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Sea state information is needed for many applications, ranging from safety at sea and

on the coast, for which real time data are essential, to planning and design needs for

infrastructure that require long time series. The definition of the wave climate and its

possible evolution requires high resolution data, and knowledge on possible drift in the

observing system. Sea state is also an important climate variable that enters in air-sea

fluxes parameterizations. Finally, sea state patterns can reveal the intensity of storms and

associated climate patterns at large scales, and the intensity of currents at small scales. A

synthesis of user requirements leads to requests for spatial resolution at kilometer scales,

and estimations of trends of a few centimeters per decade. Such requirements cannot

be met by observations alone in the foreseeable future, and numerical wave models can

be combined with in situ and remote sensing data to achieve the required resolution.

As today’s models are far from perfect, observations are critical in providing forcing

data, namely winds, currents and ice, and validation data, in particular for frequency

and direction information, and extreme wave heights. In situ and satellite observations

are particularly critical for the correction and calibration of significant wave heights to

ensure the stability of model time series. A number of developments are underway for

extending the capabilities of satellites and in situ observing systems. These include the

generalization of directional measurements, an easier exchange of moored buoy data, the

measurement of waves on drifting buoys, the evolution of satellite altimeter technology,

and the measurement of directional wave spectra from satellite radar instruments. For

each of these observing systems, the stability of the data is a very important issue. The

combination of the different data sources, including numerical models, can help better

fulfill the needs of users.

Keywords: sea state, waves, altimeter, SAR, swell, remote sensing, buoy, microseisms

1. INTRODUCTION

The development of modern measurements and prediction of sea states has been strongly linked to
naval and shipping activities. Here we will define “sea state” rather narrowly as surface gravity waves
with periods shorter than 5 min, but this “sea state” is obviously studied in a wider context of all
the sea conditions that affect navigation, including winds, currents, and sea ice. We cannot ignore
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winds and currents that, together with sea ice, are the forcing
agents that define the properties of waves, with some possible
feedback of waves on these other phenomena. This is discussed
by Villas Bôas et al. (2019). Here we only focus on surface gravity
waves, which are of interest for a very broad range of applications.

Sea states have been observed for a few centuries, either as the
main reason for the measurement, as in ship logs (Gulev et al.,
2003), or as a by-product of other observations. Indeed, ocean
waves have an obvious signature in many other measurements
ranging from seismic observations (Bertelli, 1872) to ocean
remote sensing, such as sea level monitoring from satellite
altimeters (Minster et al., 1991), or radiometric measurements of
winds and salinity (e.g., Reul and Chapron, 2003).

All of these measurements, either made on purpose or arising
from other applications, have important uses for human activities
at sea and on the coast. In particular, waves affect shipping
and harbor operations, with data provided by meteorological
services under the Safety of Life at Sea (SOLAS) convention,
which is whymany wave buoys around the world are managed by
port authorities or located near important harbors, while naval
architecture still relies primarily on visual observations (Bitner-
Gregersen et al., 1995; IACS, 2001). Other applications have
developed very localized measurement systems, in particular for
coastal hazards and beach morphodynamics (e.g., Holman and
Stanley, 2007). Except for the recent launch of CFOSAT (Hauser
et al., 2017), measuring ocean waves has not been the primary
goal for satellite missions. Still, these data are very useful but the
observing system has not been optimized to sample storms in
space and time. Wave observations are particularly useful for the
investigation of air-sea fluxes of momentum and heat (Cronin
et al., 2019), gas, aerosols (Veron, 2015) and parameterizations
in weather predictions or climate models. Similarly, the ever-
growing network of seismic stations on land (Romanowicz
et al., 1984; Tytell et al., 2016) are providing opportunities for
long-term sea state monitoring, even in remote locations (e.g.,
Bromirski et al., 1999; Ardhuin et al., 2012; Retailleau et al., 2017),
or, at the very least, some independent data for validating trends
of other observing systems.

All existing observations, as well as emerging new
technologies, are complementary. Starting from the analysis of
requirements from user communities in section 2, we review
today’s wave observations in section 3, and, in section 4, look
forward to the next decade on how these could be better
organized and exploited to map the space and time variability of
sea states. Recommendations follow in section 5.

2. REQUIREMENTS FOR SEA STATE
MEASUREMENTS AND CONNECTION
WITH OTHER ESSENTIAL CLIMATE
VARIABLES

Although this paper is focused on wind-generated waves, the
importance of the forcing factors that are the wind, currents and
sea ice cannot be ignored, and they are very important when
interpreting observations or validating numerical models.

2.1. General Definitions
Here we consider that statistical properties of the surface
elevation are fully described by the wavenumber-direction wave
spectrum F(k, θ), which describes how the surface elevation
variance is distributed across wavenumbers k and directions θ ,
with θ the direction from1 which the waves are propagating,
hence opposite to the direction of the wavenumber vector k.
Possible correction for non-linear effects are given by Fedele and
Tayfun (2007) and Janssen (2009), with one particular application
demonstrated by Leckler et al. (2015). This approach is most
appropriate for waves in deep water. It is customary to transform
wavenumbers to frequencies using the linear dispersion relation

σ 2
= gk tanh (kD) (1)

where g is acceleration due to gravity,D is the water depth, and σ

is the relative radian frequency. Currents are accounted for using

ω = σ + k · UA(k) (2)

where ω = 2π f is the absolute radian frequency, as measured
in a frame of reference attached with the solid Earth, and UA

is the phase advection velocity that is generally a function of
the wavenumber vector k (Stewart and Joy, 1974; Andrews and
McIntyre, 1978). The radian frequency σ = 2π fr is the relative
frequency that would be measured in a reference frame moving
with the velocity UA.

This dispersion relation gives a frequency-direction wave
spectrum, with an example shown in Figure 1

E(f , θ) =
∂k

∂f
F(k, θ). (3)

The difference between f and fr is particularly important in the
presence of currents faster than 0.2 m/s. For completeness, we
briefly recall the definitions of common sea state parameters
(IAHRWorking Group on Wave Generation and Analysis, 1989).

The significant wave height Hs is defined as 4 times the
standard deviation of the surface elevation,

Hs = 4

√

∫

E(f )df , (4)

with other usual notations SWH and Hm0. The surface heave
spectrum is

E(f ) =

∫ 2π

0
E(f , θ)dθ . (5)

For each frequency, another four parameters are readily
measured from the spectra and co-spectra of three co-located
time series of wave-associated variables such as the heave, pitch

1This particular convention, with direction from is commonly used in coastal

applications. Some other applications prefer to use the direction to.
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FIGURE 1 | (A,B) show typical layout of NBDC wave buoys with old and new designs. Wave measurements are made by a motion package in the hull and wind

measurements use an anemometer at 5-m height. (C) Example of wave information derived from a buoy, ranging form the common estimate of Hs to the heave

spectrum E(f ) in black, or a two-dimensional directional spectrum E(f , θ ) in colors. Note that the buoy does not measure the directional spectrum but, for each

frequency, only the “First 5” parameters from which the directional spectrum is estimated here using the Maximum Entropy Method (Lygre and Krogstad, 1986). For

many applications it is customary to partition the spectrum into a windsea region (dotted contour labeled 0), and swells (solid and dashed contours labeled 1 and 2)

which are usually ordered by decreasing wave energy. For each partition, height, period and direction parameters are estimated in the same manner as they would be

estimated from a full (frequency-direction) spectrum.

and roll of a surface-following buoy (Cartwright and Longuet-
Higgins, 1956), or its 3-component acceleration vector, or the
combination of pressure and horizontal velocity. These are

a1(f ) =

∫ 2π

0
E
(

f , θ
)

cos θdθ , (6)

b1(f ) =

∫ 2π

0
E
(

f , θ
)

sin θdθ , (7)

a2(f ) =

∫ 2π

0
E
(

f , θ
)

cos(2θ)dθ , (8)

b2(f ) =

∫ 2π

0
E
(

f , θ
)

sin(2θ)dθ . (9)

The combination of E(f ), a1(f ), b1(f ), a2(f ), b2(f ), or any other
equivalent parameters (Kuik et al., 1988), forms the set of “First
5” spectral wave parameters.

One year of hourly wave directional wave measurements
contains roughly 8,760 records, and a “First-5” dataset with 50
frequencies would have 250 data points for each record. These
2.2× 106 data values per year provide a much better description
of the sea state than a much reduced set of a few integrated
parameters that is necessary for many applications.

For the purpose of providing weather information or for
comparing different sensors, it is useful to use a reduced set

of values. For this spectral partitioning methods are very useful
in associating energy to a common peak, which is a great
way to analyze swell data (Gerling, 1992; Hanson and Phillips,
2001; Portilla et al., 2009). This is illustrated with the gray
contours on Figure 1C.

Mean wave periods are generally estimated from moments of
the wave spectrum as follows for the pth moment period,

Tm0,p =

[(

∫ fmax

0
f pE(f , θ)df

)

/

(

∫ fmax

0
E(f )df

)]−1/p

. (10)

These periods, in particular Tm0,2 defined by Equation (10) with
p = 2, are sensitive to the practical choice of the maximum
frequency fmax. They are also markedly different in the presence
of currents when measured with a drifting instrument or with a
moored instrument.

We have emphasized currents in these definitions of sea state
parameters because of the evidence of the role currents in wave
time series (e.g., Ardhuin et al., 2012; Gemmrich and Garrett,
2012). Recent research has further revealed that away from the
coast (Magne et al., 2007), even outside the well known boundary
currents, ocean currents are the main source of wave height
variability at scales under 200 km, as illustrated in Figure 2
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FIGURE 2 | (a,b) show 4-year mean (2013-2016) computed using the constellation of 4 satellite altimeters, of current vorticity estimated from gridded altimeter data,

and along-track gradient of significant wave height. (c) is a higher resolution grid over the Agulhas current for August 2015, compared to (d) a WAVEWATCH III model

run forced by 1-km resolution modeled currents, and (e) forced by altimeter-derived gridded currents (Adapted from Quilfen et al., 2018 as authorized by Elsevier).

(see also Gallet and Young, 2014; Ardhuin et al., 2017a;
Quilfen et al., 2018).

2.2. Updating Requirements for Sea State
Measurements
Sea states are thus much less uniform than previously
imagined, with important consequences for applications. Also,
the importance of waves for coastal sea level (Ponte, 2019) , is
naturally providing requirements for the accuracy and stability
of wave heights and periods that are key variables for explaining
extreme sea level (e.g., Stockdon et al., 2006; Poate et al.,
2016; Dodet et al., 2018). In particular, consistency with the
requirements on mean sea level, is calling for an adjustment on
the requirements for sea state as previously defined by GCOS-
200 (Belward, 2016). Given that the maximum run-up is of the
order of the offshore significant wave height, we may specify
separate requirements for the sea state parameters at large (global
to regional) scales, and stricter requirements for coastal sea state
parameters, which should apply right outside of the surf zone, as
proposed in Table 1.

Accuracy levels of directional wave measurements required by
various user groups vary as already identified at OceanObs’09
(Swail et al., 2009). However if the most stringent requirement
is followed then the needs of the diverse user groups
and applications will be met. This requires centimeters for
wave heights, tenths of seconds for wave periods, and 2–5◦

for directions.

The WMO (World Meteorological Organization) lists the
wave requirements in detail for various applications (WMO,
2017a,b). Typically, these requirements specify significant wave
height accuracy of 5–10% (or 10–25 cm); wave periods
of 0.1–1 s, wave directions to 10◦, and wave spectral
densities to 10 percent. For certain applications, especially in
coastal regions, required accuracies are higher, which presents
significant challenges.

Enforcing these requirements for any directional wave
measurement system, a genuine ground-truth would
be established.

Quantification of multi-component wave systems with
differing directions at the same frequency can affect various
wave related applications, this is particulary the case for waves
in opposing directions in the case of microseism sources
(Hasselmann, 1963; Obrebski et al., 2012). Therefore, the
accuracy and resolution of the wave directions are critical.

Buoy technology is available that can provide good quality
measurements for the ’First 5’ parameters (Equations 5–9). The
generalization of such technology and the monitoring of the data
quality is further discussed below.

New and future satellites such as CFOSAT (Hauser et al., 2017)
and SKIM (Ardhuin et al., 2018) should be able to go beyond
these “First 5,” with unprecedented directional resolution, but
their temporal sampling cannot make them the backbone of a
sea state monitoring system. Still, such new data can provide a
transformation of our understanding and advance our numerical
modeling capabilities.
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TABLE 1 | Requirements on sea state measurements according to GCOS-200, and propositions for updates. The requirements on stability should be understood as

applicable to all percentiles of the heights or period distributions.

Variable Frequency Resolution Uncertainty Stability

GCOS-200 Hs 3-hourly 25 km 10 cm 5 cm/decade

GCOS-200 regional sea level hourly 10 km 1 cm < 1 mm/year

WMO Hs ?? ?? 5-10% or 10 to 25 cm ??

WMO (2017) Tm0,2 ?? ?? 0.1 to 1 s ??

WMO (2017) θm ?? ?? 10 deg ??

this paper global to regional Hs 3-hourly 25 km 10 cm or 5% 5 cm/decade

this paper coastal Hs 1-hourly 1 km 10 cm or 5% < 1 mm/year

this paper regional Tm0,−1 3-hourly 25 km 0.2 s < 0.1 s/decade

this paper regional Tm0,2 3-hourly 25 km 0.2 s < 0.1 s/decade

FIGURE 3 | (A) Scatter index for Hs from 5 numerical wave forecasting systems against a selection of mostly Northern Hemisphere wave buoys, as a function of

forecast range, for the months of September 2015 to August 2016. These forecasts are produced by ECMWF (Reading, UK, with reanalysis available as ERA5),

NOAA/NCEP (MD, USA), Meteo-France (Toulouse, France, now available as part of the Copernicus Marine Environment Monitoring Service, marine.copernicus.eu),

the Bureau of Meteorology (Melbourne, Australia) and LOPS (Brest, France, available in hindcast at ftp://ftp.ifremer.fr/ifremer/ww3/HINDCAST/). Focusing on the

5-day forcasts, (B,C) show the evolution of the model error with the years, at selected buoys in the North-East Atlantic and the North-East Pacific, with locations

shown in (D,E). Adapted from Bidlot (2016) as authorized by ECMWF.

This was demonstrated in the last decade with swell
monitoring from SARs (Ardhuin et al., 2009) leading
to the development of new parameterizations for wave
dissipation by Ardhuin et al. (2010) leading to a typical
30% error reduction in Hs estimates (see Figure 3 and
Roland and Ardhuin, 2014). These parameterizations are
now used at most wave forecasting centers: these include
Meteo-France since 2010, NCEP since 2012, the Bureau
of Meterology since 2010, and ECMWF in June 2019
with the cycle 46r1 of their Integrated Forecasting System,
after demonstration at LOPS since 2008. Unfortunately
the ECMWF ERA5 reanalysis uses an older version Cycle
41r2 (Hersbach and Dee, 2016).

Satellite data are also used at Meteo-France and ECMWF
for correcting the initial conditions of wave models, and
in the production of reanalyses. Whatever their use,
whether for improving model parameterizations or for
assimilation in forecasting and reanalyses, satellite data

ultimately relies on the calibration and validation using in situ
buoys (e.g., Stopa et al., 2016).

2.3. Trends and Interannual Variability
A specific aspect of observation requirements is the stability
of the estimates of sea state parameters. The wide range of
estimates of trends in wave heights, from Young et al. (2011)
to Hemer et al. (2013) is certainly calling for modesty when
defining requirements on the stability of sea state estimates.
Understanding past trends is necessary if one wishes to
extrapolate them in the future, here are two examples.

In the Southern Ocean, there is growing evidence from
both in situ measurements and model studies that westerly
winds intensified from 1987 to 2011 (Hande et al., 2012), partly
associated with a general expansion of the tropics caused by
global warming (Lucas et al., 2014), and partly due to an
increase in extension of the sea ice which persisted up to
2014 (Turner and Comiso, 2017).
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In the tropical Pacific, the contribution of inter-annual
variability patterns is particularly strong, these include the El
Nino Southern Oscillation and the longer Interdecadal Pacific
Oscillation, IPO (Fyfe et al., 2014). In particular, trade winds
over the west Pacific have increased from 1992 to 2011 associated
with a particular phase of the IPO (England et al., 2014; Fyfe
et al., 2014). Both of these increases have been reflected in
altimeter derived trends across the global ocean (Young et al.,
2011), and there is no known physical process that could lead
to a long-term sustained trend of that 0.5–2% per year. Other
evidence suggests inter-annual variability ofHs is relatively small,
typically under 8%, as quantified by wave hindcasts over several
decades (Stopa et al., 2013).

Young et al. (2011) estimated Hs trends from 1985 to 2008
using the dataset of Zieger et al. (2009) who calibrated each
altimeter mission with respect to moored buoys and by cross-
calibrating the different satellite platforms. The Hs calibration
with buoy observations was based on nearly 8,000 co-locations.
The calibration was performed for Hs <8 m; therefore wave
heights above 8 m remain largely unconstrained by direct buoy
observations. In tropical storms where Hs are large, there are
often heavy rains which might introduce errors (Guymer et al.,
1995; Young et al., 2017).

The trends for the 99th percentile (P99) of Hs presented
in Young et al. (2011) and adapted here in Figure 4 are
much larger (1–5 cm year−1) than the GCOS-200 requirements
(Table 1). However, the global trend in average wave height
is small with possibly only the Southern Ocean showing
statistically significant positive trends (Young et al., 2011).
There is a reasonable level of confidence in mean trends
determined from satellite data; however, accurately determining
trends in upper percentiles is more challenging. Although a
comprehensive validation of altimeter performance under such
extremes conditions is still lacking, the limited comparisons
with buoy data and extrapolations to extreme value conditions
indicate that reasonable data can be obtained (Young et al., 2017;
Takbash et al., 2019). In addition, however, there needs to be a
sufficiently large number of satellite passes to form stable values
of the upper percentiles. This is a demanding requirement, as
altimeters, with their large spatial separation between ground
tracks, tend to under-sample small-scale storms, such as tropical
cyclones (Takbash et al., 2019). As a result, questions have been
raised about whether stable values of these upper percentiles can
be measured and whether the increase in the number of satellites
in orbit may introduce a spurious positive trend in long term
altimeter estimates. As both the length of the altimeter dataset
and the number of satellites in orbit increases our ability to
answer these question will improve.

Trends for Hs from buoys have been estimated from time
series spanning several decades off the West coast of the United
States and Canada. These generally show increasing wave heights
(Allan and Komar, 2000; Gower, 2002; Menéndez et al., 2008;
Ruggiero et al., 2010). However, these trend estimates are strongly
distorted by changes in buoy hull, sensor payload, sampling
acquisition, and processing (Gemmrich et al., 2011), which we
further discuss in section 3.1.

Many wave climate studies conducted using model hindcasts
forced by multi-decadal reanalysis datasets (wind fields and ice
concentrations) have been conducted (e.g., Wang and Swail,
2001; Caires and Sterl, 2005; Hemer et al., 2009; Fan et al., 2012;
Reguero et al., 2012; Stopa et al., 2013). None of these studies
correct for the changing quality of the reanalysis wind field that
introduces temporal changes as discussed in several studies that
use the Climate Forecast System Reanalysis (Chawla et al., 2013;
Rascle and Ardhuin, 2013; Stopa and Cheung, 2014). Monthly
Hs residuals in Figure 5 with respect to merged satellite radar
altimetry dataset reveals spatial as well as temporal changes in the
time series. It is clear that theHs residuals are larger for larger sea
states (e.g., Hs P95). The strong change in Hs residuals, namely
in the Southern Hemisphere, in 1994 was linked to the inclusion
of the SSM/I satellite radiometer into the reanalysis data (Rascle
and Ardhuin, 2013). Since the quantity as well as quality of the
satellite observations being assimilated into reanalysis datasets
changes in time (Saha et al., 2010; Dee et al., 2011), wave hindcasts
driven by reanalysis are strongly related to the changes in wind
forcing. Therefore, hindcasts in the current status cannot meet
the GCOS-200 Hs requirements of 5 cm/decade since Figure 5

shows the Hs residuals are at least 10 cm/decade for the median
and 50 cm for the 95th percentile. Certainly, the reference dataset
used in this figure, satellite altimeters, also has time and space
stability errors.

The urgency of understanding total sea level at the coast (e.g.,
Melet et al., 2018) is clearly calling for a stability that matches that
of the offshore sea level. This is particularly important in today’s
transition where the total ice-shelf melt contribution to sea level
rise is still limited to a few centimeters. In the long term, with sea
level rise of several meters, the few centimeters to decimeters due
to waves will probably be less important, except where changes
are dramatic, as is the case in the Arctic (e.g., Stopa et al., 2016)
and possibly in tropical cyclones (Shimura et al., 2016).

Finally, extreme waves and their trace in the geological record
are used as evidence for past storminess using paleo-shorelines
(Bouchette et al., 2010), ripple marks (Allen and Hoffman, 2005)
or wave-transported boulders (Cox et al., 2016). It is thus very
important to link extreme sea states to these geological marks
under present climate conditions from shoreline features (Ashton
et al., 2001) to ripples (e.g., Ardhuin et al., 2002), and boulders
(Autret et al., 2016; Kennedy et al., 2016), in order to better
understand the geological record and past climates.

3. EXISTING MEASUREMENT
TECHNOLOGIES AND THEIR LIMITATIONS

3.1. In-situ Measurements
The majority of existing in-situ wave measurements are made
frommoored buoys in the coastal margins of North America and
Western Europe. There are large data gaps in the rest of the global
ocean, particularly in the Southern Ocean and the tropics while
other existing observational systems often have considerable
coverage in these areas, such as the Argo temperature/salinity
profiling floats. Also, sea state measurements are often missing at
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FIGURE 4 | Hs trends computed from a monthly time series of the 99th percentile from the merged altimeter database of Zieger et al. (2009) in 2◦ bins. The black

stippling represents a statistically significant trend at the 99% confidence limit. reprinted from Young et al. (2011), as authorized by AAAS.

FIGURE 5 | (A,B) show Hs monthly median (50th percentile P50) and P95 residuals: wave hindcast forced by CFSR - altimeter. The statistics are computed for

latitudinal bands: Northern Hemisphere (NH: latitude > 30◦N), Equator (EQ: latitude < 30◦), and Southern Hemipshere (SH: latitude > 30◦S).

reference sites where other Essential Climate Variable (ECVs, see
WMO, 2004) are measured. This is further discussed in section 4.

For open-water applications, the preferred wavemeasurement
platform is a buoy. Buoys can be spherical, discus, spar, or
boat-shaped hull. The most popular and widely used method
measures buoy motion and converts the buoy motion into wave
motion based on its hydrodynamic characteristics. Once the buoy
response is determined for each hull, wave motion can be derived
based on the buoy response function.

Directional buoy wave measurements based on buoy motion
can be categorized into two types: translational (particle-
following) or pitch-roll (slope-following) buoys. For both types,
a variety of different sensor technologies is used to measure
buoy motion. Since directional wave information is derived from
buoy motions, the power transfer functions and phase responses
associated with the buoy, mooring, and measurement systems
play crucial roles in deriving wave data from buoys (Teng and
Bouchard, 2005). This dependence is particularly important at

low energy levels and at both short and long wave periods where
the wave signal being measured is weak, and potential signal
contamination increases.

All of the in-situwave systems base their directional estimators
on the measurements of three concurrent time series, which
can be transformed into a description of the sea surface. All
devices can provide good integral wave estimates (Hs, peak
period, mean direction at the peak period, etc.). However, not
all sensors can provide high quality “First-5” estimates because
of the inherent inability of the sensor to separate wave signal
from electronic and system/buoy response noise. This would
degrade the quality of any derived directional wave spectra.
In particular, high quality “First-5” observations can be used
to resolve two different wave systems at the same frequency,
if they are at least 60◦ apart, whereas other measurement
systems cannot. Although there are more than five Fourier
coefficients, the “First-5” variables provide the minimum level
of accuracy required for a sufficiently accurate directional wave
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observing system, as it covers both the basic information
(Hs, Tp, θm) along with sufficient detail of the component
wave systems to be used for the widest range of activities.
Going beyond the “First Five” requires an array of sensors
(e.g., Krogstad, 2005), or imaging method based on radar or
optical data.

As wave measurement systems continue to evolve, with
changing hulls, composition, super-structures, moorings, sensors
and on-board analysis packages, it is extremely important to
maintain readily accessible metadata archives that continually
update any change to a platform. Existing moored buoy networks
are often legacy systems. Standardization of sensors, system
configurations, or hull type would be costly and impractical,
and not necessarily desirable. Continuous testing and evaluation
of operational and pre-operational measurement systems is
an essential component of a global wave observing system,
equal in importance to the deployment of new assets. An
overriding objective of continuous evaluation is to ensure
consistent wave measurements to a level of accuracy that will
serve the requirements of the broadest range of wave users.
Comparisons of platforms and sensors have been pursued
(Schwab and Liu, 1985; Skey et al., 1995; O’Reilly et al.,
1996; Teng and Bouchard, 2005; Collins et al., 2014). These
efforts are critically important because there were old designs,
such as the NOMAD (Timpe and Van de Voorde, 1995)
or 3-m discus buoys (Steele et al., 1992) being retired; and
it is essential to relate the records of past wave climate,
with hundreds of buoy years, to the present and future
wave climates.

Another way to monitor the range of buoy hulls, sensors,
and processing systems is to use radar altimetry from satellites
as reference. This is particularly useful for buoys in open

ocean and deep water and locations close to altimeter tracks.
Queffeulou (2006) and Durrant et al. (2010) showed mean
Hs differences of 10% between the U.S. NOAA-NDBC and
the Meteorological Service of Canada (MSC) buoy networks
by using the satellite altimeter estimates using as reference.

Only part of this difference can be attributed to the fact

that the satellite does not measure exactly the same region
as the buoy, introducing a small bias and random difference

(see also Krogstad et al., 1999).
In October 2008, a wave measurement technology workshop

was held (JCOMM, 2008), with broad participation from the
scientific community, wave sensor manufacturers and wave

data users, following on from a March 2007 Wave Sensor
Technologies Workshop (Alliance for Coastal Technologies,

2007). The overwhelming community consensus resulting from

those workshops was that:

• The success of a wave measurement network is largely
dependent on reliable and effective instrumentation.

• A thorough and comprehensive understanding of the
performance of existing technologies under real-world
conditions is currently lacking.

• An independent performance testing of wave instruments
is required.

The workshops also confirmed the following basic principles:

• the basic foundation for all technology evaluations, is to
build community consensus on a performance standard and
protocol framework;

• multiple locations are required to appropriately evaluate the
performance of wave measurement systems given the wide
range of wave regimes;

• an agreed-upon wave reference standard (e.g., instrument
of known performance characteristics, such as a particular
model of the Datawell Directional Waverider series) should
be deployed next to existing wave measurement systems
for extended periods (e.g., 6–12 months, including a
storm season) to conduct “in-place” evaluations of wave
measurement systems.

in-situ wave observations also include waves visually observed
from Voluntary Observing Ship (VOS), which provide the
longest records of wave data worldwide effectively from the
mid-nineteenth century. For certain applications (e.g., climate
variability, extreme case studies) the length of record and/or
near global coverage of VOS wave data make them more useful
than other sources of wave information. One advantage of
these data is that observational practices have not changed.
All visual wave reports are included in the International
Comprehensive Ocean-Atmosphere Data Set (Freeman et al.,
2017), with wave information in 60% of the reports. The wave
records are somewhat subjective since the wave observation
accuracies are based on the skill and experience of the observer.
Despite the potential subjective error, VOS wave climatologies
are surprisingly consistent with wave hindcasts (Gulev and
Grigorieva, 2006). In addition to observational uncertainties,
VOS-based wave climatologies suffer from inhomogeneous
spatial and temporal sampling. With regions far from shipping
routes severely under-sampled such as the Southern Ocean and
sub-polar Northern Hemisphere. These time and space sampling
issues may significantly affect estimates of trends and inter-
annual variability. VOS wave observations represent a substantial
part of our knowledge about wind waves and should be further
used and better validated. Beginning 1 July 1963 both sea
(i.e., wind wave) and swell were reported. Prior to that date
only the higher of sea and swell was reported. This makes the
VOS data a unique source of such information (Gulev et al.,
2003). Uncertainties in VOS wind wave heights are thoroughly
described by Gulev and Grigorieva (2006) and Grigorieva and
Badulin (2016). A VOS-based global atlas of wind waves (1970–
2015) was recently updated, along with monthly means fields of
wave parameters. It is available at https://sail.ocean.ru/atlas/.

As with any source of observational data, a comprehensive
metadata record is essential to properly understand the wave
information originating from the different platforms, payloads
and processing systems. This is necessary to understand
systematic differences in the measurements from differing
observing networks, and for climate applications to ensure
temporal homogeneity of the records to eliminate spurious
trends. The IOC-WMO (International Oceanographic
Commission-World Meteorological Organization) Joint
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Commission for Oceanography and Marine Meteorology
(JCOMM) has established an Ocean Data Acquisition System
(ODAS) metadata standard, which is hosted at the China
Meteorological Agency (ETMC, 2007). At a recent Regional
Marine Instrumentation Center Workshop (February 2018),
it was stated that, “Any measured data no matter the degree
of accuracy, should be considered worthless if there is no
corresponding metadata to define what and how the data
were generated.” (J.W. Swaykos, National Oceanographic and
Atmospheric Administration-National Data Buoy Center,
NOAA-NDBC, personal communication).

3.2. Challenges Using Existing in situ Wave
Measurements
There are many challenges measuring wind-generated surface
gravity waves from moored buoys that have a significant impact
on the quality of the data. The Response Amplitude Operator
(RAO) represents the mathematical transfer function of the buoy
motion to an approximation of the free surface. Everything
associated with the buoy (e.g., size, composition, super- and
sub-structure, mooring), the sensor (and its relative location to
the mean water level) and analysis package will alter the RAO.
In general, the formulation of the RAO and testing provides
adequate information to modify the mathematical form. In
principle, all moored buoys measuring surface gravity waves
would be considered as reference measurements.

Over the past decade, there is considerable evidence that
the notion of “ground truth” has been violated. The directional
response between buoys with different attributes (sensor, hull,
mooring, processing) will result in differences in the higher
moments of the directional parameters (O’Reilly et al., 1996;
Teng and Bouchard, 2005), leading to misinterpretation of
observations. For example, Bender et al. (2010) determined that
Hs were overestimated by 56% in hurricane conditions, for the
widely used method applied to a buoy with strapped-down 1D
accelerometers. This is due to the mean tilt of the buoy due to
high winds.

Besides the mean tilt, the instantaneous tilt has a small
effect on the recorded shape of small amplitude surface
waves (Collins et al., 2014). Before 2009, the vast majority
of wave buoys in North America were based on strapped-
down accelerometers. Since then, NOAA-NDBC modified
their on-board packages correcting the error, but a large
number of historical buoy records have not been corrected.
Figure 6, shows a comparison of a gimballed (HIPPYTM)
sensor and a strapped-down (3DMG) accelerometer. Although
the time series of the two sensors overlap in Figure 6A,
the scatter and difference plot clearly indicate that the
uncorrected Hs from the 3DMG, for over half of the data, are
generally higher than values from the HIPPYTM sensor. This
is particularly true for Hs over 6 m, with a 10% bias for Hs

around 8 m.
As part of the DBCP Pilot Project on Wave Measurement

Evaluation and Test (PP-WET; www.jcomm.info/WET), a field
study evaluating the NOMAD (6N) was carried out in Monterey
Bay from July 2015 through Oct 2018 (Jensen et al., 2015). The

NOMADbuoy was equipped with five sensors, three fromNDBC
(Inclinometer, 3DMG-Motion Sensor, and a HIPPYTM) and two
from Canada (an MSC-WatchmanTM and Wave Module, and a
TRIAXYSTM NextWave II DirectionalWave Sensor). In addition,
a NDBC 3-m aluminum discus buoy (46042) containing their
standard 3DMG motion sensor and a HIPPYTM sensor was
deployed as well as a Datawell Directional WaveriderTM (DWR)
used as the relative reference for all evaluations (Luther et al.,
2013). These sensors gave typical differences of 0.25 m for an
average 2.5 m wave height (Jensen et al., 2015).

In most if not all evaluations over the past four decades we
have relied on the significant wave height, peak, mean period
and more recently the mean wave direction. These, other than
the peak period Tp, are integral parameters. For example, the
significant wave height for the analysis here is based on the
integration of the frequency spectra given by Equation (4). The
integration masks where differences may occur in the shape of
the spectrum E(f ).

WaveEval Tools, as described by Jensen et al. (2011) take
a different approach. The four Fourier directional parameters
are used to calculate the mean direction, spread, skewness and
kurtosis (e.g., Kuik et al., 1988). Partitioning is performed on
each discrete frequency band, and a discrete energy level. A
bias and root mean square error percentage is determined from
averaging the differences between two data sets. The result is
a qualitative graphic displaying defined range of the per cent
deviations. These techniques can provide useful information that
is quantitative as well as qualitative reducing the assessment
in directional properties to a reasonable number of products.
Recently, two new methods have been proposed, evaluating
frequency spectra (Dabbi et al., 2015) and correlating paired wave
spectra (Collins et al., 2014).

There is no lack of trying to develop new methods to evaluate
large spectral data sets to determine similarities, differences,
quality or deficiencies in measurement to measurement systems,
model to model results or model to measurements. However,
we cling tightly to the bulk wave parameters because we know
what they represent. For example two data sets produce a bias
of 0.5 m out of 4 m. We know what that represents; we know
how large a 0.5m Hs looks like. Now consider a difference in
the frequency spectra of 10 m2s out of 125 m2s. The ratio is
the same as in the case of the Hs, but what does it represent?
That may be the only impediment holding the wave community
back from progressing into the future. An intermediate solution
is the use of partitions where we split a full spectrum into
the single composing, and to a large extent independent, wave
systems. Then the use of integral parametersmakesmore physical
sense, and it is much more intuitive to mentally combine
different and well defined wave systems coming together at the
considered point.

Ensuring the quality of “First 5” data from present and future
directional wave measurements would impact nearly every facet
in the study of wind generated surface gravity waves from a
physics based standpoint, to model improvements and daily
performance of our weather prediction forecast centers. To
have some quantifiable standard for all wave measurements
would be highly beneficial to the user, and thus remove
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FIGURE 6 | Differences in H s for two sensors, a strapped-down 3DMG accelerometer, and a gimballed HIPPY sensor, mounted on the same buoy NDBC buoy

46029 (Columbia River Bar, Oregon) in a water depth of 134 m. (A) Shows time series from january 2011 to February 2012. (B) Shows 3DMGNB against HIPPY. (C)

Shows the difference between the two as a function of wave height.

existing uncertainties, generally dismissed to the level where
all data are at a uniform quality level, something far from
the truth.

We should here mention other in situ measurement that may
not comply with requirements but that are still used de facto,
in particular when no other data source is available for delicate
operations at sea. These include Ship-Borne Wave Recorders
based on ship motions (e.g., Holliday et al., 2006; Nielsen, 2017)
and X-band radar systems from Young et al. (1985) to more
recent developments (e. g. Borge et al., 2004; Ma et al., 2015),
and any combination of the two types of system. At present,
very few datasets are available for the scientific community to
make a detailed evaluation of the quality of these measurements.
Their possible transmission on the Global Telecommunication
System (GTS) of the WMOmay promote a wider evaluation and
use besides the need to have measurement at hand for real time
decistion aid.

3.3. Satellite Remote Sensing
Routine measurements of sea states from satellites started with
GEOSAT in 1985, with almost no interruption until today, except
around 1990, as shown in Figure 7A. Over the years, different
altimeters (solid bars in Figure 7A) supplied robust estimates of
significant wave height (hereinafter Hs) and radar backscatter
power related to the sea surface slope variance. Imaging radars

have further given access to part of the directional wave spectrum
(open boxes in Figure 7A).

A new type of instrument, called a ‘wave spectrometer’ by
Jackson et al. (1985), was successfully launched for the first time
on a satellite, on 29 October 2018, with the SWIM instrument on
CFOSAT (Hauser et al., 2017).

While robust and often quite unique to inform about
extremes (Young, 1993; Quilfen et al., 2006, 2011), satellite
altimeter measurements suffer from a limited spatial sampling,
and can easily miss particular events, as evident from the
example daily coverage in Figure 7B. This is less of a problem
for wave mode data from synthetic aperture radars (SARs),
but present measurements mostly provide reliable directional
estimates for very long swells, i.e., with periods larger than
12 s (220 m wavelength). Compared to buoy measurements,
satellites can still provide a larger volume of data, thereby
samplingmore extreme sea states (Hanafin et al., 2012), to further
enable the tracking of wave-related extreme events across ocean
basins Collard et al. (2009).

Clearly, the number of observations evolves as new satellites
are launched and others are decommissioned (Figure 7A). When
considering the altimeter data averaged at 1 Hz (about 7 km
along-track), each satellite mission accounts for approximately 1
million observations per month as shown in Figure 8A. Given
the along-track noise, mostly related to retracking issues, and
sea state large scale correlations, these estimates cannot be
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FIGURE 7 | (A) Time coverage of satellite missions from 1985 to 2030, including nadir and near-nadir altimeters (solid bars), and missions monitoring ocean wave

spectra (open boxes) using C-band Synthetic Aperture Radars (red), and real aperture radars in Ku-band (black) or Ka-band (blue). The lighter color (gray and blue)

bars correspond to altimeters using Delay-Doppler processing. Source: CEOS database http://database.eohandbook.com/). (B) example of 1-day coverage for Hs

measurements with 4 satellite altimeters (C) snapshot of a “fireworks” plot, the height (size of symbols) peak periods (colors), and directions (barbs) of swell partitions

derived from Sentinel-1A and Sentinel-1B wave mode data. Such plots are produced routinely by CMEMS.

considered independent. Moreover, the same regionmay often be
sampled (in space and time) by two or more satellites, increasing
the number of correlated observations.

Most climate studies typically compute wave statistics by
binning satellite observations into longitude-latitude regions
such as 1–2◦ bins (Challenor et al., 1991; Young, 1999).
Figures 8B–E shows the number of observations in 2◦ bins for
representative time periods. Because the number of altimeter
observations changes throughout the time period, the statistics
computed from these data could be affected by sampling biases.
This is critical for both low and high latitudes that have less
observations. In addition, sampling biases affect most strongly
the tails of the statistical distribution meaning both extremely
small and large wave heights are observed with less precision than
the average sea state.

For SAR wave mode data, sampling biases could be even
more critical because the datasets were relatively sparse. Now
with Sentinel-1A and Sentinel-1B in orbit, the number of
observations per month has increased 20-fold from a median
of 3 rather small imagettes per 2 × 2◦ bin each month with
ERS-2, to 60 big imagettes today, which add up to 120,000 wave
mode products per month. Also, the quality of the Sentinel-1
data is incomparable.

3.3.1. Significant Wave Height From Altimeters
Most of the altimeters sample repetitive tracks covering a full
cycle in 10–35 days, with the 10-day repeat giving a large
spacing between tracks. The working principle of satellite radar
altimetry is quite simple. Pulses reflected by the sea surface
at nadir are recorded as a function of time. This travel time
gives the distance between the instrument and that surface. The

main objective is to precisely track the distance between the
instrument and the mean sea surface. Echoes reflected back
from a wavy sea surface are registered in time and assembled
as radar power signals called waveforms. These waveforms
then mimic the cumulative distribution function associated to
the wave amplitude statistics, such as shown on Figure 9A. A
peaked waveform will correspond to low-sea state condition.
At variance, broad waveforms correspond to high sea state
conditions. Waveforms are usually averaged, and formed at a rate
of 20-Hz, corresponding to a sampling of about 300 m along
the satellite track. Over the ocean, altimeter waveforms are then
further characterized by a rising and falling shape. The rising
part, the leading edge, integrates echoes from the wave crests,
initially located near the nadir center point of the footprint (e.g.,
Figure 9C), to the wave troughs. The falling part, the trailing
edge, then integrates non-nadir backscattered echoes, located
away from the nadir point. The Hs estimates are then derived
from the extent of leading edge, and typically averaged every
7 km along the tracks (the so-called 1-Hz sampling rate). The
accuracy on Hs estimates then depends, among other things, on
the range resolution dr, which is dr = 0.30 m for Ka-band
SARAL and dr = 48 cm for all other ku-band satellite altimeters,
as the ka-band instrument operates with a larger radar frequency
bandwidth. Although measurements are usually attributed to a
precise longitude and latitude, the energy of the leading edge
corresponds to a footprint reaching over 10 km in diameter and
the value of Hs is in fact a weighted average over this footprint.

A new generation of coherent radars can also use the phase of
the radar echos. This allows a “SAR Mode” or “Delay-Doppler”
processing that was pioneered with Cryosat-2 and is now used
on Sentinel-3.
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FIGURE 8 | Number of radar altimetry 1 Hz observations per month (A). The lower panels show the number of observations in 2 × 2 longitude-latitude bins for July

(B) 1988 (GEOSAT) (C) 1994 (ERS-1, Topex-Poseidon (D) 2003 (ERS-2, Envisat, Topex-Poseidon, Jason-1, GFO), and (E) 2015 (Jason-2, Cryosat-2, SARAL).

With delay only, the echoes are only distinguished by their
time of arrival and each time window corresponds to an annular
footprint on the sea surface (Figure 9C). In practice, most of
the data contributing to the leading edge of the waveform
come from a few range cells, that cover about half a significant
wave height, i.e., for Hs = 2 m, the shape of the leading
edge is determined by echoes from the first blue and white
disks in Figure 9C. With the additional use of Doppler, the
footprint can be separated in the along-track direction with
“slices” (the black stripes in Figure 9C) that are typically 300 m
wide (Raney, 1998; Scagliola, 2013). As a result, independent
echoes acquired at different azimuth angles contain echoes from
the same footprint “slice.” It is customary to stack together
these echoes, with an incoherent sum in order to create a
multi-looked waveform with a much better signal-to-noise
ratio (Raney, 1998).

Also, both trailing and leading edges of Delay-
Doppler waveforms are sensitive to Hs (Figure 9B, see

also Ray et al., 2015). The shape of the waveform is
sensitive to other sea state parameters, such as the wave
orbital velocity, that could be estimated. Because of
the beam-limited asymmetrical SAR altimetry footprint,
ocean waves with a wavelength of a few 100 m (swell
and extreme wind waves) may, depending upon their
direction, no longer be fully imaged within the instrument
ground cells and therefore produce a distorted waveform
shape (Moreau et al., 2018).

The parameter estimation in satellite altimetry is performed
by a fitting process called retracking. At present, two different
theoretical waveform shapes are used to fit the measured
LRM and SAR waveforms, namely the Brown-Hayne model
(Brown, 1977; Hayne, 1980) and the SAMOSA model (Ray
et al., 2015). In terms of precision, we show in Figure 9D

a representation of noise computed as standard deviation
of the high-frequency Hs estimations within a 1-Hz along-
track separation, since the variation measured by the altimeter
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FIGURE 9 | (A) Example of waveforms for a pass along the ascending track of SARAL/AltiKa on February 5, 2014, between 05:29:49 and 06:20:07 UTC. Each

waveform shows the power measured by the radar as a function of time: time is discretized with intervals of 2× 10−9 s corresponding to 30 cm range intervals

usually called “range gates.” The corresponding wave heights are 0.8, 3.2, 4.6, 9.7, 10.7, 13.2, and 14.8 m. (B) averaged SARM (solid) and LRM (dashed) waveform

from Sentinel-3 for Hs = 3,5,7,9,11,13 and 15 m, for cycle 23 orbit 349, on 25 October 2017 in the Pacific (C). Typical size of footprints on the ground for Jason-3,

SARAL, and Sentinel-3, as limited by the radar antenna pattern. The rings with alternating blue and white filling, correspond to iso-range lines on a hypothetical flat

surface. Only the first few rings are filled for readability. For Sentinel-3 the vertical bands show the azimuth resolution. (D) High-Frequency Noise on Hs, computed as

Standard Deviation (SD) of high-frequency measurements within a 1-Hz along-track separation, with respect to Hs. Data are averaged for a full cycle of Jason-3,

SARAL, Sentinel-3B LRM Mode (S-3B LRM, used in 13 days of cycle 10) and Sentinel-3B SAR Mode (S-3B SARM). (E) Backscatter strength (σ0) as a function of

wind speed, and (F) differences for different radar frequencies, adapted from Quartly (2015), as authorized by Taylor & Francis.

within 7 km is dominated by noise. The improvement of
SAR altimetry compared with LRM altimetry is evident,
except for at low and high sea states. Currently, the only

Ka-band altimeter mission (SARAL, also known as AltiKa)
has the lowest noise level, as shown in Figure 9D thanks
to a smaller footprint and a higher number of pulses. The
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actual accuracy of these measurements is usually assessed
by means of comparison with models and in situ data
(e.g., Passaro et al., 2015; Sepulveda et al., 2015).

For coastal, near-ice or high resolution applications, altimetry
is limited by the size of the footprint which can be contaminated
by non-Gaussian surfaces such as land and ice, and the noise of
the Hs estimates. Typically, LRM altimetry performs poorly at
distances up to 20 km from the coast (Passaro et al., 2015). The
smaller footprint of SAR altimetry and SARAL-Altika reduces
this problem (Hithin et al., 2015; Dinardo et al., 2018). As for
noise, it can be reduced by improving on the tracking methods
(Passaro et al., 2015; Ardhuin et al., 2017a) and filtering the data
(Quilfen et al., 2018). Other altimeter limitations involve low sea
states, because the leading edge is poorly discretized, giving a
large relative uncertainty in the estimation of Hs for Hs < 1 m
(Smith and Scharroo, 2015), and rainy conditions, with stronger
impacts as the altimeter frequency increases (e.g., Quilfen et al.,
2006; Tournadre et al., 2015).

From these waveforms, the primary focus is the retrieval of the
sea level, which is usually called “epoch” in that context, i.e., the
time-distance between the instrument and the mean sea surface.
As understood, backscatter echoes mostly correspond to specular
local conditions as function of the surface wave elevation profiles.
The epoch, and thus the derived sea level estimates, are then likely
biased, as reflected radar signals are stronger in the troughs than
near the crests of the waves. The bias is then written as hb =

h.σ/σ̄ , with h local surface elevation, σ local radar backscatter
signals. This bias is then often corrected by directly usingHs, and
the total mean backscatter coefficient σ̄ = σ 0, estimated from the
waveform maximum.

3.3.2. Surface Roughness and Wind Speed From

Altimeters
The other key parameter derived from the retracking process
is the maximum amplitude of the radar echo, denoted by the
normalized backscatter coefficient, σ 0. This is primarily related
to the statistics of surface slopes (Nouguier et al., 2016), usually
summarized by the mean square slope (mss), which is primarily
dependent upon the near surface wind speed at 10 m elevation,
U10 (Cox and Munk, 1954; Bréon and Henriot, 2006). Yet,
second-order effects, diffraction, curvature, and/or non-Gaussian
effects can still be traced, especially when directly comparing
coincident altimeter measurements performed with differing
operating frequencies, i.e., C-band and Ku-band for TOPEX and
the JASON instruments (Chapron et al., 1995; Elfouhaily et al.,
1998; Tran et al., 2006).

Accordingly, there is no clear functional form that is
appropriate to connect U10 to the mss, as the wind is not
the only factor defining the mss. Although there is a very
strong correspondence between wind speed and σ 0, other factors
certainly contribute to the measured backscatter. For instance,
Vandemark et al. (1997) examined relationships between
altimeter backscatter and the magnitude of near-surface wind
and friction velocities, with improved agreements found after
correcting 10-m winds for both surface current and atmospheric
stability. More importantly, Elfouhaily et al. (1998) and Gourrion
et al. (2002), and Golubkin et al. (2015) showed that σ 0 strongly

responds to the sea state degree of development. Using the Hs

altimeter estimates as an indicator of the sea state degree of
development, wind estimates can be improved, in particular now
that the noise of Hs and σ 0 estimates can be reduced following
Sandwell and Smith (2005) and Quilfen et al. (2018). This is
limited to not too young sea states, otherwise the same pair of
measurements (σ 0,Hs) can correspond to two pairs of sea states
(U10,Hs) with very different wave ages (Farjami et al., 2016).

As an alternative analysis strategy, it has been demonstrated
that with increasing wind speeds, the dual-frequency data
provide a measurement more directly linked to the short-
scale surface roughness (Chapron et al., 1995), which in turn
is associated with the local surface wind stress (Elfouhaily
et al., 1998), and gas transfer (Frew et al., 2007). The dual-
frequency data also highlight the effect of rain on the perceived
signal (Quartly et al., 1996).

Finally, Vandemark et al. (2016) demonstrated that sea
surface temperature also modulates σ 0 through its effect on the
emissivity of water, and Quartly (2010) showed that, for the
TOPEX and Jason satellites, there are unexplained oscillations
in recorded σ 0 associated with changing solar illumination of
the spacecraft. Most of these factors are ignored in current
operational wind speed algorithms.

We note that there is significant uncertainty about the
absolute calibration of σ 0 for all past and present altimeters.
Efforts to produce an absolute calibration for σ 0 from
Envisat using calibrated on-ground transponders still had an
uncertainty of 1 dB (Pierdicca et al., 2013), whereas the
required tolerance for climate studies necessitates knowing
the drift to better than 0.03 dB/decade. Thus, in practice,
all current wind speed algorithms are empirical, based on
matching up altimeter observations of σ 0 with a host of
meteorological buoys and instruments on ships or other
platforms of opportunity.

Without absolute calibration, considerable efforts are thus
directed to align σ 0 observations from one mission to a
predecessor on the same orbit, the integrity of the climate record
rests on the buoys and models used for long-term monitoring
of instrument performance. In particular, there is not even an
agreed universal scale for σ 0 data, with the values recorded
by two Ku-band altimeters differing by an offset of more than
2 dB. Furthermore, as mentioned above, there is no simple
adjustment between normalized backscatter observations at one
radar frequency with those at another (Figures 9E–F), because
each is responding to a different scale length of sea surface
roughness as illustrated by Figures 9E,F. Since there have been
more than 30 years of Ku-band and C-band altimetry, the launch
of SARAL operating only at Ka-band, necessitated a new specific
effort to produce relevant wind speed algorithms (Lillibridge
et al., 2014; Quartly, 2015).

Global analyses of the joint altimeter measurements of Hs

and σ 0 related U10 show that the majority of the ocean
is dominated by swell (Chen et al., 2002). These combined
metocean records then further invite other parameters to be
developed either theoretically or empirically, such as pseudo
wave age (Glazman and Pilorz, 1990) and wave period
(Gommenginger et al., 2003; Mackay et al., 2008).
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3.3.3. 2D Wave Spectra Monitoring With Synthetic

Aperture Radars and Other Imagery
Synthetic aperture radars (SARs) are coherent microwave radars
that measure the sea surface roughness and Doppler at very
high resolution, using the Doppler frequency to achieve a high
resolution in the satellite flight direction (known as azimuth), of
the order of 5 m depending on the instrument acquisition mode.
Remote sensing with SAR has then been generally focused on
land (ground deformation, subsidence ...) and sea ice applications
(Kwok et al., 1990). Indeed, such a fine resolution capability can
only be achieved provided the target can be considered as frozen
during the integration time of the order of 0.5 s. In practice,
over the ocean, orbital motions of high frequency waves cannot
be neglected and can strongly degrade the azimuth resolution
to a couple of 100 m, depending on the sea state (Kerbaol
et al., 1998; Stopa et al., 2015). Accordingly, the SAR azimuth
responsemirrors the probability distribution of the radial velocity
component of the scatters and causes the azimuth resolution to
be proportional to the root mean square orbital motions of the
high frequency waves.Wave components with wavelengths larger
than the azimuth cutoff have constructive velocity bunching
while waves with shorter wavelengths have destructive velocity
bunching and are strongly distorted. Therefore, swells are often
well resolved by SAR and are consistent with in-situ buoy
observations (Collard et al., 2009).

Still, over oceans, SARs are unique in providing all-weather
very high resolution imagery of a wide variety of oceanic and
atmospheric phenomena. Mature ocean applications include the
measurement of winds at high resolution (e.g., Mouche et al.,
2017), and ocean waves. In particular, the ERS-1, ERS-2, Envisat,
Sentinel 1 and Gaofen-3 satellite include a default “wave mode”
for acquisition over the oceans that allows the routine mapping
of wave properties over large scales (Hasselmann et al., 2012).

In the open ocean, the processes that explain the formation
of wave patterns in a SAR image, such as Figure 10, are
fairly complex and can be quite non-linear (Hasselmann et al.,
1985; Tucker, 1985; Alpers and Bruening, 1986; Holt, 1988;
Hasselmann and Hasselmann, 1991). Yet, the unique capability
to possibly capture directional wave properties, in particular the
part associated with long swells (Lehner, 1984) means that a
sparse coverage of the ocean is enough to observe full swell fields,
as shown in Figure 7C (Collard et al., 2009).

A wide range of methods have been developed to retrieve
wave information from SAR imagery, with important
contributions from Engen and Johnsen (1995) who introduced
multi-look formation from Single Look Complex image that
allows one to reduce the noise in the spectra and lift the 180◦

ambiguity in wave propagation direction. Both aspects are used
in the quasi-linear spectrum retrieval algorithms (Chapron
et al., 2001b; Johnsen and Collard, 2004) that form the basis of
the ESA level-2 products for wave mode data. In practice the
ambiguity removal may fail to pick the right direction, which
explains why a few arrows point west instead of east in Figure 10.
As mentioned above, the precision of SAR wave parameters
has been assessed from 2D spectra comparison between buoy
observations and SAR spectra (Collard et al., 2009). Precision is

low for environmental conditions with strong distortion from
the azimuth cutoff effect (e.g., storms). However, in the far
field, emitted swells are well captured, leading to consistently
observe basin-scale swell patterns by using the space-time
consistency swells (e.g., the fireworks in Figure 7C, see also
Collard et al., 2009).

To complement retrieval algorithms, empirical methods
have been proposed for SAR to more directly estimate Hs

from σ 0 mean and normalized variance estimates. At first, an
original technique, called CWAVE, was developed for ERS-2
by Schulz-Stellenfleth et al. (2007). Specifically, CWAVE uses
σ 0, the normalized variance of radar cross section, and 20
other orthogonal statistics computed from the image modulation
spectrum to empirically estimate Hs. CWAVE was re-calibrated
for ENVISAT (Li et al., 2011) and Sentinel-1 (Stopa and
Mouche, 2017). As retreived, Hs exceeding 9 m are consistent
with numerical models and radar altimeter estimates in extra-
tropical storms and tropical cyclones (Stopa and Mouche,
2017). Therefore, the SAR technology can estimate waves
in environments where the standard approaches to estimate
directional wave spectral property from the image spectrum
typically perform poorly. CWAVE is adaptable to estimate other
sea state parameters such as wave energy and wave period, but the
precision is reduced compared to Hs (Schulz-Stellenfleth et al.,
2007; Stopa and Mouche, 2017).

Finally, optical imagery, even if they cannot offer a full
global monitoring for all seasons due to particular observation
constraints (cloud cover and sun zenith), are unique in their
resolving capability with, for example all coastal areas covered by
Landsat and Sentinel 2A and 2B satellites. Sentinel-2 capability
to precisely estimate the full directional wave spectrum has
been demonstrated by Kudryavtsev et al. (2017), and is further
discussed by Villas Bôas et al. (2019). This unique capability is
taking advantage of the different parallax angles between the
12 adjacent detectors used to cover the 280 km swath at 10 m
resolution. This slightly different viewing geometry is used to
estimate the transfer function between brightness variations and
slope variations. Additional information on the wave dispersion
and current velocity can then be quite uniquely extracted from
the different sensing time (up to about 2 s) of the same point
on ground by different channels within each detector, having
also slightly different viewing angles. These enhanced capabilities
certainly open new possibilities to combine different satellite
measurements (including SAR and altimeter measurements)
and possibly provide validation opportunities for upper ocean
motions, including surface currents and its gradients, and waves.
Recent airborne demonstrations by Yurovskaya et al. (2018) show
that daylight sea state monitoring with drones is already feasible.

3.4. Other Observations: Microseisms
Among the many other measurements that contain a signature
of sea state, a special mention should be given to the background
noise recorded everywhere on Earth, and known as microseisms.

Microseisms are the dominant signal in seismometers. The
strongest microseisms have periods around 4 to 10 s, and
are generated when waves with similar frequency travel in
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FIGURE 10 | (A) extract from an Envisat IW mode image, March 2003 (see Collard et al., 2005) and (B) map of wave heights and mean direction estimated from the

Single Look Complex image.

opposing directions (Longuet-Higgins, 1950; Hasselmann, 1963)
and microseisms have a frequency doubled compared to that of
the ocean waves. This generation of seismic waves is particularly
amplified in deep water and vanishes in shallow water (Ardhuin
and Herbers, 2013), with vertical ground motions of a few
micrometers that correspond to seismic Rayleigh waves. The
sea states that are most effective for generating microseisms
can be classified is three broad classes, and include, is order
of magnitude, the generally broad directional spectrum at high
frequency, the effect of coastal reflection, and the collision of two
wave systems from different storms (Ardhuin et al., 2011).

The signal around 7 s is so clear, that seismic stations were set-
up in the late 1940s to detect and track hurricanes (Gutemberg,
1947), and were used on the U.S. west coast in the 1970s to
measure ocean waves (Zopf et al., 1976). With ocean buoys and
satellites available, using microseisms for sea state application
may sound outdated. Still, seismic records are unique in their
sensitivity, being able to pick-up swell fore-runners of amplitudes
under 0.1 m (Husson et al., 2012), and covering many regions of
the world for which, before CFOSAT, there was no measurement
of wind sea spectra (e.g., Barruol et al., 2006).

Following Zopf et al. (1976), and using data from the Berkeley
seismic station (BKS) in California, Bromirski et al. (1999)
showed how one may reconstruct a time series of ocean wave
spectra from the seismic spectra of a nearby land station. This was
further explored byArdhuin et al. (2012), as shown in Figure 11A
for the year 2008, using a power law relation estimated from the
first 20 days of the year (shaded gray). Although there is a clear
correlation between wave heights and microseism amplitude, the
relation between the two varies because microseism amplitudes
are the product of the amplitude of the wave trains traveling in
opposing directions. When, the opposing waves are generated by
coastal reflection, this gives one particular relation, but when the
opposing waves are due to two uncorrelated wave systems, this

typically gives a very strong noise, with a very weak correlation
to the wave height (e.g., Obrebski et al., 2012; Butler and Aucan,
2018). Onemay use a wavemodel with or without wave reflection
at the shoreline to probe this effect, and clearly, all the outliers in
Figure 11B are caused by events unrelated to shoreline reflection.

Another important question when estimating wave
parameters from microseisms is the location of the sources
in the ocean. In the case of California, a direct modeling of the
seismic sources suggests that 50% of the sources, on average, are
located withing a 800 km band of ocean along the California
coast, with water depths over 300 m. This is highly dependent
on seismic propagation and attenuation, and other sites, such
as Hawaii or the Tuamotus are sensitive to sources over a much
wider region. It is thus difficult in general to estimate wave
height at a single location from a single seismic station, and
one may use multiple stations (Möllhoff and Bean, 2016) or
a coherent processing of station arrays that can use seismic
body waves instead of surface Rayleigh waves to locate the
seismic sources (Gerstoft et al., 2006; Obrebski et al., 2013;
Meschede et al., 2017).

Instead of trying to invert the signal, one may use a forward
model from wave spectra to the seismic signal. This is made
difficult by the poor knowledge of wave reflection at the shore
and seismic wave propagation for these periods (Ying et al., 2010;
Gualtieri et al., 2015). Still, the correlation between modeled
and measured seismic ground displacement is usually very high,
suggesting that seismic data could be assimilated to correct
the wave model, its forcing, or the seismic propagation model.
Figures 11E,F show observed and modeld microseisms at the
Grafenberg array in the south of Germany, with numerical data
available since 1976, and the Uccle station in Brussels, Belgium,
where instruments have been recording since 1898.

One of the greatest interests in microseisms arises from the
long term time series that can be obtained. Bernard (1981,

Frontiers in Marine Science | www.frontiersin.org 16 April 2019 | Volume 6 | Article 124

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Ardhuin et al. Observing Sea States

FIGURE 11 | (A) Measured wave heights at buoy 46013 and estimates from the BKS seismic station. The star marks a particular event on January 26 with

microseisms generated by oposing wave trains from two distinct storms. (B) Correlation between measured and estimated wave heights, highlighting the outliers

unrelated to coastal reflections (C) Average spatial distribution of microseism sources recorded at the BKS seismic station (triangle). (D–F): modeled and measured

microseism amplitude at stations BKS, station 4 of the Grafenberg array (Germany), and Uccle (Belgium). Model results are shown with or without coastal reflection to

give a sense of the uncertainty of the simulation and of the importance of the wave energy reflection coefficient, which is set here at 6, 12, and 24% for continents and

large islands, islands smaller than 50 km, and icebergs, respectively.
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1990) made early attempts at studying the wave climate from
microseisms, analyzing data between 1910 and 1975 from 12
seismic stations, mostly located around the North Atlantic. His
2-year averaged relative microseim amplitude oscillated between
0.8 and 1.2 without any clear trend but near-decadal oscillations.
Bernard attributed these oscillations to an influence of the 11-
year sun cycle on the storms, where amodern reader would rather
see the pattern of the North Atlantic Oscillation. More recently,
Grevemeyer et al. (2000) estimated a “microseism index” from
the Hamburg seismic station, which increased 4-fold between
1955 and 1995. They linked that trend to a trend in wave
heights measured at Seven Stones (off the southwest coast of
the UK), which increased by 20% from 1960 to 1985. Such
trends are not compatible with other seismic data analyses (e.g.,
Aster et al., 2008), highlighting the difficulty of estimating stable
amplitudes from different instruments spanning over a century
of seismic monitoring.

Besides the main microseism peak, Other signals are recorded
at longer periods, which are well explained by the interaction
of waves with a sloping bottom, and microseisms are generated
at the same frequency as the waves, in the primary microseism
band, 10–20 s (Ardhuin, 2018), and in the hum band, 30–300 s
(see Deen et al., 2018). These other bands can also be used to
constrain sea states, including infragravity waves.

4. FUTURE OF SEA STATE
MEASUREMENTS

4.1. In situ Observations
Here we focus on the major in situ wave measurement centers,
defined as those transmitting to the Global Telecommunication
System (GTS) of theWMO in real time, i.e. within 1–3 h from the
measurement. Data that do notmake it on to the GTS do not exist
for most applications, we will come back to this. These centers
have faced with an increase in operation and maintenance costs,
not to mention an increase in vandalism. Meeting the needs of
users such as Numerical Weather Prediction Centers, researchers
and developers of new wave modeling technologies, continuation
of long-term records in the investigation of climate trends, has
become a challenge.

Unfortunately, support for network expansion, upgrades to
existing platforms to measure directional information, has so far
been deemed by the agencies responsible for wave measurement
to be too costly, in spite of the previous recommendations (Swail
et al., 2009). Instead, these agencies have focused on trying to
reduce costs in various ways.

Fortunately, and very timely, technological advances since
OceanObs’09 with respect to wave measurement have been
extremely prolific, especially with regard to high-quality sensors,
but also with platforms and real-time transmission. Rather
than simply decommissioning existing assets (i.e., reducing the
number of buoys), there has been a transition toward the
replacement of large buoys (e.g., 12 m, 10 m, NOMADs) and
migration of 3 m aluminum hulls to smaller foam-based buoys
with even smaller discus hulls with diameters 1.8, 2.3, 2.4, and
2.1 m (Hall et al., 2018). These new platforms minimize the

need for large vessels, and increase the number of buoys able
to be transported during a scheduled cruise. Wave measurement
sensors have migrated to small computer chip systems (Teng
and Bouchard, 2005; Teng et al., 2009; Riley et al., 2011). With
the advent of the smaller hulls, improved battery packs, less
power required and new compact sensor packages, changes are
being made to the super-structure configuration of NDBC buoys
as shown in Figure 12. Also, Datawell is now manufacturing
its buoys with different hull diameters. While the smaller
hulls are easier to deploy and better suited for shorter wave
periods, it should be noted that these buoys have different
responses (Datawell, 2014).

We note that the motion sensor in many of new NDBC
configurations such as in Figure 12B is located well above
the mean water level, whereas historically (Figure 12A) that
sensor is placed inside the hull at the water level. Foam
composition buoy hulls are much lighter than NDBC’s standard
3m aluminum hull. As previously mentioned, the RAO (transfer
function of the buoy motion to the free surface) has to be
quantified for the hull weight, super-structure modification,
and also the sensor location. If properly formulated and
evaluated through laboratory and field testing the quality in
the new buoy systems should be as accurate as has been found
historically.

Also, GPS velocity measurements have been used to estimate
the wave conditions from small buoy systems (Vries et al.,
2003; Herbers et al., 2012; Thomson, 2012; Reverdin et al.,
2013; Centurioni et al., 2018, 2019; Guimaraes et al., 2018).
The buoy velocities are determined in a fixed frame of
reference from the external GPS signals eliminating the need
for calibration of an on-board motion-sensor or compass.
This reduces the size and cost, so that it can be mounted
in very small hulls. One of the drawbacks of the GPS
measurement approach is that the communication relies
on a satellite link that could be disrupted by large wave
conditions or submerged from breaking waves. Despite this
shortcoming, these systems would have the potential for
the expansion of the world’s wave measurement array at
limited cost.

Wave measurements from the small GPS drifters can have
a significant impact on our ability to observe the world’s
oceans that would parallel existing and new generation satellite-
based remote sensing systems. The equipment of just 10%
of the existing drifter buoys (cyan symbols in Figure 13B)
with high-quality directional wave measurement systems, would
have a great impact for Numerical Weather Prediction, the
evaluation of numerical wave models, ship routing, and early
warning for tropical cyclone or remote swell impacts that
are a dominant flooding hazard in some regions (Lefèvre,
2009; Hoeke et al., 2013). A similar extension of wave
measurement to moored buoys in the tropics would also greatly
contribute to the understanding of air-sea fluxes (Cravatte
et al., 2016). Further, there are substantial gaps in the Coastal
Buoy Network (red symbols in Figure 13B, see Figure 13A for
those reporting wave measurements on the GTS). Although,
the addition of many more coastal stations is doubtful in the
near future, the amount of data could easily be doubled if the
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FIGURE 12 | Schematics of existing and planned super-structures of NDBC moored buoys measuring waves, (credit Eric Gay, NDBC). (A) is the standard design of

3-m discus buoys (Steele et al., 1992) pictured in Figure 1A, (B) is the new SCOOP design with a 2.1 m diameter that is replacing many buoys. The 3-m diameter

SCOOP is pictured in Figure 1B. For reference, (C) is the schematic for the Mark 4 Datawell waverider with a 0.9 m hull diameter, drawn to scale, and (D) is the

schematic of a Spotter buoy made by Spoondrift, following the developments of Herbers et al. (2012).

organizations in charge of collecting wave data could transmit it
over the GTS.

The proliferation of low cost, high-quality directional wave
sensors in the past few years, coupled with the increased
use of smaller hulls has greatly reduced the cost of wave
measuring systems, so that the entire moored buoy networks
could eventually be transformed to the “First-5” directional
measurement capability at a lower cost than existing networks.
New technologies are continually being developed which may
also come into play over the next decade, including the possibility
of high-quality measurements from gliders (Daniel et al., 2011),
stereo video (Fedele et al., 2013; Benetazzo et al., 2017), or
lidar scanning (McNinch, 2007). These last two techniques have
already proven very useful for wave research and may find a
broader community of users with the continued decrease of
processing and instrument costs.

4.2. Remote Sensing
As listed on Figure 7, the very large increase in the number and
capabilities of new satellite missions that we have seen over the
past decade will likely continue, with very important innovations
in terms of instruments and concepts. Starting with altimeters,
the revolution of Delay-Doppler altimetry is ongoing, and these
have yet to be fully exploited, probably allowing the estimation
of more parameters, including a more direct measurement of
the mean period Tm0,2. The Surface Water Ocean Topography
mission (SWOT, Morrow et al., 2019) is due for launch in 2021.
It is primarily designed to measure the water level of sea, rivers
and lakes but it is very sensitive to waves, and will thus add
particular estimates of wave orbital velocity and wave height
across its 120 km wide swath. SWOT is in fact a SAR with near-
nadir incidences that will provide unprecedented measurements
of surface currents and their small scale gradients, which are very
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FIGURE 13 | (A) Fixed locations for wave data transmitted via JCOMM, with different colors for different countries, and (B) location of surface instruments transmitting

data through the GTS as part of the Data Buoy Cooperation Panel (DBCP) which could all be equipped with cheap wave sensors, source http://www.jcommops.org/

dbcp/network/maps.html.

important for the forcing of wave models or the interpretation of
wave measurements (see Figure 2).

Among the novelties that was brought by the European
Copernicus program are the long term commitment to continue
series of SAR imagery with wave mode data, the use of a
constellation of two C-band SAR (Sentinel-1 A and B instead
of one with respect to previous European mission) and the
modification of the wave mode for an improved sampling of
swells (two incidence angles instead of one with respect to
previous European mission). This means that the extension of
the Sentinel-1 mission is already planned and agreed between
the European Commission and the European Space Agency

with Sentinel-1C and -1D launches planned for 2022 and
2023. They will ensure the continuity of Copernicus service
at least until the end of 2030. With Sentinel-1 mission, waves
from SAR have also been formally integrated into the Marine
Service (CMEMS).

This includes Level-2 and higher level products such as the
“Fireworks”. Relying on the self-consistency of a given swell field,
the swell measurements are analyzed at the ocean basin scale to
flag outliers and provide quality-controlled swell fields. Overall,
about 50% of the Level-2 swell measurements are filtered. The
consistency between these measurements and the unqualified
Level-2 swell measurements is verified using cross-overs between
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neighboring swell observations. Swell measurements propagated
up to 48h are co-located (maximum distance<200 km) and their
peak direction and peak wavelength compared, thus providing
several thousands of co-located points in a single month, over
open ocean regions not sampled by in situmeasurements.

Such high level products also allows one to combine Sentinel-
1 A and Sentinel-1 B products providing inter-calibrated swell
measurements. In this context, the recent launch of CFOSAT,
will provide new directional ocean wave spectra measurements
at global scale. “Fireworks” analysis will quickly provide inter-
comparisons with Sentinel-1 mission data, leading to a possible
inter-calibration step with the goal of using together CFOSAT
and Sentinel-1 data to feed the Level-3 and Level-4 Copernicus
waves products.

As a matter of fact, in addition of their complexity (2D
spectrum of ocean swell + swell partitions to be compared to
significant wave height from altimeters), the quality of the SAR
spectra is still poorly documented in the Level-2 products and
consequently these products are very little used. But the proper
calibration (e.g., Li et al., 2018) and the foreseen developments
to include a robust quality flag (for each swell partition) in the
Level-2 products should foster a wider use of these data that
provide a unique view with a great coverage of global swell
fields (Figure 8C). Also, more efforts on the larger images using
Sentinel-1 and other missions is leading to interesting coastal
applications (e.g., Rikka et al., 2018). Possible future constellation
of SARs may greatly enrich this capability.

In ice-covered waters, high frequency waves that are usually
responsible for nonlinear distortion are attenuated quickly
(Wadhams et al., 1988). Therefore, wave signatures on SAR
imagery in sea ice are mainly due to velocity bunching (Vachon
et al., 1993; Ardhuin et al., 2015). Standard techniques, like
the quasi-linear approach (Chapron et al., 2001a), are not
sufficient to capture the nonlinearity of the wave features on
the SAR imagery. By only considering the velocity bunching
mechanism, maps of orbital wave motions can be inverted,
giving access to the full E(k, θ) wave spectrum (Ardhuin
et al., 2017a). Further development of this wave retrieval,
with the handling of ice features (Stopa et al., 2018b),
is opening great opportunities for applications, with the
systematic analysis and investigation of wave attenuation in ice
(Ardhuin et al., 2018; Stopa et al., 2018a; see Figures 14A–F).

Finally, CFOSAT is producing its first wave spectra down to
70 m wavelength (typically a period of 6.7 s), this is a clear
demonstration of the power of real aperture radars, in Ku-band
in the case of SWIM on CFOSAT, for monitoring waves in the
open ocean. Using a Ka-band radar instead makes it possible
to resolve shorter components, probably 20 m (3.6 s), with
smaller footprints and a wider swath. This is one of the goals
of the Surface KInematics Multiscale (SKIM) mission (Ardhuin
et al., 2018), which is designed to measure both currents and
wave spectra, and is presently undergoing a detailed study for a
possible launch in 2025.

Other imaging methods, using constellations of radar or
optical sensors will probably further expand our capabilities to
monitor sea state. Optical imagery is unique in providing
unambiguous information about whitecaps and their

distributions, which are important for applications ranging
from navigation safety to upper ocean mixing, surface drift
(Rascle and Ardhuin, 2009), and air-sea fluxes.

The future of sea state monitoring is also in its past.
Considering both the new and historical data, important
evolution in processing algorithms are expected. In particular,
for altimeters, alternative retracking solutions have emerged to
improve the data quality and quantity for satellite altimetry at
the coast (Cipollini et al., 2017). One of the most successful
techniques consists of selecting only a portion of the waveform,
in order to avoid spurious contamination by the trailing edge
(Deng and Featherstone, 2005). While the main focus was
on the range retrieval, some of these studies have included
specific performance analysis forHs (Passaro et al., 2015; Roscher
et al., 2017, 2018; Dinardo et al., 2018). The use of different
fitting methods can also lead to a much lower noise in Hs

estimates (Ardhuin et al., 2017b). All of these new methods
can be combined with adaptive filters to separate tracker noise
from geophysical signals (Quilfen et al., 2018), as illustrated
in Figure 2.

5. RECOMMENDATIONS

We list here a few practical things that couldmake future sea state
observation more useful and valuable.

5.1. In situ Observational Systems
There is a clear requirement for more high-quality directional
wave spectral data in all parts of the global ocean. With
the development of new low cost sensors and cheaper
platforms, transition of non-directional wave measurement sites
to directional capability should be pursued.

With the continued development of new wave measurement
systems, as well as for the historical measurements that make
up the climate record, test and evaluation remains critical to
the understanding of the differences found, as originally stated
in Swail et al. (2009). Testing should consider spatially differing
wave climates, and temporally span multiple years (inter-
annual variability). The evaluation procedure should include
integral wave parameters, frequency, frequency-directional
estimates, hierarchy evaluation techniques, and to establish a
set of standardized metrics defining the quality of the wave
measurement system.

A global network of directional spectral wave drifters,
supplemented as feasible by targeted campaigns such as
deploying wave drifters in advance of large storms including
hurricanes, should be implemented over the next decade.
This network may include new platforms, including ships
of opportunity (Nielsen et al., 2019), once their errors are
known. Adding many doubtful data should not be thought as a
replacement for high quality measurements that are particularly
needed for long term climate monitoring and statistics on
extreme events.

5.2. Historical Data and Metadata
As equally important to high-quality directional wave
measurements, self-describing metadata is necessary to define
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FIGURE 14 | (A) schematic illustrating the geometry of SAR observation and vertical velocities at the surface. (B) Example of a real aperture radar scene stretched

into (C) a SAR scene due to varying vertical velocities in the azimuth direction: actual features such as ice floes F1 and F2 appear displaced in the azimuth (x)

direction. (D) example of simulated vertical velocity map due to two swell trains propagating at right angles and (E) simulated SAR intensity in the case of a sea

surface with uniform σ0. (F) Intensity map (gray shades) observed by Sentinel-1A in Southern Ocean sea ice on 03/05/2016 at 10:55:53 UTC, and overlaid map of Hs
in color obtained by inverting the SAR intensity pattern into a vertical velocity map. This example is further discussed in Stopa et al. (2018b).

all characteristics associated with the data. The world’s wave
measurement data providers are addressing this issue with
existing information. However, large gaps still exist in the
metadata records from historical deployments. Without
this valuable information, there will be a continuation
of misrepresenting long-term wave measurement records
as identified by Gemmrich et al. (2011). In addition, the
metadata records for all in-situ wave measurements need to be
archived and made easily accesible to any user requiring the
information. Ideally, these wave metadata would be archived
with the actual measured data in a centralized Global Data
Assembly Center (GDAC). GDACs have been created for
other data sets (e.g., Pinardi et al., 2019), but not as yet
for waves.

5.3. Data Sharing and Distribution
To serve the full range of users, any in situ wave observation
network should accurately resolve the details of the directional
spectral wave field as well as providing the standard
integrated parameters. It is strongly recommended that
all directional wave measuring devices should reliably
estimate the “First 5” standard parameters, and that these
spectral parameters be distributed in an easy-to-use format,
possibly following the example set by the Coastal Data
Information Program (CDIP). We appreciate the sharing
of long time series such as the 39-year Aqua Alta data
(Pomaro et al., 2018). However, we are missing a common
repository or portal for accessing multiple data sets from
multiple sites.
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5.4. Open Processing, Re-processing, and
Algorithms
Given the complexity of all the steps necessary to get from the
raw data to a final product, we recommend that algorithms and
associated ancillary data be fully documented and published, at
least in technical reports. This particulary include any calibration
(e.g., for the power in altimeter waveforms).

In the case of remote sensing data (true for altimeter and
SAR), the number of available sensors, the co-existence of
different algorithms and alternative processing methods invite
to produce homogeneous (format) and (inter-calibrated) data
sets covering the whole period since the beginning of the
earth observation area. New sensors such as CFOSAT for wave
spectra, concept missions like SKIM or recent SAR altimeters, all
with new and specific capabilities, also advocate for a strategy
to build a common and tractable database that will ease the
use of the remote sensing data for science applications by
non-experts.

5.5. Leveraging Acquisition Capability of
SARs
The acquisition capabilities of satellites is under-used today for
the monitoring of extreme events. For example, high winds can
now be estimated from Sentinel-1 satellites when acquired in
cross-polarization (Mouche et al., 2017). A systematic acquisition
over severe storms, and a similar measurement of waves in ice
(Ardhuin et al., 2017c) could provide critical information on sea
states and associated parameters in situations of practical use as
well as high value for research.

5.6. Combining Data and Models
Wave assimilation methods have been developed in many fields,
but has long been limited in the case of ocean waves due to
the fact buoys were close to the coast, hence having a impact
on a very short time, or that altimeters only measured wave
heights with a limited improvement on spectra, and in particular
swells in long-range forecasts. Now that more drifting buoys are
becoming available, and that new satellites are measuring more
of the spectrum, there is room to fully exploit the space-time
correlation structures of swells (e.g., Delpey, 2012) as provided by
models and data, both for the optimization of initial conditions
and the estimate of model parameters. We note the recent work
by Crosby et al. (2017) who optimized the offshore directional
wave spectrum at the boundary of a coastal wave model, and
similar work could be developed to optimize the wind, current
and sea ice parameters that are part of the forcing functions of
wave models.

6. SUMMARY AND CONCLUSIONS

The past decade has lead to an amazing increase in the quantity
and quality of sea state data collected and distributed, in
particular from satellites and in seismic records. These new data
are revealing new features of the oceanic wave field, and in

particular the importance of ocean currents in defining the small
scale variability. As a result, new observation systems should take

into account this variability, which is why we propose a new
set of requirements for sea state monitoring (Table 1). In the
short term, reaching these requirements will require a proper
combination of in situ and satellite data with numerical wave
models. Besides, this also requires a better knowledge of winds,
currents, and sea ice properties, to which new remote sensing
efforts such as SKIM (Ardhuin et al., 2018) can contribute, but
which can also benefit from a more creative use of existing data
(e.g., Quilfen et al., 2018; Rio and Santoleri, 2018).

At the same time, the in situ observation networks have
matured and gone through important changes in terms of sensors
use and data distribution, with, unfortunately, the metadata often
lagging behind. Now that human activities are being more and
more exposed to marine hazards due to sea level rise, coastal
land subsidence, and intensification of extreme storms, a careful
work of documenting and understanding wave climate and its
variability is required. This is calling for continued support and
funding for basic data collection and quality control, including
the archival of metadata, and new research on analysis methods
combining all sources of data variability, in particular for the
extreme events. Given the relatively short record of buoy and
satellite data, other sources of information have probably an
important role to play. These include visual observations from
ships and seismic records, but the methods to combine all these
data and reduce the uncertainties on trends to acceptable levels
have yet to be refined, tested and validated.
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