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Ecology is a young discipline that needs to develop into a predictive science to
confront the challenges of human population pressures and habitat degradation.
Basic ecology has disproportionately focused on undisturbed, charismatic ecosystems,
species and academic questions, leaving gaps in its ability to inform the conservation
and management of degraded, threatened ecosystems. Foundation species-dependent
organisms have been studied at the expense of the habitat-forming species that
build and maintain communities. We used cobble beaches as a model system to
discuss the consequences of this disparity on translational ecology. We suggest that
the historic development of ecology has led to an academic discipline ill-suited for
proactive conservation. We propose that the incorporation of foundation species and a
hierarchical organization theory, into the conceptual framework of ecology, will improve
its predictive ability and successful application in conservation and the restoration of
degraded ecosystems.

Keywords: conservation biology, experimental ecology, foundation species, hierarchical organization,
natural history

INTRODUCTION

Understanding the physical and biological forces that create patterns in biotic communities and
ecosystems is the major goal of ecology. Community, evolutionary, and conservation ecology have
grown from a common ancestry of natural history. In spite of this, ecology has been challenged
in its ability to develop into a predictive science informing the management and restoration of
threatened or damaged systems (Wallington et al., 2005). Due to the barriers created by the historic
development of ecology, conservation practice has been piecemeal, differing across ecological
systems, and has been predominantly reactive, rather than proactive (Brooks et al., 2006; Sutherland
et al,, 2011; Cook et al., 2013, 2014). A unified translational conceptual ecology framework based
on the fundamental role of a hierarchical community organization is needed to confront the
contemporary conservation crisis.
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A BRIEF HISTORY OF ECOLOGY

Originating from the seminal science of natural history
observation, ecology developed to explain processes and
patterns in natural communities (Odum, 1953; Krebs, 1972).
Contemporary ecology and evolutionary biology grew from
global exploration voyages of the 19th and early 20th Centuries.
Darwin and Wallace pioneered the study of evolution on these
voyages (Darwin, 1859). Ecology pioneers like Tansley and
Clements described species and studied spatial patterns to build
the conceptual foundation of ecology (Tansley, 1935; Clements,
1936). Their work was correlative, assumed causation from
correlation, and led to the quantification of species distributions
relative to abiotic variables—a hallmark of ecology in the first half
of the 20th century.

From this descriptive beginning, theoretical ecology focused
on niches, competition, and trophic dynamics. Gause’s (1934)
“Struggle for Existence” painted an ecological framework echoing
Darwin’s work. Grinnell, Elton, and Hutchinson developed a
niche theory based on distribution and abundance patterns,
reflecting physical tolerances and competitive interactions among
species (Grinnell, 1917; Elton, 1927; Hutchinson, 1957). This
era influenced ecological theories, such as Garret Hardin’s
competitive exclusion principle (Hardin, 1960) and Eugene
Odum’s ecosystem superorganism concept (Odum, 1969), which
assumed ecosystem equilibrium but ignored the dynamic fluxes
and disequilibrium that are conspicuous in the field.

Hypothesis-driven field experiments (Connell, 1961; Paine,
1966) led to recognition of disturbance (Dayton, 1971) and its
role in structuring natural communities. Experimental ecology
further demonstrated the limited ability of correlations to provide
mechanistic answers in community ecology. Hutchinson’s
“Ecological Theater and the Evolutionary Play” (Hutchinson,
1969) metaphor captured our contemporary view of how
natural evolutionary and ecological processes generate patterns
in nature. But, this recognition of a unified theoretical
framework of ecological pattern generation came shortly before
recognition that all ecosystems on Earth were impacted by the
unnatural human influences of overexploitation of resources,
eutrophication, and climate change driven by our unchecked
population growth (Vitousek, 1994; Steffen et al., 2007; Halpern
et al., 2008; Estes et al., 2011). As these stressors have intensified
in spatial extent, severity, and/or frequency, the conservation
of natural systems has been affected by shifting baselines
syndrome (Pauly, 1995) and “generational amnesia” (Alleway and
Connell, 2015), where “healthy” baselines and expectations for
ecosystem services are continuously shifted toward lower, more
degraded states.

PROBLEMS UNITING CONCEPTUAL
ECOLOGY AND CONSERVATION
BIOLOGY

Attempts to apply ecological principles to conservation practice
exposed inherent problems that limit the value of ecology as a
predictive, applied science (Balmford and Cowling, 2006; Kareiva
etal., 2017). One primary issue is that ecology is strongly habitat,

taxa, and community biased, and lacks a unified conceptual
framework (Lawton, 1999; Meine et al., 2006). Animal and plant
ecologists use different terminology, are commonly described
by systems in which they work, and produce results that are
often habitat-specific and not generalized. Even assembly rules
and operational definitions of concepts differ among subfields,
begging the question: can ecology become more than a collection
of case studies?

The information era has created new problems for developing
a predictive, mechanistic, understanding of community ecology.
The drift toward summaries and/or meta-analyses of databases
and existing information, rather than field observations and
experiments in natural systems has slowed progress in the
discipline and prevents ecology from becoming a predictive
science. Review papers can be useful as hypothesis generating
tools and for identifying gaps in understanding but place a
potentially detrimental focus on past research (Schmidt and
Hunter, 2014). We argue that a hypothesis-driven, experimental
path is needed to synthesize ecology, evolution and conservation
into the predictive science needed to confront conservation
challenges into the future.

Analogous to the recognition by molecular geneticists that
not all gene sequences are equally important, experimental
ecology has shown that not all species are equally important
in structuring communities and provisioning ecosystem
functionality. First described by Dayton (1972), foundation
species are abundant organisms that provide habitat templates
for communities. Across most ecosystems, foundation species
significantly alter physical and biological stress regimes,
promoting increases in biodiversity, function, and overall
ecosystem development (Stachowicz, 2001; Angelini et al,
2015; Ramus et al, 2017). Most ecosystems can therefore
be viewed as hierarchically organized, since the community
of inhabitants and their network of ecological interactions
are dependent on the setting created by foundation species.
In contrast to the highly abundant foundation species,
keystone species are those that have a disproportionately
large impact despite their low abundance (Power et al., 1996)
and their importance can become more apparent as human
stressors amplify, interact, and alter the trophic structure of
ecological communities (Jordan, 2009). There is an ongoing
debate in the literature regarding exact definitions of these
terms (Mills et al., 1993) and the context of if and when
foundation species may have disproportionate, keystone effects
(Coleman and Williams, 2002). Nonetheless, the breadth
of their potential interactions and the depth of their reach
into the community means that both foundation species and
keystone species typically require hypothesis-driven field
experiments to identify, rendering species lists and diversity
metrics good descriptors, but largely useless as predictors without
underlying mechanisms.

COBBLE BEACHES AS MODEL
SYSTEMS FOR CONCEPTUAL ECOLOGY

We suggest that the conceptual development of modern ecology
is in danger of becoming untethered from the natural history
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field acumen of ecology’s founders, and that the lack of this
grounding will obscure the development of an inclusive, robust
and predictive ecology. We explore this perspective using
cobble beach community model systems. Most ecosystems are
defined by foundation species and illustrate the importance of
a hierarchical organization and the contribution of keystone
species. We use cobble beaches because they are rare relative
to the important role they have played in developing ecological
theory, making them “keystone” in their contribution to the
advancements of conceptual ecology.

Cobble beaches occur where glaciers from Pleistocene ice ages
crushed and eroded bedrock into boulders, cobble, and sediment.
In North America, the mass of the 2.5 km-thick Laurentide Ice
Sheet covering an area exceeding 13,000,000 km? compacted,
crushed, fractured, scoured and depressed underlying bedrock.
The resulting dislodged rocks, sediment, and debris were pushed
by advancing glaciers or deposited as the ice retreated. These
processes created capes, coastal islands, and rocky and cobble
beaches where shorelines were scoured, and rock debris was
deposited (Packham and Willis, 1997).

While cobble beaches have recently attracted the attention
of ecologists, they have played a pivotal role at important
stages in the development of conceptual ecology. Cobble
beaches harbor foundation species-dependent communities
at experimentally manageable spatial scales and have
disproportionately contributed to a mechanistic understanding
of community assembly and dynamics directly applicable to
management and conservation. In particular, the dependency of
biological communities on substrate stability and positive species
interactions was experimentally elucidated in this system (Bruno,
2000; Bruno and Bertness, 2001).

The first general idea that grew from cobble beaches
featured the consequences of disequilibrium rather than
stability and equilibrium - the intermediate disturbance
hypothesis (IDH). Early ecologists avoided disturbed habitats,
leading to the assumption that communities existed in
equilibrium, a problematic belief for conservation ecology
as nearly all are disturbed from their natural state due to
human impacts (Watson et al., 2016). This bias became fixed
in early ecological theory until Dayton (1971) and Platt’s
(1975) work in rocky intertidal and grassland ecosystems,
respectively, pointed to the role of disturbance in structuring
communities. This work inspired cobble beach studies by
Sousa (1979) showing that maximum species diversity and
richness occur on intermediately sized rocks large enough
to prevent constant disturbance and colonization by weedy
species, but small enough so they were disturbed occasionally
which limited the emergence of a competitive dominant. The
development of the IDH (Connell, 1978; Sousa, 1979) freed
ecologists from the constraint of equilibrium and was exported
and extrapolated extensively to virtually all communities.
Future insights were based on the transitional nature of
cobble beaches lying between muddy beaches and boulder
fields, their interaction with the physical forces that cause
stress and instability, and the dependency on positive biotic
interactions for structuring the communities that inhabit them
(van Wesenbeeck et al., 2007).

FOUNDATION SPECIES AND
ECOSYSTEM ENGINEERS

Foundation species are abundant organisms that provide habitat
and infrastructure templates for communities (Dayton, 1972).
Ahead of its time, Dayton’s foundation species work did not fit
into the food web-based conceptual ecology developing at the
time and contradicted Paine’s (1966) idea that keystone species
were the most important drivers of species diversity by suggesting
that habit-forming organisms were the primary determinant
of biodiversity patterns, rather than the species that ate them.
Dayton (1972) coined the term foundation species working
with sponges in Antarctica, and then popularized the term
through his work with intertidal algal canopy communities that
provided shading, water retention, and thermal stability during
low tide exposure to physically stressful terrestrial conditions,
and acted as a refuge from consumers during high tide foraging
(Dayton, 1975). Without the stress amelioration provided by
the algal canopy, the understory organisms suffered increased
mortality from physical and biological stressors. Foundation
species structure ecological communities by providing physical
structure and stress amelioration across most ecological systems,
whether they are algal canopy, forest canopy, coral reefs,
mussel or oyster beds or seagrass meadows (Bruno and
Bertness, 2001; Ellison et al., 2005; Angelini et al, 2011;
Altieri and van de Koppel, 2013).

Despite early development of the foundation species concept,
the general importance of foundation species in biological
communities was not recognized until the critical role of
positive feedbacks for community persistence and stability
became apparent in plant communities (Wilson and Agnew,
1992). Positive feedback switches were proposed to be common
in community assembly, occurring when species ameliorated
physically stressful habitats, and improved growth and survival
conditions for themselves and others. One of the first
experimental examples was the foundational role of cordgrass
colonization of cobble beaches. Foundational cordgrass was
shown to transform areas characterized by low-diversity, high
disturbance, mobile, rolling rocks to biodiverse, stabilized
habitats that hosted a guild of plants that could develop into
fringing salt marshes replete with the plant zonation, interspecific
competition, facultative plant-animal mutualisms and ecosystem
services that characterize salt marshes (Bruno, 2000). This
positive feedback switch is evident in New England salt marshes
in sheltered bays where centuries of compact peat accretion often
overlay cobble beach foundations (Coverdale et al., 2014). Whole
system facilitation of cobble beach plant communities is a long
process initiated when cordgrass gains a foothold on barren
cobble beaches. Successful cordgrass establishment and lateral
expansion leads to development of compacted organic root debris
and sediment, and, if not disturbed in early stages, develops a
peat foundation. This peat foundation buffers cobble shorelines
from wave energy, limits cobble movement by binding cobbles to
the beach, and dissipates wave energy, creating low wave energy
refugia among cobbles at higher elevations (Figure 1).

As cobble beach cordgrass stands increase in size and
robustness through clonal growth, their ability to buffer wave
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FIGURE 1 | Cobble beach plant communities. Biodiversity and community
biomass are dependent on substrate stabilization and buffering of wave stress
by cordgrass both within stands of cordgrass and within wave-protected
areas behind cordgrass beds of threshold sizes (A). Common cobble beach
plants occur behind beds of all sizes, while rare cobble beach plants are only
found in the largest beds, shown in (B) (adapted from Bertness, 2007).

energy increases non-linearly, triggering positive feedbacks
through increased sedimentation and the recruitment of
commensal and facultative mutualists. This further stabilizes
the cobble beach plant communities and associated animals.
Increasing bed size also leads to the recruitment of rare plant
and animal species unable to recruit to or persist in smaller beds
with less habitat amelioration. This hierarchical development
leads to a strong positive relationship between bed size and
plant community species richness, recruitment, and persistence
(Bruno, 2002).

In addition to foundation species, the role of allogenic
ecosystem engineers, or organisms that transform resources from
one state to another (Jones et al., 1994; Coleman and Williams,
2002), in driving community pattern formation was identified
in cobble beach communities. Experimental examination of the
impact of the invasive European Periwinkle, Littorina littorea
(hereafter Littorina), to North American shorelines revealed
dramatic habitat change mediated by snail engineering (Bertness,
1984). This herbivorous snail was introduced to Nova Scotia in
the mid-19th century, but quickly invaded south to Chesapeake
Bay where it filled an apparently empty niche created by the
retreat of Pleistocene glaciers, frequent winter icing, and the

industrial revolution that had eradicated all but the weedy, fast
growing and early reproducing species (Wethey, 1985). As a
result, Littorina quickly became the most abundant grazer on
New England rocky shores.

On southern New England cobble beaches, Littorina removal
experiments revealed their role as keystone grazers because
their activity and feeding behavior engineered the structure
of the shoreline, mediating whether cobble beaches remained
bare or transitioned to cordgrass stands on muddy beaches
with abundant associated fauna and flora. Within a month,
snail removal cages had a lush canopy of ephemeral green
algae and were blanketed with sediment that buried and
suffocated sessile organisms. Cages with snails remained entirely
free of algae and sediment. Three months after the snail
removal, control cages remained sediment and algal free,
while infaunal worm and mud crab larvae recruited to the
sediment and algal covered ungrazed cobble. The following
year cordgrass rhizomes invaded muddy snail removal areas
along with their facultative mutualist mussels and fiddler
crabs (Supplementary Figure S1). When the experiment ended
and snails were allowed to return to all plots, this process
reversed as sediment and cordgrass retreated. The experimental
evidence was clear; Narragansett Bay cobble beaches were on
an ecological tipping point and the presence or absence of
invasive snails engineered whether shorelines were sediment-
free with barnacles, or biodiverse muddy, incipient salt marshes
(Bertness, 1984).

HIERARCHICAL ORGANIZATION AND
FACILITATION CASCADES

Foundation species have particularly powerful effects when
they overlap in facilitation cascades. These indirect positive
interactions occur when a primary foundation species alleviates
stress to facilitate a secondary foundation species and together,
they support a larger, more diverse community with increased
ecosystem functionality than either foundation species alone
(Altieri et al., 2007; Gedan et al., 2014; Thomsen et al.,
2018). Facilitation cascades are another emergent trait of
cobble beach communities. On southern New England cobble
beaches, the secondary foundation species and mutualist
ribbed mussel, Geukensia demissa, settles gregariously on
cordgrass roots. Once established, mussel shells provide hard
substrate for the recruitment of barnacles and seaweed
and crevice space for mobile organisms. This hierarchical
organization of foundation species leads to a facilitation
cascade of marine organisms and cobble beach vascular plant
communities (Altieri et al.,, 2007). Additional studies revealed
that secondary foundation species consistently increase the
abundance and richness of associated communities across
spatial scales, latitudes, and ecosystems including wetlands,
coral, mussel and oyster reefs, terrestrial forests and sand
dunes-a finding that has implications for robust community
assembly rules and the conceptual core and basic assumptions
of community ecology theory (Supplementary Table S1) (Bell
and Westoby, 1987; Hall and Bell, 1988; Pettersson et al,
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1995; Castro et al., 2004; Ellwood and Foster, 2004; MacDonald
et al., 2008; Thomsen, 2010; Angelini and Silliman, 2014;
Thomsen et al., 2016).

INCORPORATING FACILITATION
THEORY INTO CONSERVATION
BIOLOGY

Textbook ecology and its extrapolation to conservation continue
to be based on niche theory and the competitive exclusion
principle. But the use of niche theory to predict species
distributions has been questioned by findings on cobble beach
ecosystems. The prevailing theory predicts that the spatial and
temporal space that a species can survive in allopatry, the
fundamental niche, is larger than the realized niche that a species
occupies with biotic interactions or in sympatry, particularly
owing to competition (Chase and Leibold, 2003). Experimental
studies on cobble beaches, however, have shown that by
ameliorating physical and biological stresses, foundation species
not only impose hierarchical organization on communities, but
dramatically increase the size of realized niche space at biological
and physical stress extremes. Inclusion of positive interactions,
by altering the predictions of niche theory, can more accurately
predict distribution patterns in nature (Figure 2A; Crotty
and Bertness, 2015). Evidence for this revised niche theory is
apparent in a variety of ecosystems, including corals that generate
physical structure and productivity on oligotrophic reef habitats

(Knowlton and Jackson, 2001), trees that provide structure,
trophic resources, and habitat amelioration to understory food
webs (Ellison et al., 2005), and beavers that engineer temperate
forests into habitat for wetland plants (Naiman et al., 1988).
Seagrass meadows, mangroves, and mussel and oyster reefs
provide additional examples of foundation species extending
the range of associated organisms beyond their predicted
area through amelioration of physically and/or biologically
stressful environments.

Human impacts on foundation species and ecosystem
engineers have illustrated the inadequacy of competition-based
niche theory. The great dust bowl of the American plains,
desertification of over-harvested forests, and the ongoing die-
off of oyster and coral reefs, salt marshes, seagrasses, and
mangroves forests all have unique proximate causes. However,
the common denominator among all of these examples is
the loss of foundation species leading to system collapse
(Intergovernmental Panel on Climate Change [IPCC], 2014).
The general lessons from these events—that facilitation is as
ubiquitous an interaction as competition and that the hierarchical
overlap of foundation species is often responsible for ecosystem
structure, function, resilience, and recovery potential—needs
to be incorporated into mainstream conservation biology
and associated proactive management prescriptions (Gedan
and Silliman, 2009; Thurstan et al., 2013; Farifas-Franco
et al., 2018). Where ecological systems are already perturbed,
restoration ecology can and should become the experimental
testing ground for predictive community ecology based on
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FIGURE 2 | Conceptual models incorporating positive interactions into (A) niche theory (adapted from Crotty and Bertness, 2015) and (B) models of community
organization. (A) Contradicting traditional niche theory, this model predicts that the realized niche will be larger than the fundamental niche in physically stressful
habitats through habitat amelioration and will be identical to the fundamental niche in biologically stressful habitats through associational defenses. The areas
enclosed by dashed lines represent the fundamental niche space. Gray areas outlined by solid black lines represent realized niche space along physical and
biological stress gradients. Physical stress extremes (left) are shown as cobble beach habitats, where most littoral organisms are unable to persist without the
presence of the foundational cordgrass. Biological stress extremes are shown (right) within marine environments, where corals provide refuge to smaller prey
species, allowing them to persist in areas otherwise exposed to high rates of predation-related mortality. (B) Traditional energetic models, food web trophic models,
and biogenic model of community organization are presented to highlight conceptual differences about community organization. Lighter shapes signify higher trophic
levels, while dark colors signify basal tropic levels in all panels. The biogenic model considers the cascading effects of multiple, overlapping foundation species and
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this new understanding. In the few instances where facilitation
theory has begun to inform restoration design, the results
have been overwhelmingly positive—providing support for the
idea that utilizing the hierarchical organization perspective of
foundation species, and the associated positive feedbacks, will
be critically important for enhancing the recovery and resilience
of ecological systems as anthropogenic stressors intensify and
degrade ecosystems (Silliman et al., 2015; Derksen-Hooijberg
etal., 2017; Supplementary Box S1).

BUILDING A PREDICTIVE PRACTICAL
COMMUNITY ECOLOGY

To date, community ecology has largely been an academic
exercise that has not reached its potential as a predictive applied
science. It has produced an intellectually satisfying body of
literature and theory that explains the pattern and dynamics
of biotic communities but has generally been reactive when
challenged with large local and global anthropogenic threats. It is
commonly believed that the failures of ecology as a translational
science are a communication problem (Sutherland et al., 20065
Jacobson et al., 2015). We disagree. While communication is
important, it needs a clear intuitive message to succeed. We
suggest that these failures are instead a conceptual problem
based on the inability to apply traditional niche, energetic,
and trophic models to solve problems in the conservation,
management, and restoration of threatened ecosystems. These
models are valuable metrics for evaluating ecosystem health
and understanding the functional and dysfunctional dynamics
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