calanoid copepod C. finmarchicus (Jónasdóttir et al.,

2005). Using the temperature cycle to time important life cycle
events may act as a buffer against climate change. It is generally
accepted that egg incubation periods are primarily temperature
dependent (Pauly and Pullin, 1988), which, under changing
temperature conditions, may cause vulnerability for species, and
food webs. Since sandeels use rising spring temperatures as a
hatch cue, it is possible that, similar to other birds (Schaper
et al., 2012), sandeel-dependent seabirds use the same cue to
time reproduction.

Changes in hatch dates, juvenile growth rate and survival
are the most plausible factors driving a long term decline in
sandeel length (Wanless et al., 2004; Frederiksen et al., 2011).
Our results show that changes in 0-group length between
2000 and 2009 are driven by changes in juvenile growth rate
not hatch dates. Hatch dates and growth rates are consistent
with Frederiksen et al. (2011) between 2000 and 2006 when
the two studies overlap; significant correlations exist between
median hatch dates estimated in this study and mean hatch
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TABLE 4 | Estimates of spawning days between 2000 and 2009. Shown are the

spawning start days, spawning end days, and mean spawning days.

Year Backtracked

estimate from hatch

start day

Backtracked

estimate from hatch

median day

Mean spawning day

2000 23 32 27

2001 17 34 25

2002 24 37 30

2003 14 34 24

2004 13 35 24

2005 18 29 23

2006 19 39 29

2007 25 34 29

2008 32 45 38

2009 11 26 18

date estimated by Frederiksen et al. (2011) (adjusted R2 = 0.5,
p < 0.05, n = 7), and juvenile growth rates (adjusted R2 =

0.98, p < 0.001, n = 7). Frederiksen et al. (2011) and our
study find no trend in hatch dates yet a significant decline
in juvenile growth rates between 2000 and 2006. There has
been no decline in the growth rate of young larvae (Heath
et al., 2012), so the only potential for a decline in growth
rate is between the late-larval stage and the survey period
between late May and early July. 0-group length has also
declined in the Southern North Sea, and has been linked to a
reduction in copepod size (van Deurs et al., 2014). This could
have affected the growth rate of late-stage larvae, especially as
metamorphosis is a particularly vulnerable stage to reduction
in food availability. Another explanation for the reduction in
0-group length is a change in mortality patterns with respect
to hatch date (Wright and Bailey, 1996), however, this was not
evident from analysis of year-to-year patterns in the loss rate of
larvae (Heath et al., 2012).

Sandeel hatch dates are likely to be directly influenced
by a combination of selection by prey phenology and
temperature (Wright and Bailey, 1996; Wright et al., 2017).

It is unclear as to what extent the former plays a role
in sandeel hatch dates. However, it appears that recent
temperature variations did not significantly alter hatch dates.
We suggest that other ecological factors should be investigated
to understand the decline in length of this important North Sea
forage species.
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