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Rapid mass loss from the Greenland Ice Sheet (GrIS) is affecting sea level and,
through increased freshwater and sediment discharge, ocean circulation, sea-ice,
biogeochemistry, and marine ecosystems around Greenland. Key to interpreting
ongoing and projecting future ice loss, and its impact on the ocean, is understanding
exchanges of heat, freshwater, and nutrients that occur at the GrIS marine margins.
Processes governing these exchanges are not well understood because of limited
observations from the regions where glaciers terminate into the ocean and the challenge
of modeling the spatial and temporal scales involved. Thus, notwithstanding their
importance, ice sheet/ocean exchanges are poorly represented or not accounted for
in models used for projection studies. Widespread community consensus maintains
that concurrent and long-term records of glaciological, oceanic, and atmospheric
parameters at the ice sheet/ocean margins are key to addressing this knowledge gap
by informing understanding, and constraining and validating models. Through a series
of workshops and documents endorsed by the community-at-large, a framework for
an international, collaborative, Greenland Ice sheet-Ocean Observing System (GrIOOS),
that addresses the needs of society in relation to a changing GrIS, has been proposed.
This system would consist of a set of ocean, glacier, and atmosphere essential variables
to be collected at a number of diverse sites around Greenland for a minimum of two
decades. Internationally agreed upon data protocols and data sharing policies would
guarantee uniformity and availability of the information for the broader community. Its
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development, maintenance, and funding will require close international collaboration.
Engagement of end-users, local people, and groups already active in these areas, as
well as synergy with ongoing, related, or complementary networks will be key to its
success and effectiveness.

Keywords: Greenland, ice sheet, ocean, observing system, glacier, atmosphere

INTRODUCTION

Scientific Rationale for a Greenland Ice
Sheet-Ocean Observing System
Rapid mass loss from the Greenland Ice Sheet (GrIS) has raised
interest in glacier–ocean interactions for three main reasons.
First, melting at the marine margins of Greenland glaciers has
emerged as a potential trigger of the observed dynamic ice loss
(roughly half of the total ice loss) with important consequences
for sea level rise. Second, increased freshwater discharge from the
GrIS has the potential to impact global climate by affecting the
Atlantic Meridional Overturning Circulation. Third, by altering
nutrient fluxes, productivity, and biogeochemical properties of
coastal waters, changes in freshwater discharge may impact
marine ecosystems along the Greenland margin and potentially
farther afield in the North Atlantic, with consequences for
organisms using these regions as habitat and feeding grounds as
well as societies relying on these ecosystems for subsistence.

Notwithstanding their importance, the exchanges of heat,
freshwater, and nutrients that occur at the GrIS’s marine
margins are poorly understood and largely not accounted for
in earth systems models used for projection studies that are
part of the Climate Model Intercomparison Project and the
Ice Sheet Modeling Intercomparison Project in support of the
Intergovernmental Panel on Climate Change. This is largely due
to the fact that exchanges between the GrIS and the surrounding
ocean occur at the head of long, narrow, glacial fjords, at spatial
scales inaccessible to earth systems models for the foreseeable
future. Processes occurring at the ice sheet-ocean boundary
include iceberg calving, sediment-laden turbulent upwelling
plumes from surface meltwater discharge at depth (subglacial
discharge), glacier submarine melting, fjord circulation, and
strong katabatic winds. All of these processes are intrinsically
challenging to observe and quantify because of their complexity
and small spatial scales. On the glacier side, changes at the ice
sheet-ocean boundary can trigger a dynamic response (i.e., stress
perturbations in the ice sheet momentum balance) that results in
thinning of the upstream glacier and further ice loss.

Considerable progress has been made over the last decade in
understanding ice sheet-ocean exchanges of heat and freshwater
in Greenland’s glacial fjords. Yet challenges remain to understand
the climatic controls on submarine melting, iceberg calving,
the delivery of meltwater to the large-scale ocean, changes in
nutrient availability, and the response of marine ecosystems.
These knowledge gaps translate into an inability to appropriately
represent these processes, even in parameterized form, in ice
sheet, ocean, and climate models aimed at projection. Above all,
there is widespread community consensus that progress requires

concurrent and long-term records of glaciological, oceanic, and
atmospheric parameters at the ice sheet-ocean margins – where
the exchanges of heat, nutrients, and freshwater are occurring.
Such observations are key to informing understanding, and
constraining and validating models.

Tremendous efforts over the last decade have been devoted
to pioneering measurements in glacial fjords and at glacier
margins – challenging-to-access locations where no previous
measurements existed and conventional observing techniques
cannot be applied. These new measurements, and the model
studies stimulated by them, have led to considerable advances
in understanding ice sheet-ocean exchanges (Vieli and Nick,
2011; Straneo and Cenedese, 2015; Mortensen et al., 2018). These
efforts, however, were not aimed at observing the entire system,
including potential feedbacks and non-linearities, over extended
periods of time. Here, following a series of workshops and
documents endorsed by the community-at-large, we articulate
the framework for an international, collaborative Greenland Ice
sheet-Ocean Observing System (GrIOOS) that addresses the
needs for society in the context of a changing GrIS.

Motivation
Rapidly increasing ice loss from the GrIS (Hanna et al., 2013;
Velicogna et al., 2014; Bamber et al., 2018) has raised interest
in the exchange of heat, freshwater, and nutrients between the
GrIS and the subpolar North Atlantic, the Arctic, the Nordic
Seas, and Baffin Bay, and their impact on marine ecosystems, for
multiple reasons.

Sea Level Rise
Through rapid and sustained ice loss, the GrIS accounts for 25%
of present day sea level rise, roughly twice that from Antarctica
(Chambers et al., 2017; Dieng et al., 2017; WCRP Global Sea
Level Budget Group, 2018). Ice loss occurs through changes in
surface mass balance (ultimately inputting liquid freshwater to
the ocean via surface and subglacial meltwater discharge) and
in calving (inputting solid freshwater to the ocean). Changes
in calving, in turn, can occur in response to oceanic and
atmospheric variability (Holland et al., 2008; Hanna et al., 2009;
Motyka et al., 2011; Straneo et al., 2013; Straneo and Heimbach,
2013). Recent increases in GrIS mass loss are primarily due to
variations in surface mass balance, though solid ice discharge
contributions have made up between ∼30% and ∼60% of total
mass losses within recent decades (Enderlin et al., 2014; Van den
Broeke et al., 2016). Increased iceberg calving and submarine
melting have been identified as potential triggers for increased ice
discharge (Motyka et al., 2011; Catania et al., 2018). Quantifying
processes occurring at the ice-ocean interface thus becomes a
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high priority activity and prerequisite for projecting sea level
rise from the GrIS.

Increased Freshwater Discharge Into the North
Atlantic
A direct consequence of ice loss from the GrIS is the increase in
the liquid (meltwater) and solid (iceberg) discharge of freshwater
into the North Atlantic (Rignot et al., 2008; Bamber et al.,
2012, 2018; Enderlin et al., 2016). This has raised concerns
for the impact on the meridional overturning circulation, with
potentially important climate consequences for society, based
on past reconstructions and model projections (Böning et al.,
2016; Yang et al., 2016; Thornalley et al., 2018). Our ability to
project the impact of a shrinking GrIS on the large scale ocean
circulation, however, is strongly dependent on the formulation
of appropriate GrIS freshwater discharge boundary conditions
in coupled ocean-atmosphere or ocean-only models. At present,
the most up-to-date boundary conditions quantify the ice and
meltwater discharge at the ice sheet-ocean margins, typically at
the head of the narrow fjords, but neglect transformations within
the fjords (Bamber et al., 2012, 2018). In contrast, observations
and model studies of Greenland’s fjords reveal a substantial
modification of the freshwater discharge by in-fjord processes
including iceberg melt, dilution of surface melt by turbulent
plumes and, in general, a more complex fjord-ocean exchange
of freshwater than that of a surface, freshwater export (Beaird
et al., 2015, 2018; Enderlin et al., 2016; Jackson and Straneo,
2016; Moon et al., 2017; Mortensen et al., 2018). Understanding
and appropriately formulating boundary conditions regarding
freshwater flux is thus a key step in projecting the impact of the
GrIS mass loss on the ocean.

Impact on Ocean Biogeochemistry and Marine
Ecosystems
Interactions between the ocean and ice sheet fundamentally
impact the biogeochemistry and structure of marine ecosystems
in glacial fjords along the coast of Greenland. High rates of
summertime primary productivity and phytoplankton biomass,
coincident with nutrient enrichment of the upper water column
downstream of marine-terminating glaciers, have been attributed
to the sustained upwelling of deep, nutrient-rich ocean waters
entrained as a result of subglacial discharge (Meire et al., 2017;
Overeem et al., 2017; Hopwood et al., 2018; Kanna et al.,
2018; Cape et al., 2019). This upwelling of nutrients is also
thought to contribute to a lengthening of the growth season
within glacial fjords, with secondary summer blooms accounting
for an unusually large fraction of annual primary production
(Juul-Pedersen et al., 2015). In contrast, no fjord-scale, positive
fertilization effect is generally observed downstream of land-
terminating glaciers, where glacial meltwater exported into
surface waters primarily contributes to the strengthening of the
pycnocline, exacerbating nutrient limitation (Meire et al., 2017).
In addition to the carbon sink arising from high productivity in
some fjords, the mixing of glacial melt with ambient ocean waters
results in fjord waters that are significantly undersaturated in
CO2, suggesting that glacially influenced coastal waters constitute
important CO2 sinks along the Greenland margins (Rysgaard

et al., 2012; Fransson et al., 2015; Meire et al., 2015). The
correlation between the distribution of meltwater and timing of
phytoplankton blooms on parts of the Greenland continental
shelf further suggests that meltwater arrival may also be a factor
in summertime bloom initiation beyond the confines of glacier-
fjord systems (Arrigo et al., 2017; Oliver et al., 2018). However,
large-scale impacts of freshwater export from the GrIS as a result
of the potential export of glacially derived iron to iron-limited
regions of the North Atlantic, remain poorly constrained owing
to a limited understanding of the fate of glacially modified waters
and their nutrients beyond the confines of Greenland’s fjords.

Like other Arctic and sub-Arctic glacial systems, Greenland
glacial fjords are hotspots of secondary productivity,
characterized by rich marine ecosystems featuring high densities
of seabirds, marine mammals, and fishes (Lydersen et al., 2014;
O’Neel et al., 2015; Laidre et al., 2016; Meire et al., 2017). They
serve as important sites for traditional hunting, subsistence,
and commercial fisheries (Meire et al., 2017), contributing
significantly to the regional economy (Berthelsen, 2014). In
addition to sustaining high productivity, processes occurring at
the ice sheet-ocean interface may aggregate plankton or stun
plankton via freshwater osmotic shock (Lydersen et al., 2014),
making them easy prey for larger surface-feeding predators and
multiple trophic levels. In general, the glacier ice mélange, a
heterogeneous mixture of calved glacial ice and sea ice that can
freeze solid, is a primary habitat for Arctic marine mammals in
glacial fjords. In winter and spring, this solid area produces a
heterogeneous habitat for ringed seals (Pusa hispida), bearded
seals (Erignathus barbatus), polar bears (Ursus maritimus),
numerous sea birds, and land mammals such as Arctic fox
(Vulpes lagopus) (Laidre et al., 2018a,b). Other species that
are ice-associated, such as the narwhal (Monodon monoceros),
forage at the glacier front and among the mélange to utilize
the productive waters during summer (Laidre et al., 2016). In
some areas of the Arctic where the permanent multi-year sea
ice has vanished in recent years, glacial fjords are replacing sea
ice habitat for ice-breeding species that require stable ice for
reproduction (Lydersen et al., 2014).

Ongoing changes at the ice sheet-ocean margins, including
increasing freshwater discharge into coastal fjords, have led
to questions regarding how these changes will impact carbon
cycling, whether changes in the physical habitat may impact
populations that rely on glacial fjords for habitat, refuge, and
subsistence, and what the consequences will be for the patterns
and timing of biological productivity – which may have cascading
effects up the food chain. Thus, understanding the influence of ice
loss on biological systems, including fisheries, is a major thrust of
Greenland ice sheet-ocean exchange research.

Outlet Glaciers and Glacial Fjords
Unraveling the variability of processes occurring at outlet glacier
marine margins and in glacial fjords is essential to make progress
on the overarching questions pertaining to drivers of mass loss
from the GrIS and their impact on the ocean circulation, its
biogeochemistry and its ecosystems. Glacial fjords represent the
bottleneck through which oceanic heat is delivered to the ice sheet
margins, and through which meltwater, icebergs, and nutrients
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FIGURE 1 | The exchange of heat and freshwater between the ocean and the Greenland Ice Sheet occurs at the margins of over 200 marine terminating glaciers,
visible as narrow areas of increased ice flow, distributed around the perimeter of Greenland that discharge into narrow, long and deep fjords. Several of these glaciers
are characterized by long (>5 km) floating ice tongues (left inserts, orange circles) but most glaciers have lost their long floating regions (right inserts, pink triangles).
Glaciers identified as having long floating ice tongues greater than 5 km in length, are determined through their height above floatation. Height above flotation is
calculated using surface elevation data from the GIMP DEM (Howat et al., 2017) and ice bottom from BedMachine 3 (Morlighem et al., 2017). The background ice
velocity is from a 2015–2016 mosaic (Joughin et al., 2017); glacier locations are from Rignot and Mouginot (2012).

(e.g., silica, iron, phosphorus) are exported into the global ocean
(Figure 1). These glacial fjords are typically ∼100 km long and
5–10 km wide. Outlet glaciers in Greenland are often grounded
in hundreds of meters of water. Only a handful of fjords in
Northern Greenland have a floating ice tongue (Figure 1, left
insets) that covers much of the fjord’s extent (Wilson et al., 2017).
Fjord topography, including the presence of a sill, regulates the
exchange of water masses with the continental shelf, where both
waters of Atlantic and Arctic origin coexist (Gladish et al., 2015;
Carroll et al., 2017). Fjords with sills deeper than ∼100 m are
characterized by a warm, Atlantic-sourced layer underneath a
colder, fresher surface layer (Murray et al., 2010; Straneo et al.,
2012; Inall et al., 2014; Mortensen et al., 2014).

Key processes that govern the exchanges of heat, freshwater,
and nutrients at the ice/ocean boundary, and the upwelling of
deep nutrient-rich ocean waters at the glaciers’ margins, include
localized plume upwelling driven by the subglacial discharge of
ice sheet surface melt at glacier grounding lines (Jenkins, 2011;
Xu et al., 2012; Sciascia et al., 2013; Kimura et al., 2014; Carroll
et al., 2015; Cowton et al., 2015; Slater et al., 2015) and distributed
melting along the glacier face (Figure 2). The circulation of

waters in the fjord is thought to be regulated by a combination
of buoyancy (Motyka et al., 2003), shelf-driven (Jackson et al.,
2014; Fraser and Inall, 2018), and wind-driven forcings (e.g.,
Moffat, 2014; Spall et al., 2017). This circulation guarantees a
continuous supply of heat to melt ice (see review by Straneo
and Cenedese, 2015) and regulates the export of the strongly
diluted meltwater (Beaird et al., 2015, 2017; Jackson and Straneo,
2016). Icebergs, commonly found next to calving glaciers, release
meltwater throughout much of the fjord water column as they
melt (Enderlin et al., 2014; Moon et al., 2017).

Subglacial discharge, i.e., ice sheet surface melt routed to the
ice sheet base via the englacial drainage system (Noël et al.,
2016; Van den Broeke et al., 2016; Langen et al., 2017; Wilton
et al., 2017), has emerged as a major player in ice sheet-ocean
interactions, since it amplifies ice sheet-ocean exchanges (e.g.,
Jenkins, 2011; Slater et al., 2015). Calving of icebergs, which
balances most of the ice flux across the grounding line, is a
poorly understood process that is likely influenced by climatic
conditions and is a key regulator of glacier dynamics (Schoof
et al., 2017). Efforts to extend the temporal record of ice
sheet mass loss is the subject of considerable research (e.g., the
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FIGURE 2 | Schematic of a Greenland glacier/fjord system showing relevant physical processes that govern circulation in the fjord and at the glacier-fjord boundary,
typical stratification and water masses, and sources of freshwater to the fjord.

ongoing East GRIP Ice-Core Project focusing on the Northeast
Greenland Ice Stream).

Building a Case for GrIOOS: The Last
Decade
The rapid increase in mass loss from the GrIS began in the early
2000s (Krabill et al., 2004; Rignot et al., 2008; Murray et al., 2015;
Catania et al., 2018; Wood et al., 2018) and it was only a decade
later that the importance of processes at the ice sheet-ocean
margins became apparent, making ice sheet-ocean interactions
in Greenland and globally a novel and rapidly growing area
of research. Key to community progress have been a series of
workshops, and related follow-up documents, that sought for
the first time to bring together the diverse disciplines needed to
advance the science.

The first of these workshops, a multi-disciplinary
International Workshop on “Understanding the Response
of Greenland’s Marine-Terminating Glaciers to Oceanic and
Atmospheric Forcing,” was organized by the US Climate and
Ocean Variability, Predictability, and Change (US CLIVAR)
Working Group on Greenland Ice Sheet-Ocean interactions in
June 2013. It brought together over 100 international scientists
and program managers with the goals to summarize the current
state of knowledge and questions (Straneo et al., 2013) and
to develop several key recommendations to make progress
(Heimbach et al., 2014). One major recommendation was the
collection of long-term time series (both in situ and remotely
sensed) of critical glaciological, oceanographic, and atmospheric
variables at key locations in and around Greenland through the
establishment of GrIOOS. The research community recognized
that such measurements are needed to provide information on
the time-evolving relationships between climate forcing, ice
sheet dynamics, and ocean characteristics. The lack of such
data has hindered our ability to explain and model the complex
interactions among ice-ocean-climate, leaving major gaps in our
ability to project future changes. The community noted that
GrIOOS data would be critical, not only to validate hypotheses,
but also to provide boundary conditions, forcings, and a point of
comparison for both ocean and ice sheet model simulations.

Following the recommendations made in the 2014 report, the
Study of Environmental Arctic Change Land Ice Action Team,
in collaboration with the Greenland Ice Sheet Ocean Interaction
Science Network (GRISO), and the Climate and Cryosphere
Project (CliC) of the World Climate Research Program,
organized a workshop to make progress on the design and
implementation of GrIOOS. The resulting 2015 workshop was
attended by 47 participants from seven countries, including U.S.
agency program managers (National Science Foundation, NSF,
and National Aeronautics and Space Administration, NASA)
and a representative of the Greenland government. Participant
expertise included oceanography, glaciology, climate and ice
sheet modeling, marine ecosystems, and paleoclimatology.
Together, this group examined questions such as: (i) What are
the essential ice sheet and ocean variables? What measurements
and observing systems already exist? (ii) What should be the
structure of the GrIOOS system regarding target observing sites
and optimal instrumentation? (iii) How could data be collected,
quality controlled, and distributed? Tentative answers to these
questions are summarized in Straneo et al. (2018) and have
informed the GrIOOS system design discussed here.

Societal Benefits From GrIOOS
Our inability to quantify GrIS-ocean exchanges, and their climate
forcing, is a major scientific obstacle to understanding causal
origins of past variability and to predicting the future of GrIS
and its impact on the neighboring ocean regions, including
the marine ecosystems. Connecting science across disciplines
and countries, which is necessary to address key climate-related
questions, has proven challenging because there is no integrating
framework for a comprehensive ice sheet and ocean observing
system, including needed structures for data management and
dissemination, translating observations to usable model data
and parameterizations, and overall cyberinfrastructure to support
FAIR (Findable, Accessible, Interoperable, Re-usable) data.

The objectives of GrIOOS are to address all of these challenges
by determining essential observations (‘Essential Variables’) for
the ice sheet-ocean-atmosphere system, establishing guidelines
for instrumentation that can be used across institutions and
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nations, creating metadata standards, establishing quality control
best practices, and developing a user-friendly platform for
FAIR data archiving, access and analysis. Fundamentally,
these objectives support overarching goals to understand and
project Greenland (and Arctic) ice sheet-ocean interactions
and their impact on the ocean, including sea level rise. They
explicitly contribute to two of the grand challenges issued to
the international scientific community by the World Climate
Research Programme and its subsidiaries, such as CLIVAR and
CliC: (1) Melting ice and global consequences; (2) Regional
sea-level change and coastal impacts.

GrIOOS will also serve other critical societal needs.
Greenlandic communities rely on information about fjords,
icebergs, and sea ice conditions for hunting and travel. Most
of this information is based on personal experience and shared
by word of mouth or social media. For coastal navigation and
shipping, the ice service at the Danish Meteorological Institute
(DMI) has a long history of mapping sea ice and icebergs hazards,
especially around southern Greenland, for navigation purposes.
The ice service is now automated and generates bi-weekly
maps, taking advantage of Sentinel satellite imagery to give
an overview of sea ice extent and iceberg distribution. With a
GrIOOS program in place, we can create improved products
that provide higher spatial resolution and, depending on the
observation type, better temporal resolution. Such a program can
also provide datasets that are requested by local hunters, fishers,
policy makers, and business owners. Through coordination with
colleagues at Asiaq Greenland Survey, this new or improved
data can be shared with local communities in an easily usable,
near-real time format, such as through an established GrIOOS
data portal, or through appropriate media available to these
communities. Asiaq also maintains an interactive Geographical
Information System (GIS) website that is heavily used by the local
community1, which could provide an additional platform for
data integration and access. The Government of Greenland has
prioritized “strengthening the population’s knowledge of climate
change” and “disseminating information about climate change”
as two of its four main research goals (GCRC, 2015). GrIOOS
observations and cyberinfrastructure can support these goals.

International collaboration is also essential for regional
engagement in the integration of science and traditional
knowledge in ice sheet-marine coupling research. The
Pikialasorsuaq partnership is a new collaboration between
Greenland, Denmark, and Canada. The Pikialasorsuaq is the
Inuit name for the North Open Water Polynya. This polynya
is particularly important as a shared resource between Canada
and Greenland, affecting biogeochemical processes at the
northern limit of Baffin Bay (Barber and Massom, 2007).
The governments of Canada, Greenland, and Denmark are
currently discussing how to manage the Pikialasorsuaq region
as an international shared resource. Based on the concept of
a larger Baffin Bay Observing System (Rysgaard and BBOS
Committee, 2017), the GrIOOS system will include an effort to
bring traditional knowledge from communities surrounding the

1www.nunagis.gl

North Open Water polynya into the ice sheet-ocean observing
system framework.

VISION FOR A GREENLAND ICE
SHEET-OCEAN OBSERVING SYSTEM

The overarching vision for GrIOOS is the simultaneous
observation of glaciological, oceanic, and atmospheric ‘essential
variables’ (both in situ and remotely sensed) at ice sheet-ocean
sites around Greenland, to be sustained over the coming decades.
The observation should be sustained over multiple cycles of
dominant atmospheric and oceanic modes of variability (e.g.,
National Academies of Sciences et al., 2016), in particular
the North Atlantic Oscillation, Greenland Blocking, Atlantic
Multidecadal Variability, and Pacific Decadal Variability. It
should also cover the era of continuous satellite observations of
several essential variables, which will be integrated with the in situ
GrIOOS system and data.

The ensemble of GrIOOS sites should cover a range of
ice sheet-ocean configurations, connect to all major oceanic
basins around Greenland, be representative of the different
climatic regimes, and capture systems thought to be dominant
contributors to GrIS mass loss. The minimum set of essential
variables to be collected at each site is motivated by present-day
understanding of the key oceanic, glaciological, and atmospheric
variables behind the processes that govern ice sheet-ocean
exchanges of heat, freshwater, and nutrients. Additional inputs
for any GrIOOS site are bathymetry and bed elevation. We
refer to these as foundational datasets, which are critical but
only need to be collected once. Ancillary measurements at a
site, such as sediment cores that provide context for GrIOOS
observations to be extended back in time, e.g., via paleo-proxy
reconstructions (e.g., Andresen et al., 2012; Henry et al., 2016),
or seismic and geodetic stations that connect GrIOOS to other
scientific communities, are also highly desirable (e.g., Nettles and
Ekström, 2010; Bevis et al., 2012).

The development and maintenance of GrIOOS will require
close international collaboration. GrIOOS implementation will
need to be coordinated amongst different countries, paying close
attention to minimizing costs and optimizing shared logistics.
Data processing protocols and data sharing practices must be
identified, shared, and maintained. Quick, open, and centralized
access to data is vital. Below we explain in detail the proposed
GrIOOS framework.

In developing GrIOOS, we seek to follow the Framework for
Ocean Observing (Task Team for an Integrated Framework for
Sustained Ocean Observing, 2012) in an extended form that
captures both the fundamentally multi-disciplinary nature of the
ice sheet-ocean system, and the detail required to advance process
level understanding.

Identifying the Essential Variables of a
GrIOOS Site
Several key constraints are taken into consideration in identifying
the ensemble of essential variables gathered at each GrIOOS site.
First the ensemble of these variables should be sufficient input
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FIGURE 3 | Identified essential variables and their interconnection (inside
boxes) at a GrIOOS site.

to algorithms or models that describe variations in the ice sheet-
ocean processes that are relevant to addressing the questions
identified above (Figure 3). Second, the essential variables should
be practical to obtain, i.e., measurable and sustainable in terms of
cost or derivation. Third, these variables should be relatively easy
to relate to the larger scale oceanic, glaciological, and atmospheric
context. Here, we summarize the relevant processes within the
three focus areas identified above and identify essential variables
that can represent their variability.

Sea Level Rise
Future sea level rise from the GrIS depends on mass loss through
surface melt and through solid ice discharge of icebergs at the
ice sheet-ocean boundary. Improving understanding of ice sheet-
ocean interactions will inform research on the location and
magnitude of ice sheet variability due to atmospheric and oceanic
changes. To examine the ice sheet-ocean-atmosphere system,
we have identified: ice sheet surface velocity; ice sheet surface
elevation (and ice thickness via bed topography data); terminus
position; surface runoff and subglacial discharge as the minimum
set of essential variables (Table 1).

Ice sheet surface velocity, combined with ice thickness and
grounding line information, can be used to calculate ice flux
at marine termini around Greenland (e.g., Rignot et al., 2011;
Enderlin et al., 2014). Time-series of these variables are also
essential in unraveling the processes governing flow variability
(e.g., Stearns and van der Veen, 2018). Acceleration, thinning,
and retreat often occur near-coincidentally, driven by processes
at the ice-bed and ice-ocean interface that are impossible to
observe directly.

Frontal ablation at the ice-ocean interface, which includes
submarine melting and iceberg calving, all influence ice sheet
behavior and ice loss (Straneo et al., 2013; Kjeldsen et al.,
2017). Submarine melting is largely thought to be controlled
by the thermal forcing of the ocean waters reaching the
glacier (Figure 2), and is amplified by large ocean velocities,

such as those due to subglacial discharge driven turbulent,
upwelling plumes at the glaciers’ margins during the melt season
(Mortensen et al., 2013; Bendtsen et al., 2015; Mankoff et al.,
2016; Jackson et al., 2017). Calving is accelerated in regions
undercut via submarine melting (described above; Bartholomaus
et al., 2013; Chauché et al., 2014; Fried et al., 2015), but
can also occur when the terminus reaches flotation and basal
crevasse propagation leads to full-thickness calving (James et al.,
2014; Murray et al., 2015). Essential observations needed to
constrain submarine melting: are subglacial discharge, and ocean
temperature and salinity as a function of pressure (Table 1),
The essential observations of terminus position and ice velocity,
combined with calculations of submarine melt will inform
research on calving processes, ice sheet response to ocean change,
and, ultimately, sea level rise.

Freshwater Export
Glaciers release freshwater at the ice sheet-ocean margins as
solid ice (icebergs) and meltwater. Meltwater enters the fjords as
surface runoff, submarine melt across the termini, or subglacial
discharge (Figure 2). Icebergs undergo considerable melting as
they transit through the fjords, giving rise to an additional
meltwater flux (distributed along the iceberg depth) and a
residual iceberg export at the fjord’s mouth. This melting, in turn,
is largely controlled by the fjord circulation and temperature
structure. The export is controlled by local winds, the fjord
circulation and fjord bathymetry.

Meltwater released at depth along the glacier face (submarine
melt and subglacial discharge) creates plumes that rise, entrain
large volumes of deep fjord waters, and produce a much greater
transport than the volume of meltwater released (e.g., Motyka
et al., 2003; Beaird et al., 2018). While the details of the processes
controlling the dilution and export of the meltwater and of
icebergs, from the glacier and fjord, are complex, they are thought
to be largely controlled by: (1) the release of subglacial discharge
and surface runoff; (2) the iceberg flux; (3) the temperature of
the fjord waters; (4) the fjord circulation; (5) local winds. These
in turn, can be described in terms of the surface mass balance
components, the calving flux, properties inside the fjord and
on the nearby shelf (since this gradient controls the fjord/shelf
exchange), local and regional winds. Note that while it would
be highly desirable to include fjord velocities (or circulation) as
an essential variable, these measurements are costly and largely
uncertain due to the high spatial and temporal variability of
velocities in these narrow fjords (Mortensen et al., 2014; Jackson
and Straneo, 2016; Boone et al., 2017). Information about iceberg
distribution and sea ice coverage is also critical for classifying
ice hazards, which is a crucial metric for shipping, industrial
development, and local community activities in the marine areas
surrounding Greenland (e.g., Barber et al., 2014).

Impact on Biogeochemistry and Ecosystems
The timing, mode of delivery, properties, and magnitude of
freshwater export into the ocean fundamentally shape ocean
biogeochemistry. Plumes of meltwater and entrained ocean
waters rising at the glacial margin drive a vertical transport
of dissolved nutrients and sediments toward the surface
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TABLE 1 | GrIOOS essential variables, with information about readiness levels for component requirements, observation instruments and methods, and data and
information systems.

Component Essential Variable Requirements Observations Data and Information

Ocean: hydrography Temperature Mature Concept∗ Mature

Salinity Mature Concept∗ Mature

Irradiance Mature Concept∗ Mature

Chl-a fluorescence Mature Concept∗ Mature

Ocean: biogeochemical Dissolved Oxygen Mature Concept∗ Mature

Turbidity Mature Concept∗ Mature

Nitrate Mature Concept∗ Mature

pCO2 and pH Mature Concept∗ Mature

Iceberg production Pilot Concept Concept

Ocean: ice-related Iceberg distribution Pilot Concept Concept

Sea ice concentration Pilot Concept Concept

Surface velocity Mature Mature Mature

Terminus position Mature Concept Concept

Ice Surface elevation Mature Mature Mature

Surface runoff Mature Mature Mature

Subglacial discharge Mature Concept Mature

Temperature Mature Mature Mature

Atmospheric Wind Mature Mature Mature

Precipitation Mature Mature Mature

Radiation Mature Mature Mature

The readiness levels, moving from concept to pilot to mature, are based on terminology for the Framework for Ocean Observing (see Figure 8 in Task Team for an
Integrated Framework for Sustained Ocean Observing, 2012), with different requirements for each category: requirements, observations, and data and information.
∗Locational challenges add to ‘concept’ classification.

ocean, where they can impact the growth of phytoplankton
by respectively fueling primary production or altering light
penetration and optical properties. Measurements of nitrate,
a primary limiting nutrient present in low concentration
in meltwater but abundant in the deep ocean, alongside
turbidity, in this way serve as essential tracers for ice-
ocean exchanges and glacier-driven circulation, as well as
nutrient availability. The response of phytoplankton to glacial
modification of upper water column physical and chemical
properties can in turn be examined through measurement
of chlorophyll-a fluorescence and dissolved oxygen. Alongside
measurements of ambient light, these parameters can, in
concert, give insight into primary productivity rates and the
biomass of organic carbon available to higher trophic levels,
important ecosystem properties. The integrated response of
the carbon cycle to ice-ocean exchanges, including the overall
magnitude and sign of the atmosphere-ocean carbon flux,
is a function of both biological cycling and thermodynamic
effects stemming from physical mixing of glacial and ocean
water masses (Meire et al., 2015). Time series of pCO2
and pH, alongside biological parameters previously described,
are therefore essential variables to constrain carbon cycle
response (Figure 3).

The Relevant Essential Variables
Based on a summary of the processes and major controlling
variables outlined above, and in consideration of both
feasibility and reliability of existing technologies for long-
term measurement, we suggest the following essential oceanic,

glaciological, and atmospheric variables for each GrIOOS
site (Table 1):

• Oceanic variables include temperature and salinity as a
function of pressure both within the fjord and across
the nearby shelf. Sea ice cover, iceberg production, and
iceberg distribution are also essential. Biogeochemical
variables needed to characterized productivity include
downwelling irradiance, chlorophyll-a fluorescence, and
dissolved oxygen. Turbidity and nitrate are needed to
quantify seasonality in nutrient availability associated with
glacial discharge and fjord circulation. Finally, pCO2 and
pH are needed to constrain the carbon cycle response.
Tracking of properties both inside the fjord and on
the nearby shelf is needed to separate remote and local
drivers of variability.

• Glaciological variables include ice velocity, surface
elevation, ice thickness (via bed and surface elevation),
terminus position, surface melt (i.e., that generates surface
runoff) and subglacial discharge. These variables will allow
us to calculate iceberg calving rates, ice volume changes,
and freshwater discharge at the GrIS marine margin.

• Atmospheric variables include local weather data (winds,
air temperature, precipitation, radiation, etc.) to provide
information essential to estimating the regional and fjord-
scale atmospheric forcing of the ice sheet and ocean surface.

• Additional foundational datasets critical for any GrIOOS
site are bedrock and ocean bathymetry.
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FIGURE 4 | Example of potential instrumentation for a GrIOOS site located at the margins of a tidewater glacier (note: not to scale).

How to Get the Essential Variables for
Each GrIOOS Site
It is envisioned that the essential variables described above
(and in Table 1) will be gathered at each site either as in situ
measurements or as derived quantities from, for example, remote
sensing. A generic GrIOOS site is depicted in Figure 4. For
all essential variables, there is a strong need for year-round
observations. High temporal resolution (as often as hourly to
weekly depending on variable) measurements are required since
it is unclear which timescales govern both the oceanic forcing
and the glacier response, or whether threshold behavior exists
that only bears out during certain environmental conditions.
Engagement with communities located near GrIOOS sites will be
a key part to the temporal sampling required.

Ocean
Ocean essential variables require year-round measurements both
in the glacier vicinity (typically in the fjord) and on the nearby
continental shelf. Depending on the fjord/glacier type, the
way these measurements are achieved may differ substantially.
Floating ice shelves (or ‘floating tongues’) offer the possibility
of suspending instruments from the ice through bore holes that
are expensive to drill but provide ideal platforms. Tidewater
glaciers with substantial calving are challenging because of the
deep draft icebergs and general inaccessibility of the region.
These require site specific strategies that may include subsurface
moorings (Figure 4). Sensors deployed on marine mammals
may be appropriate for some sites where other technologies are
deemed impractical. Biogeochemical sensors present additional
challenges that will also necessitate site-specific strategies.

A subset of biogeochemical sensors (e.g., fluorescence, O2,
pCO2, pH) need to be deployed in the upper 10–50 m of the
water column where major biological processes and freshwater
export take place. By contrast, sensors used to characterize links
between physical processes and chemical properties of the ocean
(e.g., nutrient fluxes and distributions) may in certain cases be
deployed subsurface.

The size and distribution of icebergs in fjords and the
surrounding ocean are important to characterize for their impact
on freshwater- and nutrients dynamics. New efforts to quantify
iceberg distributions are now possible given the robust temporal
coverage of both optical and radar satellite imagery over the
Arctic. Ocean nodes should integrate remote sensing results
of both iceberg distribution and sea ice coverage, which are
essential for freshwater flux calculations (Moon et al., 2017;
Sulak et al., 2017). Iceberg detection from Sentinel satellites
around Greenland has been automated by the DMI and daily
plots for several distinct locations are displayed on the Danish
public outreach website polarportal.dk, based on the methods
of Buus-Hinkler et al. (2014) but at finer spatial resolution
of 40 and 10 m. While this technique is able to distinguish
icebergs at unprecedented resolution, it shares, with other remote
sensing data products, the disadvantages of limited temporal
and spatial coverage and is not capable of distinguish icebergs
trapped within sea ice or mélange in front of calving outlet
glaciers. Finally, it is notable that despite the large fraction of
discharge from the GrIS occurring as solid ice, little information
is available concerning how icebergs affect nutrient cycling within
Greenland’s fjords, making iceberg observations also critical for
ocean biogeochemistry.
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Glacier
Most glacier essential variables (ice surface velocity, terminus
position, ice sheet surface elevation) can be acquired via
remote sensing sensors already in orbit and mature analysis
techniques. Some variables can already be acquired from
consistently archived and served data streams and will not require
significant GrIOOS investment. For example, both optical and
radar satellites now allow weekly to monthly measurements
of ice surface velocity, which is systematically processed
and served through U.S. and European data archives. Some
datasets, however, require further GrIOOS science and research
development. In particular, terminus position is not currently
provided in a systematic way, largely consisting of sporadic
terminus shapefiles available from individual investigators.
Existing networks and data sets to support development of glacier
and ice sheet essential variables are discussed in Section “Glacier
and Ice Sheet.” Additional in situ observations of the outlet
glacier system could also take advantage of ocean deployments for
additional sensors to improve understanding with satellite-based
observations and time-lapse cameras to provide high temporal
and spatial information (Figure 4). The best current source for
surface mass balance information are regional climate models
(see Dynamical and Statistical Reconstructions). We envision
essential variables will be linked on a website that would bring
together the disparate data sets for the general purpose of
quantifying the spatio-temporal variability in glacier behavior
(see Data Protocol and Management).

Atmosphere
The atmosphere node provides variables that support both glacier
and fjord measurements. At the local scale measurements are
obtained via Automated Weather Stations (AWS; Figure 4).
AWS deployed at locations adjacent to the glacier terminus can
provide essential variables (air temperature, winds, precipitation,
radiation) and other standard meteorological observations
(Table 1). These data can also improve remote sensing
and reanalysis products. Depending on the location, such
measurements may be available through several of the existing
meteorological station networks, e.g., DMI, see Weather Station
Data). At the regional scale, estimates of air temperature, winds,
pressure, and other meteorological parameters are available
through regional climate model or global atmospheric analysis,
forecast or reanalysis products (see Dynamical and Statistical
Reconstructions). These data will fulfill many of the variable
needs for capturing regional-scale atmospheric conditions over
the glacier-fjord-continental shelf system. In addition, large-scale
circulation indices, such as the Greenland Blocking Index (Hanna
et al., 2016, 2018), will be helpful for contextualizing ice sheet-
atmosphere-ocean interactions.

Foundational Datasets: Bathymetry and Bed
Elevation
Ice sheet bedrock topography and fjord bathymetry are critical
foundational datasets. Significant efforts have been made over
the last decade to improve estimates of ice sheet bed elevation,
particularly beneath the outlet glaciers of the GrIS, with airborne
ice-penetrating radar (Leuschen et al., 2018). In addition, new

bathymetric and airborne gravity surveys within multiple glacier
fjords in Greenland have been made over the last few years as
interest in ice sheet-ocean interactions has increased (e.g., Fenty
et al., 2016; Rignot et al., 2016; Kjeldsen et al., 2017; Millan
et al., 2018). These provide an even more detailed picture of
the topography beneath glacier termini and within the fjord.
Together, these types of observations have been used to construct
a seamless bed elevation product across the GrIS ice sheet-ocean
margin using a mass-conservation approach that provides a best
estimate for the bed topography constrained by observational
data (Morlighem et al., 2011, 2017). Since these new data use both
ice-penetrating radar and bathymetric data, grounding line depth
estimates have improved dramatically over previous estimates
and provide a more accurate picture of the geometric setting
for critical outlet glaciers terminus regions. Even with these
improvements, many outlet glaciers (adjacent) within the GrIS
have not been surveyed with ice penetrating radar (bathymetric
mapping) and are poorly constrained in the mass-conservation
inversion. Any additional bedrock/bathymetric data collected as
part of GrIOOS should therefore be readily made available to
improve the existing database.

Characteristics of GrIOOS Sites
The ensemble of GrIOOS sites should span a range of geometries
that take into account the glacier/fjord depths, fjords with and
without sills, glaciers with and without floating termini, and
different oceanic basins. Choice of the sites should take into
account existing measurements, noting sites that are already
being monitored that could become GrIOOS sites with minimum
additional measurements. Proximity of other observing networks
(see below) to sites can optimize sustainability, provide broader
context, and allow shared logistics costs. Sites close to inhabited
or regularly serviced centers allows for accessibility at reduced
costs and may be a source of information to the local community.
There should be a focus on the largest contributors to Greenland
Ice Sheet mass loss, and the proximity of paleo records should
also be taken into account.

At the initial GrIOOS development meeting, several
possible observational sites were suggested based on voting
of each participants’ top three sites and the considerations
described above, such as existence of ongoing observations,
logistical support, scientific rationale, and societal rationale.
The glacier/fjord sites with the most votes were Helheim
Glacier/Sermilik Fjord, 79 N/NE Greenland Ice Stream (NEGIS),
and Jakobshavn Isbrae/Ilullisat Icefjord, with additional priority
sites listed here in order of voting (Table 2). The top three sites
are dominated by glaciers that calve via full-thickness events and
where melt-induced terminus change may play a reduced role
(Fried et al., 2018). In a fully implemented GrIOOS, care should
be taken to include a broad range of glacier settings, defined
by the glacier dynamic behavior, and fjord settings, defined by
geometry and proximity to distinct open ocean regions.

Additionally, during the previous GrIOOS workshop,
participants helped to identify and discuss lessons learned
from other ongoing observational programs, such as the
Geological Survey of Denmark and Greenland (GEUS) Program
for Monitoring of the Greenland Ice Sheet (PROMICE), or
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TABLE 2 | Characteristics of potential GrIOOS glacier-fjord sites, including the ocean basin adjacent to link to existing open ocean measurements, the fjord and glacier
geometry to ensure a diversity of glacier/fjord types, Greenland sector, and whether in situ measurements of ocean (O), ice (I), atmosphere (A), and ecosystem (E)
variables exist now or in the past.

Fjord/Glacier System (Figure 5 label) Greenland Sector Adjacent
Ocean
Basin

Max Fjord
Depth (m)

Sill depth
(m)

Grounding
line depth

(m)

Ice flux
(km3/year)

Existing
in situ
observation

Sermilik Fjord/Helheim Gl. (HG) Southeast Irminger
Sea

920 N/A 700 16 O,I,A,E

NEGISa/79N (NEGIS) Northeast Fram Strait 800 200 600 9 O

Ilulissat Icefjord/Jakobshavn Isbrae (JI) Central West Labrador
Sea

800 250 1000 21 O,I,A

Petermann Glaciera/Fjord (PG) North/Northwest Nares Strait 810 440 610 6 O,I,A

Rink Isbrae/Karrats Isfjord (RI) Central West Labrador
Sea/Davis

Strait

1200 430 840 9 Ob

Kangerlug- ssuaq Glacier/Fjord (KG) Southeast Irminger
Sea/Denmark

Strait

880 N/A 700 13 Ob

Upernavikc Glacier/Fjord (UG) Northwest Baffin Bay 900 N/A 100–700 2–4 I,A

Bowdoin Glacier/Fjord (BG) Northwest Baffin Bay 600 200 250 0.5 O,I,A

Kangiata Nunaata Sermia/Godthabsfjord (KNS) Southwest Labrador
Sea

600 200 250 7.5 O,I,A,E

The listed order represents the number of votes obtained for developing each glacier/fjord system as a GrIOOS site (see text). aThe Northeast Greenland Ice Stream/79
N and Petermann Glacier both terminate in perennial floating ice tongues. bTime-series of ocean variables exist here, but only for limited time ranges in the past and not
at present. cRanges are given since four glaciers flow into Upernavik Fjord (Ahlstrøm et al., 2013).

through the Global Ocean Observing System Framework for
Ocean Observing (Task Team for an Integrated Framework
for Sustained Ocean Observing, 2012). Several potential key
requirements were identified:

• Light and sustainable: Logistically or instrumentally
expensive observing systems are difficult to maintain over
time. Simple logistics, and ones that would make use
of interested communities, are best. However, previous
efforts [e.g., US Geological Survey (USGS) monitoring for
mountain glaciers] have shown that it is best to aim for
oversampling during the first several years of the observing
system, with the objective to identify key sites for sustained
observations, accommodating potential needs to scale
down the observing system over time.

• Monitoring requires proven technology: Although testing
new technology is an interesting prospect if it can reduce
later costs, an observing system is not the best place to
implement new technologies.

• Build on available logistics and programs: Although
programs that are already running would not easily scale
up, they can provide logistical support for additional
instrumentation deployment, if necessary.

EXISTING NETWORKS

Interest in the GrIS and surrounding fjords and ocean has grown
rapidly over the last few decades and led to an expansion of
monitoring networks both in situ and from remote sensing
observations (Figure 5). GrIOOS will be developed to connect
with and leverage these existing networks. In particular, the

connection with regional programs will provide the needed ‘far-
field’ connection of GrIOOS’ sites to the ocean (continental shelf
and large scale ocean); the ice sheet and the atmosphere. Here,
we outline a number of these existing research and observation
activities (see Figure 5 for location).

Ocean
Moored Arrays
The mooring array in Fram Strait (de Steur et al., 2014)
to measure Arctic Outflow was deployed in 1997 as a
government funded monitoring system collaboration between
Norwegian Polar Institute (Norway) and the Alfred Wegener
Institute (Germany). The array records temperature, salinity,
currents, ice thickness and ice drift, and is complemented by
annual conductivity/temperature/depth (CTD), lowered acoustic
Doppler current profiler (LADCP) and tracer transects in August
and September (Figure 5). It is expected that it will be maintained
for at least another decade. The array is concentrated in
deeper water and lacks moorings on the Greenlandic continental
shelf (due to ice hazards), however, repeat CTD transects are
conducted on the shelf whenever possible.

A mooring array across Davis Strait was deployed in
2004 as a US-Canadian collaborative project to measure
Arctic outflow west of Greenland (Curry et al., 2014).
The mooring array spans across the continental shelves
(Figure 5) and measures velocity, temperature, salinity,
sea ice thickness. It is supplemented by marine mammal
acoustics, year-round glider observations, and annual or
biennial hydrographic sections. Hydrographic measurements
also include macro-nutrient concentrations (i.e., nitrite
plus nitrate, silicate, phosphate, ammonium) and oxygen

Frontiers in Marine Science | www.frontiersin.org 11 March 2019 | Volume 6 | Article 138

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00138 March 28, 2019 Time: 18:10 # 12

Straneo et al. GrIOOS

FIGURE 5 | Map of primary existing in situ networks and long-term measurements around Greenland, overlaid on a map of ice velocity (Joughin et al., 2011) and
bathymetry (Morlighem et al., 2017). Glaciers listed in Table 2 are identified using labels from Table 2.
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isotopes (δ18O). The future of the network is uncertain and
dependent on funding.

Overturning in the Subpolar North Atlantic Program2 is
an international trans-basin observing system to measure
the meridional overturning circulation through mooring
arrays (Figure 5), repeat hydrographic transects, and glider
deployments (Lozier et al., 2017). The observing network,
which includes two mooring arrays on the southeast and
southwest Greenland shelves and slopes, was installed in 2014
and currently funded through 2020. It is expected that it will be
maintained for a decade.

Hydrographic Surveys
The Greenlandic fisheries industry has records, dating back to
1990, of bottom temperature collected during bottom trawler
shrimp density surveys off the southwest coast (e.g., Holland
et al., 2008). Approximately 50% of the stations are reoccupied
annually. The Icelandic mackerel survey on the east coast has
hydrographic measurements starting from 2013 that extend from
Greenland to Iceland and Norway.

Hydrographic transects in Godthåbsfjord have been
conducted since 2007 by the Greenland Institute of Natural
Resources (GINR) and include measurement of physical,
biological, and chemical variables (Figure 5). Ice-free conditions
in the fjord mean this survey is conducted year-round from
small vessels. One station near Nuuk is monitored monthly,
where a suite of ecosystem sampling is conducted in concert
with the hydrographic observations. Ecosystem monitoring is
being carried out only at a few other sites around Greenland, but
resources are limited and marine ecosystem observations only
begin in 2002. Moorings have been maintained during the last
decade at several locations.

Hydrographic transects in West Greenland: GINR also
monitors across the continental shelf of west Greenland during
yearly surveys (Figure 5) in June and July3; previously these
surveys were handled by DMI on behalf of the Greenland
Institute of Natural Resources (e.g., Myers et al., 2009).
Additionally CTD measurements are collected inshore
during yearly fishery surveys in Maniitsoq, Disko Bay,
Uummannaq, and Upernavik.

The Oceans Melting Greenland project is a 5-year NASA
program that began in 2015 to observe water temperatures
around the coast of Greenland (Figure 5) and measure how
marine terminating glaciers react to the presence of Atlantic
Water (Fenty et al., 2016). The project consists of annual aerial
ice topography measurements and gravimetry of glacier margins
and the deployment of 250 Airborne expendable CTD probes
(AXCTDs) to measure the properties and extent of Atlantic
Water around the coast.

The GEOTRACES project is an ongoing, coordinated
international activity to quantify the supply, removal, and
distribution of bioessential micronutrients (such as iron)
in the ocean. The completed cruise sections GA01 (North
Atlantic/Labrador Sea), GN02 (Labrador Sea/Baffin Bay) and

2www.o-snap.org
3https://archive.nafo.int/open/sc/2015/scr15-001.pdf

GN05 (Fram Strait) provide an invaluable dataset to measure
trace chemical species in the ocean around Greenland. The
GN05 section was notable for proceeding to sample within close
proximity to the 79N glacier and the GA01 section includes
shallow shelf stations which show a terrestrial influence on
shelf water properties. Whilst the GEOTRACES program has
an intentional offshore focus, there is now a clear possibility
of process studies to bridge the gap between these extensive
offshore sections and fjord/shelf regions to understand how far
offshore meltwater and glacially derived particles influence the
biogeochemical cycling of essential micro-nutrients in the ocean.

The Labrador Sea Monitoring Program of Fisheries and
Oceans Canada has collected physical, chemical, and biological
observations along a hydrographic transect across the Labrador
Sea (corresponding to Atlantic Repeat Hydrography Line 7
West of the World Ocean Circulation Experiment) since 1990.
Measurements span Hamilton Bank on the Labrador Shelf
to Cape Desolation on the Greenland Shelf. The transect is
occupied annually, although frequency is dependent on funding
(Yashayaev and Loder, 2017).

Autonomous Sampling
Large scale ocean properties can be obtained from the Argo
float program that, since 2006, maintains a global array of
more than 3000 free-drifting profiling floats that measure
hydrographic properties in the upper 2000 m of the ocean
(Roemmich et al., 2009). This program is complemented by
the Biogeochemical-Argo float program (Claustre et al., 2010;
Gruber et al., 2010), which alongside physical parameters collects
biogeochemical measurements. These floats are not useful on the
Greenland continental shelf but do provide boundary conditions
to monitor long-term average ocean basin property changes
around Greenland.

Water property information is also obtained by tagging
marine mammals, and a central repository for these data
already exist in the international Marine Mammals Exploring
the Ocean Pole to Pole program (Treasure et al., 2017).
These temperature/salinity profiles provide useful data on the
continental shelves (e.g., Sutherland et al., 2013) or offshore
(Laidre et al., 2010; Grist et al., 2014), and are potentially
a way forward for collecting more in situ data inside fjords
(e.g., Mernild et al., 2015) as well as a connection to the
ecosystem response of higher-trophic level animals influenced by
Greenland’s glacial fjords (Laidre et al., 2016).

Remote Sensing
Remote sensing data products can provide important
oceanographic information (such as sea surface salinity and
temperature), but are not currently generated at the scale that
is useful for GrIOOS. A few of these products are potentially
useful for fjord-scale processes, such as subglacial outlet
plumes, sea-ice cover, iceberg drift and biological productivity
(ocean color). However, satellites are limited in their ability
to observe subsurface features (e.g., phytoplankton blooms,
glacial and sediment plumes) that are relevant to GrIOOS
science goals. Sea surface height can be measured via satellite
altimetry, but with challenges near the coast and with limited
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coverage at high latitudes (Cipollini et al., 2016). Sediment
plumes can be monitored by MODIS Aqua/Terra and Landsat
8, and ocean color measurements (characterizing biomass of
primary producers and productivity) are collected by SeaWiFS,
MODIS, and Sentinel 3-A, among others. Most of these
variables, however, are considered ancillary to the essential ocean
variables for GrIOOS.

Remote sensing of sea ice can include active and passive
microwave estimates of the thermodynamic state of fast-ice
fringes of sea ice, sea ice drift estimates (including export
pathways on the west and east sides of Greenland), presence of
significant freshwater sea ice, sea ice dynamic properties through
coupling to glacier solid and liquid phase fluxes, and estimates of
the optical properties of the sea ice through microwave-optical
radiative transfer techniques (e.g., Barber, 2005). Specifically,
both Landsat (optical) and Sentinel (optical, radar) satellite
imagery can be used to identify sea ice distributions near the
Greenland coast. The combination of Landsat and Sentinel
imagery allows for the near-daily classification of features
after 2016. Prior to the launch of the Sentinel satellites,
repeat observations with Landsat occur every 16–18 days since
∼1999. Note that even medium resolution sea ice concentration
products, such as 4-km Multisensor Analyzed Sea Ice Extent data
(and, in 2015-2016, 1-km resolution data), fail to provide accurate
sea ice concentrations in Greenland fjords. Future GrIOOS
efforts would include the systematic production of these data at
temporal and spatial scales relevant for fjord dynamics.

Glacier and Ice Sheet
Surface Speed
Both optical and radar remotely sensed data can be used to
derive velocity data. Optical data has the benefit of multiple
bands of data, which can be useful for co-processing velocity with
other information, but imaging the ice surface through clouds
or darkness is not possible. Radar data avoid these problems
but does not include additional bands of data. Satellite coverage
for both optical and radar data has expanded substantially over
the last two to three decades, with additional satellite launches
for both optical and radar instruments planned within the next
few years. Velocity data are now available in weekly to monthly
time resolution via projects including GoLIVE (Global Land Ice
Velocity from Landsat 8 Extraction4); ITSLIVE (Intermission
Time Series of Land Ice Velocity and Elevation), which will
begin in 2019; and NASA MEaSUREs5, all with key glaciological
data hosted at the National Snow and Ice Data Center. Velocity
data are also available for more limited areas via the ENVEO
Cryoportal6, CPOM Data Portal7, and Technische Universitat
Dresden8. The European Space Agency’s (ESA) climate change
initiative for the GrIS has operationally produced a number
of relevant remote sensing data products including ice sheet
velocity, calving front position, surface elevation change and

4nsidc.org/data/golive
5nsidc.org/data/measures
6cryoportal.enveo.at
7www.cpom.ucl.ac.uk/csopr/iv
8data1.geo.tu-dresden.de/flow_velocity

grounding line position. These datasets are updated semi-
annually and are freely available (e.g., Mottram et al., 2018).

Terminus Position
As a result of recent interest in the various processes influencing
glacier termini there has been renewed interest in tracking glacier
terminus changes over time (Bjørk et al., 2012). Currently yearly
observations of the terminus position are available (Murray et al.,
2015; Joughin et al., 2017) for the entire ice sheet, including via
NASA and ESA. Regional subsets of glaciers have more frequent
observations of terminus position, up to twice-monthly in some
regions (e.g., Seale et al., 2011; Carr et al., 2015; Murray et al.,
2015; Catania et al., 2018), but these records are dispersed among
individual researchers or archives. GrIOOS will need to build
on these existing efforts to establish a consistent and complete
terminus position data stream.

Surface Elevation
From 1993 to 2003 surface elevation data have been acquired over
the GrIS to understand glacier dynamic evolution in response
to climate forcing with NASA’s airborne laser altimeter (Krabill
et al., 1999; Abdalati et al., 2002). From 2003 to 2009 NASA’s
ICESat mission provided laser altimetry data over the entire
ice sheet and altimetry is now being continued through to the
recent launch of ICESat-2. In the interim, NASA’s Operation
Icebridge has provided continuous elevation data9. Combined,
these data are used to constrain modeled estimates of elevation
change for the entire ice sheet over the entire duration that
observations are available (Csatho et al., 2014). In addition
to laser altimetry, surface elevation change observations from
additional airborne and satellite missions have enabled the
creation of digital elevation models (DEMs) for the GrIS. In some
cases these DEMs have been created from historical air photos
acquired in stereo to produce elevation data extending back to the
late 1970s (Korsgaard et al., 2016). Additional DEMs have been
created from the commercial vendor DigitalGlobe through its
provision of high-resolution optical imagery of the polar regions
over the launch of six WorldView spacecraft (Shean et al., 2016).
DigitalGlobe coverage began in 2009 with sporadic coverage until
2012, with the periphery of the GrIS covered with stereo-pairs
every year since. Data are currently processed and made available
through the Polar Geospatial Center (Porter et al., 2018). The
Polar Geospatial Center also serves time-stamped ArcticDEM
strips. A useful summary of the last 25 years of surface elevation
change is given by Sørensen et al. (2018) based on ESA Greenland
data from ERS, ENVISAT and Cryosat-2.

Surface Runoff and Subglacial Discharge
The estimate of ice sheet surface mass budget and runoff,
routed through individual glacier catchments, is critical for
quantifying the spatio-temporal distribution of meltwater-driven
terminus melt as well as freshwater discharge and the timing
and magnitude of biogeochemical transports. However, ice sheet
SMB and runoff continues to be poorly validated at the outlet
glacier scale because of the difficulties involved in measuring

9icebridge.gsfc.nasa.gov
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subglacial discharge. Observations of SMB are made at the
locations of automatic weather stations (van As et al., 2011) and
from snowpits and shallow firn cores on e.g., repeat transects
(Machguth et al., 2016). This data has been key to evaluating SMB
and runoff derived from regional climate models (e.g., Langen
et al., 2017) that has been used in the past for driving ice sheet and
coupled ocean-ice sheet models (e.g., Slater et al., 2015). However,
while these observations will continue to be important the on-
ice environment at outlet glaciers is typically not conducive or
indeed accessible to the kind of on-ice instrumentation required
to measure surface accumulation, melt and runoff particularly
over long time periods.

Various researchers have discretized time-series surface mass
balance data (described below) into regional or individual glacier
catchments using surface and bed topography of the ice sheet
to quantify how much runoff drains into a particular catchment
(e.g., Carroll et al., 2016; Jackson et al., 2017). The timing and
delivery location of meltwater runoff to the terminus has been
cross-checked with identification of visible sediment plumes on
the fjord surface from satellite images and the formation of
terminus embayments where enhanced terminus change occurs
as a result of significant melt at depth (Fried et al., 2015).
However, not all subglacial conduits will deliver sediment-
laden water that reaches the fjord surface (Carroll et al., 2016).
Empirically most (∼80%) of the runoff transits through a small
number of channels that have the largest impact on terminus
retreat (Fried et al., 2018). Validation of runoff has occurred in
regions with land-terminating ice, for example in the Watson
River catchment in southwest Greenland (Smith et al., 2017), with
good agreement between proglacial discharge and surface melt
estimated via regional climate model (van As et al., 2017).

Atmospheric Measurements
Weather Station Data
Weather observations in Greenland are perhaps some of
the longest time-series and most mature climate information
available, with DMI and Asiaq (Asiaq Greenland Survey)
maintaining a network of meteorological stations around the
margins of the GrIS (and at Summit Station), in some cases back
to 1784. These data are freely available to download from the
DMI homepage and are fully quality controlled (a new open data
policy at DMI includes the development of a data portal that
will considerably simplify the process of accessing existing data
and other data or products, such as forecast model output that is
not currently routinely available). As a national weather institute,
DMI stations conform to World Meteorological Organization
standards in terms of siting and sensors. There are also
radiosondes operated at two sites on the coast of Greenland
giving atmospheric profiles. PROMICE is a Danish government-
funded monitoring network with the goal of providing consistent
long-term observations to calculate mass loss by the energy
budget method using weather station observations (precipitation,
surface temperature, radiation, humidity, wind speed, and
direction) from a network of sites around the GrIS (van As et al.,
2011, 2017). This network consists of > 23 automated weather
stations distributed in the ablation zone around the GrIS since
2007. The network has large spatial coverage and is expected to be

maintained long-term for monitoring mass loss of the ice sheet.
The main component of PROMICE is the free online database
that includes historical mass balance data, documentation of
recent change, and outreach efforts. PROMICE is complemented
by GC-NET, a network of AWS in the upper accumulation
zone of the ice sheet operated by University of Colorado (e.g.,
Steffen and Box, 2001).

Dynamical and Statistical Reconstructions
Several methods are used to reconstruct the surface atmospheric
state above the GrIS, from which surface mass balance may be
derived ice sheet-wide. Global atmospheric reanalysis products
assimilate satellite and in-situ data into atmospheric weather
models to provide best-possible analyses of the state of the
atmosphere, including the GrIS. Examples of such products are
ECMWF’s ERA-Interim (Dee et al., 2011), ERA-20C (Poli et al.,
2016), or NASA’s MERRA-2 (Gelaro et al., 2017); for a more
complete list, see Lindsay et al. (2014). Because of the limited
spatial resolving power of global reanalyses (order of 30 km over
Greenland), limited area (i.e., regional) atmospheric or climate
models have been developed that use lateral boundary conditions
from global reanalyses. Limited area climate models provide
hindcast simulations of the regional domain at much higher
spatial resolution (order of 10 km) that are calibrated or validated
using Greenlandic weather observations, and compute ice sheet-
wide surface mass balance. Three major such efforts are the
Modèle Atmosphérique Régional (MAR; Fettweis et al., 2017)10,
the Regional Atmospheric Climate Model, version 2 (RACMO2;
Noël et al., 2018)11, and the High-Resolution Limited Area Model,
version 5 (HIRLAM5; Langen et al., 2015; Mottram et al., 2017a).
Finally, to obtain very high-resolution (order of 1 km) estimates
of the surface atmospheric state and implied surface mass
balance, statistical downscaling methods have been developed
(e.g., Noël et al., 2016; Wilton et al., 2017). In these limited
area models, the freshwater discharge from the ice sheet (called
runoff) is provided as a time-series across the entire region.

A new Arctic regional reanalysis for 1998–2020, at the
extremely high resolution of 2.5 km, will also go into production
in 2019–2021 with a specific aim of resolving Greenland’s
complex topography including fjords. Part of the Copernicus
regional reanalysis project and run by the Norwegian, Danish,
Swedish, Finnish and Icelandic Meteorological Institutes together
with Meteofrance, this represents a major step forward in regional
atmospheric data for the Arctic and will provide exceptionally
high quality data. The reanalysis is built on the HARMONIE
numerical weather prediction system (Bengtsson et al., 2017)
used operationally in Europe, Greenland and Iceland and verified
to be of very high quality over the ice sheet including in the fjords
(Mottram et al., 2017b).

Other Integrated Networks
Greenland Ecosystem Monitoring (GEM)
Greenland ecosystem monitoring is an integrated monitoring
and long-term research program on ecosystems and climate

10www.cryocity.org/mar-explorer.html
11www.projects.science.uu.nl/iceclimate/models/racmo.php
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change effects and feedbacks in the Arctic. Since 1994, the
program has established a coherent and integrated understanding
of the ecosystem functioning in a highly variable climate, which
is based upon a comprehensive, long-term inter-disciplinary data
collection carried out by Greenlandic and Danish monitoring and
research institutions, primarily at the three main field stations:
Nuuk in low arctic West Greenland, Qeqertarsuaq in Disko Bay,
and Zackenberg in high arctic Northeast Greenland12. GEM sites
also have significant fjord measurements that could be useful
in this context.

Greenland Integrated Observing System (GIOS)
Greenland Integrated Observing System is a broad institutional
collaboration between research institutions to integrate and
collaborate on long-term measuring programs in Greenland. This
has so far resulted in the Arctic gateway, Isaaffik homepage13

where all measuring programs and projects in Greenland are
visible. NSF has recently added their project and activities
also. A combined GIOS program is under development and
discussions on how to make this a part of an Arctic science hub
in Greenland is currently taking place.

DMI Winter Observatory and Ongoing NW Greenland
Observations
DMI runs an ongoing (started in 2011) winter monitoring
program based in Qaanaaq in northwest Greenland. The
observational effort relies on the engagement of and cooperation
with local hunters and traditional knowledge has been taken into
account in the design and timing of components, which include:

1 In December, a sled team instruments a section across
the fjord with ice tethered ocean moorings, ice mass
balance buoys, and an on-ice automated weather station.
Instruments log data until June and are maintained
by local hunters.

2 In March, when conditions are favorable for sled journeys,
a week long oceanographic CTD campaign is conducted
seaward from the glaciers at the head of the fjord.

In addition, DMI operates a manned station in Qaanaaq
that offers logistic support for the activities in the fjord,
including recent Japanese research activities at Bowdoin Glacier
(Sugiyama et al., 2015).

Baffin Bay Observing System
Canada leads a new Canada Excellence Research Chair program
that will focus efforts on fresh water-marine coupling in
Baffin Bay. The program is designed as phase one to a
Baffin Bay Observing System (Rysgaard and BBOS Committee,
2017) that is being developed as a parallel effort to GrIOOS.
The Baffin Bay Observing System is a unique ‘big science’
idea building on a strong collaboration between national and
international Universities, Inuit organizations, communities
on both sides of Baffin Bay, government ministries and
agencies, defense, shipping and marine based companies,

12http://g-e-m.dk
13https://www.isaaffik.org

various technology providers, industry, coastal and offshore
fisheries and colleges, all focused around a single collaborative
world-class-bay-wide observatory14. It is being initiated in
the northern part of Baffin Bay through strong collaboration
between the Arctic Science Partnership15 and the Pikialasorsuaq
Commission16.

The Canadian program will develop knowledge, tools, and
models that will improve understanding of how freshwater
fluxes (solid and liquid phase) from glaciers, ice caps and
the GrIS, are delivered to the adjacent marine system and
what impacts this freshwater has on physical, biological, and
geochemical processes in the marine system. The geographic
focus of the work will be Baffin Bay, with investigations of
both Canadian and Greenlandic glaciers exporting freshwater to
the Bay. Process studies will also include in situ studies of the
North East Greenland Ice Stream, Petermann Fjord, Ellesmere
and Baffin Island Glaciers, and ice fluxes exiting the west side
of the GrIS into Melville Bay. Discussions have begun with
how to link the field stations sites of the CERC program to
the station sites of GrIOOS and how to engage the CERC
research themes in this international collaboration. An Inuit
led community based monitoring program will be developed
through a unique partnership with the Inuit Circumpolar
Council focused on the Pikialasorsuaq, near the North Open
Water Polynya area of northern Baffin Bay. The northern end of
Baffin Bay is a key area for both renewable and non-renewable
resources, and an excellent candidate for an Inuit-managed
marine management area.

GNET: Greenland Network of GPS Stations
GNET (Greenland GPS Network) – a network of GPS stations,
located on the bedrock, initially deployed and maintained by
funding from NSF – is now owned and operated by the Danish
Technical University under contract to Ministry of Energy,
Climate and Utilities. The stations have proved to be successful
in quantifying precise crustal movements related to changes in
ice load and, as such, are therefore a valuable source of validation
of both local and ice sheet wide mass changes.

ORGANIZATION/FRAMEWORK

It is envisioned that GrIOOS will be achieved through the
coordination of long-term measurements at multiple sites
collected by different institutions and nations. It can build on
existing efforts to build long-term records of certain oceanic,
atmospheric and/or glaciological parameters at certain sites
which have, so far, been occurring in isolation one from the
another. By identifying the measurements needed at each site,
and describing the data collection and processing protocols –
GrIOOS will provide a framework that enables coordination
amongst the different efforts and a structure for making the data
available to the broader scientific community.

14http://www.researchgate.net/project/Baffin-Bay-Observatory-System
15http://www.asp-net.org
16http://pikialasorsuaq.org/en/
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Overall Governance Structure
The international and multidisciplinary nature of GrIOOS calls
for a governance structure that serves several overarching
purposes: (i) efficient pooling and optimal use of the
limited observational assets to fulfill the science goals; (ii)
efficient communication, coordination, and collaboration
across a heterogeneously structured international and multi-
disciplinary science team, funding agency landscape, and
organizational/government representation; and (iii) successful
and sustained execution of GrIOOS. Similar challenges have
been successfully tackled, or are being addressed by international
programs, such as the Southern Ocean Observing System17 the
Integrated Atlantic Ocean Observing Systems18 or the Deep
Ocean Observing Strategy19 (see Levin et al., 2019). To achieve
these goals, we propose the establishment of a governance
structure as follows:

(i) An Executive Committee oversees the proper execution and
efficient functioning of GrIOOS at an operational level. The
Executive Committee also directs a Project Management
Panel, which is responsible for, and responsive to, day-to-
day operational aspects.

(ii) A Scientific Steering Committee ensures that GrIOOS is
working toward achieving the science goals.

(iii) Working with the Executive and Scientific Steering
Committees are several panels and boards:

• An External Advisory Board – to oversee GrIOOS, make
recommendations where needed;

• A Data Management Panel – its role is to implement and
oversee an ambitious data management plan that follows
FAIR principles (see Data Protocol and Management).

• A Community Engagement and Outreach Panel – its role
is to engage scientific, end user, stakeholder, and local
communities in various aspects of the program (see End
Users);

• A Liaison team of international/interagency members,
working on matters concerning international and/or
interagency (see International/Interagency Liaisons).

Data Protocol and Management
A vision for GrIOOS is to implement the principle of FAIR
data (Wilkinson et al., 2016) within the complexities of a multi-
disciplinary international program. In the following we list some
of these tasks and provide further comments, where applicable.

Pre-deployment phase: Much can be gained in terms of
efficient data management by developing a comprehensive sensor
information system, which consists of creating and managing
metadata of devices, sensors, and variables ahead of their
deployment. Likewise, data quality control policies and best
practice procedures should be established. Finally, data sharing
policies and procedures in line with the FAIR principles should
be formulated and agreed upon early on in the project.

17http://www.soos.aq
18http://atlanticblueprint.net
19http://www.deepoceanobserving.org

Post-deployment phase: An infrastructure is required for data
acquisition and transmission to an archiving facility that can
further process the data. As with most observing networks,
the value of a network is augmented by serving multiple
communities and stakeholders (but without compromising its
primary purpose). Real time data dissemination should be
considered where feasible for variables and/or measurement
platforms; primary applications of real time dissemination
are ingestion of these observations in forecast models, as
well as operational and local community support. An initial
goal of the GrIOOS executive committee will be to identify
mature variables (and corresponding platforms) for real time
dissemination. Collaboration with the operational branch of
the Joint Technical Commission for Oceanography and Marine
Meteorology of the World Meteorological Organization and
UNESCO’s Intergovernmental Oceanographic Commission will
be explored to enable real time data transmission.

After transmission, metadata tagging should be completed
(where needed) and the data set curated. It should be ensured that
the data are searchable and accessible using standard metadata
formats that are supported by common protocols, web services,
and search engines (Google, DataCite, WorldCat, EOSDIS).

In considering data storage, archiving, and server
infrastructure, GrIOOS should establish the roles of existing data
portals that are recognized by the World Data System (major
portals in the U.S. are http://arcticdata.io and http://nsidc.org;
in Europe: http://pangaea.de and http://ices.dk). Interoperability
between them should be assessed or invigorated. Finally, GrIOOS
should address how to ensure the longevity and sustainability
of the data infrastructure beyond the conventional life cycle
(from measurement/creation to post-analysis archiving20)
of the data sets.

Several frameworks exist to date that have implemented (or
work toward implementing) some of the tasks listed above. The
U.S. National Science Foundation’s Arctic Observing Network
program requires data to be immediately available. PROMICE
demonstrates that near-real time data are important, valued,
and successful. Quick access to data is key either centralized
or via a standardized metadata structure that enables data
access in the cloud.

A well-developed data infrastructure that succeeds at data
integration (i.e., crossing of ice-ocean-atmosphere divide as well
as the synthesis of remote-sensing and in situ observations)
has the potential of creating transformative science through
simultaneous accessibility of diverse and heterogeneous, spatio-
temporally tagged geophysical parameters. In such a way, the
disciplinary “sparse data” problem may turn into a multi-
disciplinary “big data” opportunity that lends itself to emerging
tools of big data analytics or coupled Earth system data
assimilation. Another important aspect of the data infrastructure
to be developed is the evaluation process to measure the
success and impact of the observing system itself. Such
metrics would include data portal access and usage, as well as
recording who is using the observations (e.g., academia, industry,
other stakeholders).

20https://www.dataone.org/data-life-cycle
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End Users
The data provided by GrIOOS targets a diverse array of end-users
from the governmental, non-profit, academic, industrial, and
local communities. These observations are needed to improve
ice, ocean, atmospheric and earth system models in which
the processes governing glacier/ocean exchanges are currently
absent or represented through parameterizations that have
not been validated by field measurements. GrIOOS data can
support improved parameter development. Additional identified
users include local Greenlandic and Canadian communities
searching for information on real-time ocean temperatures, sea
ice coverage, nutrient levels, or productivity in their nearby
fjords, and national governments searching for information on
iceberg hazards, long-term trends in water properties, or glacier
melt predictions that might drive local hydroelectricity. Other
end-users are the international iceberg hazard community, which
includes the International Ice Patrol (Murphy and Cass, 2012)
and Canadian efforts (Crawford et al., 2018), as well as the marine
mammal community (Roquet et al., 2017; Treasure et al., 2017).
In addition to governmental entities, GrIOOS data will serve local
and international fisheries, and local tourism industries that rely
on both the ice and ocean environment.

To make GrIOOS data available to these communities, and
gather feedback on future developments, GrIOOS will hold
inclusive annual meetings. Beyond these meetings, GrIOOS will
maintain an active program website and data platform that will
be a natural intellectual gathering location for these groups to
exchange data and ideas. As needed GrIOOS will hold open
workshops on data and uses, as well as update the program
website with community tools, tutorials, and wikis; definition
of metrics of progress; regular communication of progress; and
requests for input at public forums. These activities will be
overseen by the Community Engagement and Outreach Panel.

On the outreach side, one prime example is the world heritage
site Ilulissat Icefjord where significant increase in tourism is
expected to view the impressive icebergs and fjord system and
where a new museum with a significant scientific content is
currently under construction. GrIOOS and its community can
leverage the high visibility of Greenland in outreach and public
education efforts across the globe. The experience of using
striking visualizations of scientific data to generate awareness
has been successfully demonstrated on the polar portal website21

where a broad array of mostly near real-time data from models
and observations in Greenland as well as the wider Arctic
receives around 180,000 page impressions per year. The outreach
potential of the polar portal is demonstrated by a teacher-
led initiative currently underway and funded by the Danish
government to develop teaching resources based on polar portal
datasets for Danish and Greenlandic high school students. These
resources will be made publically accessible via the site and will
be translated into English.

Within the outlined governance structure (see Overall
Governance Structure), community connections will ensure that
all interested groups are involved in project development and
that outputs are widely used. These groups include the modeling

21polarportal.dk

community (e.g., the modeling intercomparison project groups),
researchers working on surface processes at the ice sheet edge
(e.g., the Community Surface Dynamics Modeling Systems
community), groups conducting process studies on ice-ocean
interactions and fjord environments, biologists and ecologists
focused on Arctic flora and fauna, sedimentologists, nutrient
flux and biogeochemistry experts, industry members, local
communities and hunters, and regional governments.

International/Interagency Liaisons
Major roles of the Liaison team are to maintain efficient
communications between agencies and foundations at the
national and international level.

• In Europe, the team will establish primary liaisons with
institutions and organizations in Greenland (including
its government) and Denmark, in particular Asiaq,
GINR, GEUS, DMI, Danish Technical University, Aarhus
University, Københavns University, PROMICE, and GEM;
see also section “Other Integrated Networks.” Strong links
will also be established with institutions, organizations, and
governments of other countries that conduct significant
research in Greenland, such as Norway, United Kingdom,
Germany, Sweden, and Switzerland.

• In the U.S., lines of communications will be established
with both inter-agency organizations, such as the
Interagency Arctic Research Policy Committee (IARPC),
Interagency Ocean Observation Committee (IOOC), US
CLIVAR, Arctic Research Commission of the United States
(USARC), Arctic Research Consortium of the United States
(ARCUS), as well as directly with major funding agencies
(e.g., NASA, NSF, USGS).

• In Canada, one primary liaison will be through the
University of Manitoba. Government involvement
will be sought through Fisheries and Oceans Canada
and Environment and Climate Change Canada, with
particular reference to shared jurisdiction of Baffin Bay.
Another important link is with the Inuit Circumpolar
Council, with particular connections to similar councils
in Greenland and Canada through the Pikiialasorsuaq
Partnership in Baffin Bay.

• Internationally, we will strengthen or establish links to
international organizations or programs that are engaged in
GrIOOS related themes, e.g., CliC, International CLIVAR,
GEOTRACES, Arctic Council. In addition, we will seek to
include efforts by groups in all other countries that are
engaged in GrIOOS related efforts.

MOVING FORWARD

The case for an integrated GrIOOS is clear: Greenland’s
fjords and outlet glacier regions are key connections between
the open ocean and the interior ice sheet that are not
currently monitored systematically. We plan to establish a
GrIOOS network to collect long-term data on essential variables
from key ice sheet-ocean locations that cover a range of
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glacier/fjord configurations, different oceanic basins, and climatic
regimes. Essential measurements to be collected at these sites
include oceanic (temperature, salinity, pressure, sea ice cover,
iceberg production and distribution, and basic biogeochemical
parameters in the fjord and nearby shelf), glaciological (ice
velocity, surface elevation and ice thickness, terminus position,
and subglacial runoff) and atmospheric (wind, temperature,
precipitation, and radiation). Bathymetry and bedrock are
foundational data sets needed for any GrIOOS site. Together,
these data provide the information needed to understand
and project ice sheet-ocean behavior and change and its
impact on the ocean.

Over the next few years, the continued development
and maintenance of GrIOOS will require close international
collaboration. GrIOOS’ implementation will need to be
coordinated amongst different countries, paying close attention
to minimizing costs and optimizing shared logistics. Several
glacier/fjord locations that have ongoing observational programs
may be designated GrIOOS sites, and a protocol for the
establishment and endorsement of future sites will be
formalized through our governance structure. Data processing
protocols and data sharing practices will also be formalized.
Quick, open, and centralized access to data is critical to
all GrIOOS users.

GrIOOS will represent a step-change in our observational
capacity around the GrIS and will drastically improve our

understanding of mechanisms that influence sea level rise,
increased freshwater flux to the North Atlantic Ocean, and
local and regional ecosystem effects from a changing ice sheet.
A successful GrIOOS will satisfy the needs of many distinct end-
users, from the scientific community of global climate modelers
and ice-ocean researchers to local and regional government
entities around Greenland.
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