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Advances in L-band microwave satellite radiometry in the past decade, pioneered
by ESA’s SMOS and NASA’s Aquarius and SMAP missions, have demonstrated an
unprecedented capability to observe global sea surface salinity (SSS) from space.
Measurements from these missions are the only means to probe the very-near surface
salinity (top cm), providing a unique monitoring capability for the interfacial exchanges
of water between the atmosphere and the upper-ocean, and delivering a wealth
of information on various salinity processes in the ocean, linkages with the climate
and water cycle, including land-sea connections, and providing constraints for ocean
prediction models. The satellite SSS data are complimentary to the existing in situ
systems such as Argo that provide accurate depiction of large-scale salinity variability
in the open ocean but under-sample mesoscale variability, coastal oceans and marginal
seas, and energetic regions such as boundary currents and fronts. In particular, salinity
remote sensing has proven valuable to systematically monitor the open oceans as
well as coastal regions up to approximately 40 km from the coasts. This is critical to
addressing societally relevant topics, such as land-sea linkages, coastal-open ocean
exchanges, research in the carbon cycle, near-surface mixing, and air-sea exchange
of gas and mass. In this paper, we provide a community perspective on the major
achievements of satellite SSS for the aforementioned topics, the unique capability
of satellite salinity observing system and its complementarity with other platforms,
uncertainty characteristics of satellite SSS, and measurement versus sampling errors
in relation to in situ salinity measurements. We also discuss the need for technological
innovations to improve the accuracy, resolution, and coverage of satellite SSS, and
the way forward to both continue and enhance salinity remote sensing as part of the
integrated Earth Observing System in order to address societal needs.
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INTRODUCTION: REMOTE SENSING
OF SALTY OCEANS

Sea water is approximately a 3.5% salt solution (Durack et al.,
2013; Pawlowicz et al., 2016), corresponding to a salinity of 351,
the remaining 96.5% being freshwater. Wunsch (2015) finds the
mean salinity of the entire ocean to be 34.78, with a standard
deviation of only 0.37 and over 90% of sea water falling within
the salinity range of 34 to 36. Despite this small range, salinity
variations have a profound effect on global ocean circulation and
Earth’s climate and ecosystems. Ocean basins vary in terms of
their salinity (Figure 1), with the Atlantic being the saltiest ocean
and the Pacific the freshest (Gordon et al., 2015). These mean
patterns are a response to the changes in the ocean circulation and
the ocean water cycle – the net sum of precipitation, evaporation,
and terrestrial river and groundwater runoff, as well as the
formation and melting of glacial and sea ice. Excess input or
deficit of freshwater impacts salinity signatures, the equivalent of
floods and droughts on land (Schmitt, 2008; Schanze et al., 2010;
Yu, 2011; Durack, 2015; Gordon, 2016), reflecting responses to
the changing hydrological cycle associated with climate change
(Curry et al., 2003; Boyer et al., 2005; Hosoda et al., 2009; Durack
and Wijffels, 2010; Helm et al., 2010; Durack et al., 2012; Skliris
et al., 2014; Vinogradova and Ponte, 2017).

As might be expected, the ocean hydrological cycle has the
greatest impact on the ocean surface layer, but this signal,
governed by ocean dynamics, runs deep and varies greatly
across the ocean regimes as the surface water spreads into
the full volume of the ocean through vertical and horizontal
(or isopycnal and diapycnal) advective and diffusive processes
(Ponte and Vinogradova, 2016).

Ocean salinity is not a passive tracer of ocean dynamics as
salinity, along with temperature and pressure, is a component
of the equation of state of sea water. Increased salinity increases
density, unless offset by an increase in temperature. The ratio
of the salinity to temperature impact on density changes with
temperature, with salinity taking on a larger role in cold polar
waters because the coefficient of thermal expansion diminishes
as the temperature drops and the haline contraction coefficient
increases with cooler temperatures. As salinity alters the density
field, it influences horizontal pressure gradients of the flow as well
as the vertical stability of the water column. Such changes, in turn,
affect ocean currents and mixing, influencing the transport of
oceanic properties such as heat, freshwater, nutrients, and carbon.
Given its critical role in ocean dynamics, climate variability, the
water cycle, and marine biogeochemistry, salinity is recognized as
an essential climate variable within the Global Climate Observing
System (GCOS) (Belward et al., 2016).

Observing salinity from space offers the advantages of global
coverage and the ability to capture space and time scales not
afforded by in situ platforms such as vessels, moorings, and Argo
profiling floats. For example, the nominal sampling of the Argo

1Practical Salinity Scale 1978 (PSS-78) are used, following UNESCO guidelines
“The Practical Salinity Scale 1978 and the International Equation of State of
Seawater 1980.” Although salinities measured using PSS-78 do not have units, the
suffix “pss” is sometimes used in the text and figures to distinguish the values of
salinity, rates, and variance.

array is one profile per 3◦ latitude × 3◦ longitude at 10-day
intervals. There are generally very few Argo floats in marginal
seas, coastal oceans, polar oceans, and in regions of large-scale
divergence, where salinity variations have strong impacts on
ocean dynamics, air-sea and ocean–ice interactions, and land-
sea linkages (Figure 2). Salinity remote sensing complements
the in situ salinity observing system by improving the capability
to study mesoscale salinity variability (see sections “Improving
Knowledge of Ocean Circulation and Climate Variability” and
“Complementing the in situ Salinity Network”) and land-sea
linkages in the context of the water cycle and biogeochemical
cycles (more in section “Opening the Window to Better
Understand Earth’s Water Cycle”).

In the latter third of the 20th century, an impressive array
of ocean information was derived remotely from orbiting
satellites, but only in the 21st century have we gained satellite
views of sea surface salinity (SSS). Satellite measurements have
given us a near-global, synoptic view of SSS (e.g., Figure 2),
opening a window to a fuller understanding of the global
hydrological cycle, climate variability, ocean circulation, and
marine biochemistry. The satellite missions pioneering salinity
remote sensing include the ESA Soil Moisture and Ocean Salinity
(SMOS) Mission (2009-present) (Reul et al., 2012); the joint
NASA/CONAE Aquarius/SAC-D mission (June 2011–June 2015)
(Lagerloef et al., 2013); and the NASA Soil Moisture Active
Passive (SMAP) mission (January 2015-present) (Entekhabi et al.,
2014; Tang et al., 2017).

All three satellite SSS missions provide measurements of
the surface brightness temperature at L-band radiometric
frequencies (∼1.4 GHz), a frequency band in which brightness
temperature has good sensitivity to SSS in warm (>5◦C)
waters (Klein and Swift, 1977). Aquarius and SMAP have
similar active-passive designs, with an active L-band radar
scatterometer integrated with the passive L-band radiometer.
SMOS is solely based on passive L-band interferometric
radiometry. For all three missions, the process of retrieving
SSS from brightness temperatures involves removing various,
non-salinity contributions related to direct and ocean-reflected
extra-terrestrial radiations from the Sun and galaxy (e.g., Le Vine
et al., 2005; Reul et al., 2007, 2008), as well the noise from sea
surface temperature (SST) and ocean surface roughness (e.g.,
Yueh et al., 2010, 2013, 2014; Meissner et al., 2014, 2018). The
latter is one of the dominant errors sources in the SSS retrieval
budget that must be precisely removed. While the L-band radar
on Aquarius was used to correct for the surface roughness effect,
SMAP’s active radar ended operation 3 months after launch.
Consequently, the correction of the surface roughness effect in
both SMOS and SMAP SSS retrievals rely on ancillary wind data
and on roughness information inferred from polarized L-band
brightness temperature. For SSS retrievals, all three L-band
missions use ancillary SST measurements to remove thermal
effects on brightness temperature measurements. The adequacy
and accuracy of ancillary wind and SST measurements are very
important to the uncertainties of SSS retrievals.

All three SSS-observing satellites are in sun-synchronous
polar orbits with high inclinations, allowing near-global coverage
including the polar oceans. The missions differ in their spatial
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FIGURE 1 | Example of synoptic, near-global salinity coverage from satellite observations showing annual mean sea surface salinity patterns based on observations
from the Aquarius mission during 2011–2014. Credit: NASA.

FIGURE 2 | Variability in space-borne sea surface salinity during 1 year (colors) superimposed with locations of currently operational Argo floats (white dots). Notice
that regions of high variability of >0.2 are either not sampled or poorly sampled by Argo, including coastal oceans, western boundary currents, the Indonesian Seas,
outlets of major rivers (Amazon, Niger, and Congo), as well as the Southern and Arctic Oceans.

and temporal coverage. SMOS has an average 43-km spatial
resolution with an 18-day near-repeat cycle and a 3–5 day revisit
time. Aquarius had a 100–150 km spatial resolution and a 7-day
exact repeat. SMAP has a 40-km spatial resolution and an 8-day
repeat with a 2–3 day revisit time. Therefore, all three missions
provide synoptic measurements of SSS over the global ocean at
spatial and temporal scales much finer than those afforded by the
Argo array; consequently, satellite SSS measurements are able to
resolve higher-frequency signals (e.g., tropical instability waves)
that are difficult for in situ data to capture.

Satellite SSS measurements serve a broad user community
from scientific research to applications. These include studies
of ocean dynamics, the ocean’s role in climate variability,

linkages with the hydrological and biogeochemical cycles, ocean
state estimation, ocean forecasts and climate predictions, and
environmental assessments associated with extreme events such
as hurricanes and flooding. The science and application drivers
of satellite SSS in support of these user communities are
discussed in Sections “Scientific Drivers for Satellite Salinity” and
“Application Drivers for Satellite Salinity.”

The objective of this review is to provide community
inputs to OceanObs’19 on the issues related to the space-based
salinity observing system. In what follows, we (1) summarize
the achievements and current capabilities of the satellite SSS
observing system; (2) describe science and application drivers,
user communities of satellite SSS for the coming decade, and their
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associated requirements; (3) address the necessity and benefits of
integrating satellite SSS with other observing systems and models;
and (4) discuss the strategy that addresses capability gaps in the
coming decade to improve support of end users.

SCIENTIFIC DRIVERS FOR
SATELLITE SALINITY

Improving Knowledge of Ocean
Circulation and Climate Variability
Salinity remote sensing has significantly improved our ability to
study large-scale ocean processes. Examples include the studies
that brought new knowledge about tropical instability waves (Lee
et al., 2012, 2014; Yin et al., 2014), Rossby waves (e.g., Menezes
et al., 2014; Banks et al., 2016), dynamics of the subtropical
salinity maximum and tropical salinity minimum zones (e.g.,
Hasson et al., 2013; Bingham et al., 2014; Hernandez et al., 2014;
Yu, 2014; Gordon et al., 2015; Guimbard et al., 2017; Hasson et al.,
2018), and climate variability (Delcroix, 1998; Delcroix et al.,
2007; Du and Zhang, 2015; Vinogradova and Ponte, 2017). These
studies are among many other that have demonstrated that the
space-time resolution and coverage of salinity satellites provide
a unique perspective, enhance the ocean observing network, and
complement in situ salinity observations.

For example, one of the early scientific results based on
satellite SSS is the discovery of new features of tropical instability
waves. Tropical instability waves play an important role in
ocean mixing, cross-equatorial transport, climate variability, and
biochemistry, and have been studied extensively using various
satellite and in situ observations since they were discovered
in the late 1970s (e.g., Legeckis, 1977; Chelton et al., 2000).
Complementing previous studies, satellite SSS observations
revealed previously unreported features of tropical instabilities
waves, including the dependence of the wave propagation speed
on latitude and the phase of the El Niño-Southern Oscillation
(ENSO) (Lee et al., 2012; Yin et al., 2014). The findings provided
new insights into the inter-hemispheric exchange of freshwater,
with implications on ocean circulation and the hydrological cycle
(Lee et al., 2012).

The high temporal resolution of satellite SSS enabled a
better understanding of large-scale intra-seasonal phenomena
(e.g., Subrahmanyam et al., 2018), including the Madden-Julian
Oscillation (MJO) – the dominant climate mode at sub-seasonal
time scales in the tropics that impacts the global weather
and climate (Zhang, 2005). Satellite SSS measurements enable
characterization of the SSS signature associated with MJO and
the associated impacts on surface density variations (Grunseich
et al., 2013; Guan et al., 2014; Li et al., 2015), emphasizing the role
of upper-ocean dynamics in regulating MJO.

Satellite salinity has also improved our understanding of
seasonal-to-interannual variability. For example, satellite SSS
measurements revealed new features of annual Rossby waves
in the South Indian Ocean associated with coupled air-sea
and surface–subsurface interactions (Menezes et al., 2014). On
interannual time scales, satellite SSS measurements demonstrated

their value in helping to characterize the structure of the Indian
Ocean Dipole (IOD) (Durand et al., 2013; Du and Zhang, 2015),
which is known to influence regional weather and climate (Saji
et al., 1999). The superior spatio-temporal sampling of satellite
SSS helped establish a robust relationship between SSS and the
IOD (Du and Zhang, 2015). Another example of new insight
enabled by satellite SSS is the relationship between the large-
scale tropical fresh pools in the tropical Pacific with ENSO-
induced precipitation and oceanic transport associated with
mesoscale eddies (Alory et al., 2012; Guimbard et al., 2017;
Hasson et al., 2018; Figure 3). The two examples of the linkages
of SSS with climate modes (ENSO and the IOD) demonstrate the
potential of satellite SSS to improve the representation of climate
variability in ocean models and related forecasts, e.g., through SSS
data assimilation.

Decadal changes in salinity serve as an important indicator
of the internal climate fluctuations (as opposed to externally
caused variability due to anthropogenic and natural forces),
and help explain longer-term secular changes in the climate
system (e.g., Friedman et al., 2017). Informed by satellite salinity
data through data assimilation and synthesis with other ocean
observations and dynamical constraints, Vinogradova and Ponte
(2017) reported significant large-scale SSS trends as yet more
evidence of global climate change. Some portion of the decadal
fluctuations in surface salinity, however, is associated with natural
climate variability, such as the Interdecadal Pacific Oscillations
(IPO, Figure 4), which effectively masks long-term salinity trends
that are related to secular changes in the forcing.

Opening the Window to Better
Understand Earth’s Water Cycle
Over the global ocean, the most significant moisture sources
are located in the subtropical oceans (e.g., Figure 5), where the
descending branch of Hadley circulation suppresses convection
and precipitation, while prevailing trade winds promote
evaporation (Gimeno et al., 2012). To maintain the global water
balance (Schmitt, 1995; Trenberth and Guillemot, 1995; Stohl
and James, 2005; Trenberth et al., 2007), this excessive flux
of moisture from the ocean to the atmosphere is transported
away from the subtropics to the tropical oceans over the
ITCZ (Inter Tropical Convergence Zone), the mid-latitude
storm-track region, and over land as terrestrial precipitation
(Gimeno et al., 2010; Lagerloef et al., 2010; Schanze et al., 2010;
van der Ent et al., 2010).

Observational and modeling evidence suggests that in
response to the warming climate, surface freshwater fluxes
over the oceans have developed a distinctive pattern of change
(Figure 5), where dry subtropical areas are becoming drier and
wet tropical areas becoming wetter (Stott et al., 2008; Cravatte
et al., 2009; Durack and Wijffels, 2010; Helm et al., 2010;
Durack et al., 2012; Terray et al., 2012; Skliris et al., 2014, 2016;
Vinogradova and Ponte, 2017; Zika et al., 2018). For example,
from the ECCO state estimate and Figure 5, over the past two
decades the ocean water cycle amplified by about 5% on average,
consistent with surface warming of about 0.65◦C since 1992.
That translates to a change of 7.6%◦C−1, which is close to that
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FIGURE 3 | Satellite SSS are used to monitor large-scale events, including ENSO-induced fresh anomalies that are propagated by mesoscale processes. Shown
here are time-longitude plots of SMOS SSS, averaged between (left) 2◦S and 2◦N and (right) 16◦N and 20◦N. NINO3.4 index is shown on top of all plots, blue during
La Nina and red during El Nino. For the first time, strong negative salinity anomalies that stretch over the tropical Pacific and reach the Hawaii islands have been
detected, induced by an extreme El Nino event of October 2015–2016. Modified from Hasson et al. (2018).

predicted by the thermodynamics and the Clausius–Clapeyron
relation of 7%◦C−1. This intensification of the hydrological cycle
is often linked to corresponding changes in surface salinity: the
changes in the amount of freshwater leaving and entering the
oceans are expected to leave its “fingerprints” detectable in ocean
variables, with SSS variability reflecting the changes in the ocean
water cycle (Schmitt, 2008; Durack and Wijffels, 2010; Lagerloef
et al., 2010; Yu, 2011; Durack et al., 2012; Terray et al., 2012;
Durack, 2015; Friedman et al., 2017). Although a direct link
between changes in surface salinity and changes in freshwater
flux is rather difficult to observe on timescales relevant to the
satellite observational records (Vinogradova and Ponte, 2013a,
2017; Hasson et al., 2014; Yu, 2015; Guimbard et al., 2017), the
research community consensus, outlined in Durack et al. (2016),
is that ocean salinity can be effectively used as an implicit, rather
than explicit, indicator of changes in the water cycle.

An important application of satellite salinity is connecting the
terrestrial and marine water reservoirs, with an aim to close the
global balance of water fluxes and flows. Combined with other
measurements, satellite SSS observations allow one to trace large
riverine waters over great distances and reconstruct the complete
lifecycle of hydrological events, from rainfall to river discharge on
land and then to river plume formation, mixing, and advection
in the ocean (Fournier et al., 2011; Bai et al., 2013; Gierach
et al., 2013; Reul et al., 2013; Grodsky et al., 2014; Guerrero
et al., 2014; Zeng et al., 2014; Fournier et al., 2015, 2016, 2017a,b;
Korosov et al., 2015). These studies improved our understanding
of ocean–land interactions by elucidating the impacts of rivers on
the buoyancy of the surface ocean layer, on circulation patterns
via horizontal density gradients, on marine biochemistry, the
carbon cycle, and on ecological activity (Muller-Karger et al.,
1988; McKee et al., 2004). In addition to tracing the origin and

fate of freshwater signals, satellite SSS has also been used to
gauge the influence of rivers on regional climate and oceanic
productivity (Fournier et al., 2017a), as well as the impacts of the
river-influenced warming on the upper ocean during the Atlantic
hurricane season (Fournier et al., 2017b).

New Opportunities in Mesoscale
Oceanography
A tremendous advantage of satellite SSS observations is their
synoptic view of oceanic mesoscale haline features associated
with fronts and eddies down to scales on the order of 100 km
(e.g., Maes et al., 2014; Reul et al., 2014a; Kolodziejczyk et al.,
2015; Fournier et al., 2016, 2017b; Isern-Fontanet et al., 2016;
Da-Allada et al., 2017; Grodsky et al., 2017; Melnichenko
et al., 2017). The capability to systematically sample 40–
100 km scales every 4 days is unachievable by other salinity
observing platforms, including the Argo program. Although
smaller eddies are still difficult to detect by the current
generation of salinity-measuring satellites, the capability to
monitor salinity features associated with the larger eddies is a
breakthrough both in terms of spatial and temporal sampling.
As an illustration, Figure 6 compares complex current and
frontal systems depicted by satellite SSS with those inferred
from Argo. Mesoscale fronts are important components of
ocean dynamics because they are associated with strong current
instability and ocean mixing. Oceanic fronts have enhanced
vertical velocity, where the deep ocean exchanges properties
with the surface mixed layer (Pollard and Regier, 1992).
Enhanced vertical nutrient fluxes at fronts act to increase
phytoplankton production and biomass, funneling nutrients
through different trophic levels, including to commercially
important fish (Woodson and Litvin, 2015).
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FIGURE 4 | Surface SSS trends as indicator of internal climate variability. Tropical changes in SSS over the past 20 years are partly attributed to Interdecadal Pacific
Oscillation (IPO), explaining strong surface salinification in the Pacific warm Pool (red) despite an increase of flux of freshwater into the ocean (blue in Figure 5).
Based on multi-platform salinity estimate ECCO that combines satellite and in situ data with dynamical constraints. Shown here are (A) Expression of the IPO loading
pattern in surface salinity, computed by linearly regressing monthly ECCO salinity anomalies upon (B) the IPO time series in normalized units of standard deviation.
(C) Trends in the IPO loading salinity patterns. (D) Residual trends after the relevant IPO loading pattern is removed. Trends in panels (C,D) represent the total
change over 20 years, computed as a linear trend multiplied by the period length. Adapted from Vinogradova and Ponte (2017). Figure© Copyright July 2017 AMS.

FIGURE 5 | Linking salinity to the global hydrological cycle is one of scientific drivers of satellite SSS. Shown here are mean patterns of the ocean water cycle and its
amplification in the last two decades based on the ECCO ocean state estimate. Left: average rates at which freshwater enters (blue) or leaves (red) the ocean via the
processes of precipitation (P) and evaporation (E); Middle: trends in E-P; blue (negative) means that the ocean received more freshwater since 1993. Right:
Amplification of the ocean water cycle, computed as a slope of the linear regression between the anomalies and trends in E-P. Pattern amplification is shown as
orange, otherwise is shaded gray. In many ocean regions, pattern amplification follows the wet gets wetter/dry gets drier paradigm, as more freshwater is brought to
wet regions (e.g., blue colors match blue in the tropics), or more freshwater is removed from dry regions (e.g., red colors match red in the United States west coast.
If averaged over the globe, the ocean water cycle has amplified by 5% since 1993. See Vinogradova and Ponte (2017) for details.

While satellite SST observations have long been
available to study oceanic fronts and eddies, satellite SSS
observations bring a new perspective. By discovering SST/SSS
decoupling in the frontal regions (Kolodziejczyk et al., 2015;

Kao and Lagerloef, 2018), we are redefining the role of salinity in
density variability, thermohaline circulation, and in the energy
balance of the upper ocean. Satellite SSS observations also
improved the ability to study the kinetic energy variability of
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FIGURE 6 | Salinity SSS resolve fine mesoscale features, such as fronts and eddies, that are not depicted by blurry maps computed based in situ-based products;
(A) Map of the horizontal SSS gradient magnitude (pss/100 km) based on the September 2011 mean SSS field from the Aquarius satellite. The oceanic frontal zones
are associated with high values of SSS gradient (red). (B) The same as in panel (A) but from the Argo-derived SSS. Modified from Melnichenko et al. (2016).

ocean circulation (Gordon and Giulivi, 2014; Reul et al., 2014a;
Sommer et al., 2015; Busecke et al., 2017; Melnichenko et al.,
2017), elevating the role of eddy transport in the ocean freshwater
balance, even in the interiors of the subtropical gyres where
eddies have historically been thought to have a negligible effect.

Unlocking Space-Based Ocean
Biogeochemistry
Expanding upon the conventional physical oceanography
boundaries, satellite SSS data has been recently exploited in the
biogeochemistry domain (e.g., Lee et al., 2006; Lefèvre et al., 2014;
Ibánhez et al., 2017), addressing studies of ocean acidification and
the carbon cycle. Since the industrial revolution, the oceans have
absorbed about 40–50% of the anthropogenic carbon dioxide
(CO2) emissions to the atmosphere (Sabine et al., 2004; Khatiwala
et al., 2009), mitigating the impact of global warming. However,
studies have suggested that the oceanic carbon sink may have
been decreasing during the last 50 years (Canadell et al., 2007;

Le Quere et al., 2009), which can significantly impact future
atmospheric CO2 levels and the global climate.

Absorption of CO2 into the ocean reduces the ocean pH
and the concentration of carbonate ions. The overall process is
referred to as ocean acidification, which has profound socio-
economic consequences. In order to characterize the overall
marine carbonate system, the partial pressure of CO2 in surface
seawater (pCO2), the total alkalinity, the dissolved inorganic
carbon, and the pH itself must be known. However, the
difficulty in quantifying these parameters is due to the scarcity
of biochemical in situ observations, such as the SOCAT dataset
(Bakker et al., 2016). In this regard, satellite SSS data (together
with additional observables) offers a path forward to monitor
ongoing changes in ocean acidification by exploiting synoptic
satellite observations to produce global assessments of ocean
surface pH and alkalinity (Brown et al., 2015; Land et al., 2015;
Sabia et al., 2015a; Salisbury et al., 2015; Fine et al., 2017).

Similar to salinity, alkalinity is sensitive to freshwater flux.
Consequently, alkalinity features resemble the mean surface
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FIGURE 7 | Satellite SSS data becoming key in monitoring the marine carbonate system, enabling the development of novel space-based ocean acidification.
Shown here is monthly surface total alkalinity derived using Aquarius SSS. Source: NASA.

salinity distribution (Figure 7), with salinity variations explaining
80% of total alkalinity variability in the subtropics. That makes
salinity a valuable proxy for surface alkalinity. Taking advantage
of global, high-resolution satellite SSS measurements, it is now
possible to derive space-based assessments of ocean acidification
and observe how it changes over time (Fine et al., 2017). The
results suggest a tendency of generally increasing alkalinity in
the subtropics (along with increasing temperature and salinity),
reinforcing the assessment of ocean acidification from uptake of
atmospheric CO2.

Advancing Climate Modeling and
Ocean State Estimation
A powerful approach in modern oceanography is to combine
observations and models – be they ocean-only or fully coupled
simulations – using various data assimilation techniques. More
than a decade of experience with assimilating in situ salinity data
from surface moorings and three-dimensional measurements
from Argo, ships, etc., has demonstrated that the resulting
synthesis product can provide a more accurate estimate of
the ocean state than observations or model alone (Stammer
et al., 2002a,b, 2016; Wunsch and Heimbach, 2013), including
better handling of climate simulations of air-sea coupling and
resulting changes in ocean circulation. By observing the top
centimeter of the water column globally, dense satellite SSS data
provides additional constraints on interfacial exchanges of water
between the atmosphere and the upper-ocean, helping close
the global freshwater budget, improve estimates of the ocean
state, and inform future climate projections. If performed in a
dynamically consistent way, the data assimilation process will not
only improve the model’s salinity fields and derivatives such as
circulation fields and sea level, but will also help better constrain
the mean and time-varying surface net freshwater forcing and

air-sea fluxes (Stammer et al., 2004; Carton et al., 2018), which
are some of the least constrained parameters in climate models
leading to large uncertainties in model simulations.

Assimilation of satellite SSS data helped improve the accuracy
of model salinity and air-sea fluxes within the Estimating
the Circulation and Climate of the Ocean (ECCO) solution
(Köhl et al., 2014). By providing additional constraints on
model freshwater fluxes, the assimilation of satellite SSS
reduced uncertainties in surface forcing, producing a better
correspondence between models and independent satellite-based
air-sea fluxes, and reduced known model salinity biases with
respect to in situ measurements.

Today, the ECCO framework reconciles various salinity
observations from different platforms (as well as observations for
other state variables) using dynamical constraints, and produces
an accurate, multi-platform salinity estimate for climate research
(Figure 8; see also Vinogradova et al., 2014; Fukumori et al., 2018;
Vinogradova, 2018). Such a synergistic, dynamically consistent
view becomes an additional component of the salinity observing
network – a component allowing one to tease out the causes
and effects of recent salinity changes from the interplay between
the three-dimensional ocean circulation, transports of salt and
freshwater, and surface forcing.

APPLICATION DRIVERS FOR
SATELLITE SALINITY

In addition to science priorities, there is a wide range of emerging
societal applications and end users of salinity remote sensing
data, including hurricane monitoring; prediction of rain, floods,
and droughts; understanding climate modes of variability; and
improving ocean and ecological forecasting.
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FIGURE 8 | Information from satellite SSS data improves climate models and ocean state estimates in systems like ECCO. (A) Vertically integrated, globally
averaged salinity over the past two decades computed from monthly (blue) and annual (red) values. The global mean salinity value is 34.72, with a narrow range over
the oceans. Notice a global freshening trend, with a drop of about –0.0005 pss/20 years, which represents the net transfer of mass into the ocean due to freshwater
exchange. The value is consistent with the global-mean mass variations observed by GRACE, equivalent to –0.0004 pss/20 years. (B) Annual mean patterns in
surface salinity from ECCO, featuring salty subtropics and fresher tropical and high-latitude regions, a generally saltier Atlantic and a fresher Pacific ocean.
(C) ECCO/data misfits at the model surface (satellite and in situ), with distribution close to Gaussian (not shown). In most ocean regions, the misfits are less or
around 0.1 of the observed averaged (green), apart from several coastal regions with higher systematic biases. Adapted from Vinogradova (2018).

Hurricane Monitoring
In monitoring hurricanes, it is sea surface temperature and sea
surface height that first come to mind as measures of ocean
heat content available for storm formation and intensification.
However, in recent years, there has been growing interest in
the role and response of SSS in hurricane intensification and
passage. In regions where salinity is an important driver of
vertical stratification, such as tropical oceans near the outflows
of major rivers, SSS can impact air–sea interactions. In these
regions, low SSS helps the formation and maintenance of a
thin surface mixed layer, along with an isothermal salinity-
stratified “barrier” layer between the surface mixed layer and
colder thermocline water (Lukas and Lindstrom, 1991; Pailler
et al., 1999; Vinaychandran et al., 2002; Rao and Sivakumar, 2003;
Balaguru et al., 2012, 2015, 2016).

On one hand, the barrier layer helps trap solar radiation in
the surface layer (Ffield, 2007; Foltz and McPhaden, 2008; Vizy
and Cook, 2010; Grodsky et al., 2012; Fournier et al., 2017a),
leading to elevated SSTs that are favorable for deep atmospheric
convection and strong rainfall (Shenoi et al., 2002). On the other
hand, barrier layers can prevent vertical mixing and entrainment
of cool thermocline water into the mixed layer (Vialard and
Delecluse, 1998; Vincent et al., 2012; Thadathil et al., 2016), thus
further supporting hurricane intensification (Cione and Uhlhorn,
2003; Sengupta et al., 2008; Balaguru et al., 2012; Grodsky et al.,
2012; Neetu et al., 2012; Reul et al., 2014b).

Satellite SSS measurements are able to capture haline wakes
that form after hurricane passage, particularly in regions where
upper-ocean stratification is driven by salinity (Figure 9).
By analyzing hundreds of storms in the Atlantic Ocean,
recent studies (Grodsky et al., 2012; Reul et al., 2014b;

Fournier et al., 2017a) demonstrate the effect of barrier layers
on hurricane intensification, emphasizing the role of salinity
stratification in mixed-layer dynamics and the use of satellite
SSS data as a new resource to study the ocean response to
tropical cyclones.

Toward Better ENSO Forecasting
The ENSO cycle with alternating El Niño and La Niña
events is the dominant year-to-year climate signal on Earth.
ENSO originates in the tropical Pacific through interactions
between the ocean and the atmosphere, but its environmental
and socioeconomic impacts are felt worldwide, ranging from
agriculture, to marine ecosystems, to human health (Horel and
Wallace, 1981; Glantz, 2001). Efforts to understand the causes and
consequences of ENSO reveal the breadth of ENSO’s influence on
the Earth system and the potential to exploit its predictability for
societal benefit (McPhaden et al., 2006; National Academies of
Sciences, Engineering, and Medicine, 2016).

One key component of ENSO predictability is the impact
of freshwater flux in the tropics on coupled modeling.
Representation of tropical precipitation, including the double-
ITCZ biases (e.g., Adam et al., 2018), is rather poor in the
current generation of coupled models (Wang et al., 2010),
with implications for coupled forecast results. Systematic
misrepresentation of precipitation results in erroneous surface
forcing, impacting the correctness of the initialization and
forecasting of ocean salinity. Inaccurate salinity, in turn,
leads to the misrepresentation of mixed-layer density, barrier-
layer thickness, and upwelling in the ocean model, as well
as subsequent ramifications for ENSO predictions from
the coupled model.
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FIGURE 9 | Monitoring hurricanes using satellite SSS data from panel (a) Aquarius and (b) SMOS, respectively, showing differences from after versus before Katia
and Igor hurricane passages in the Atlantic Ocean. (c,d) Argo salinity profiles before and after the hurricanes passage. The location of the Argo floats are marked by
magenta and cyan crosses in panels (a,b). Figure sources: Grodsky et al. (2012) and Reul et al. (2014b). Reproduced under license agreement 4445231502401 and
4445231097796.

Recent studies demonstrate that using salinity observations
is a promising tool for understanding and expanding the limits
of ENSO prediction (Maes et al., 2005; Hackert et al., 2011,
2014; Zhu et al., 2014). In practice, accounting for the salinity
structure provides better estimates of the barrier layer thickness
and mixed-layer dynamics, including the increase in stability of
the mixed layer that allows the wind forcing to be more efficient.
The latter, in particular, enhances the ocean’s sensitivity to Kelvin
wave forcing, resulting in the overall improvement of coupled
ENSO predictions.

Predicting Terrestrial Floods and Droughts
Oceans are the major suppliers of moisture to land and
significantly impact terrestrial precipitation, including
hydroclimate extremes such as floods, droughts, and water
shortage (Gimeno et al., 2013).

Given the limited water-holding capacity of the land surface,
intense and persistent precipitation events cannot be sustained

by local moisture recycling (Brubaker et al., 1993; Trenberth,
1998, 1999; Koster et al., 2004; Dirmeyer et al., 2009) and
for the majority of extreme rainfall events over land, the
moisture supply has oceanic origins (Zhou and Yu, 2005; Weaver
and Nigam, 2008; Chan and Misra, 2010; Cook et al., 2011;
Kunkel et al., 2012; Li et al., 2013). Correspondingly, any
deficit in oceanic moisture supply usually leads to drought
and water shortage (Weaver et al., 2009a,b; Seager and Vecchi,
2010). Thus, the oceanic water cycle, by modulating the
regional moisture balance, significantly affects hydroclimate
extremes on land.

The close linkage between the oceanic and terrestrial
components of the Earth’s water cycle, along with the sensitivity
of SSS to the oceanic component, suggests that SSS can be
utilized as a predictor of precipitation on land. Recent evidence
has shown how salinity information can add great value to
the early-warning systems of hydrology-related natural disasters.
In particular, the linkage between the oceanic water cycle,
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FIGURE 10 | Satellite SSS data improves prediction of land precipitation. Schematic figure illustrating the soil moisture mechanism bridging the 3-month time lag
between springtime salinity anomalies and summer precipitation in the United States Midwest: in the western North Atlantic, higher springtime salinities are an
indicator of enhanced moisture export onto the continental United States which converges in the South. This greatly increases soil moisture there, allowing for
enhanced evaporation and leading to more atmospheric convection on land (upper panel). The intensified convection on land draws in more moisture from the Gulf
of Mexico and leads to the enhancement of the Great Plains Low Level Jet, which carries moisture to the upper Midwest in summer (bottom panel). Adapted from Li
et al. (2018), reproduced under Creative Commons license.

soil moisture content, and local land-atmosphere interaction
(Figure 10) suggests that pre-season SSS is a physically
meaningful predictor of the summer precipitation in the
United States Midwest (Li et al., 2016a), winter precipitation in
the southwestern United States (Liu et al., 2018), and monsoonal
precipitation in the African Sahel (Li et al., 2016b). These
studies found that SSS ranked as the most important predictor
of land precipitation in those regions compared to ten other
climate indices, including SST. We note that this linkage between
terrestrial rainfall and subtropical SSS via the atmospheric
moisture transport is another aspect of the land-sea linkages
that is different from the direct land-sea linkage through river
discharge as discussed in Section “Opening the Window to Better
Understand Earth’s Water Cycle.”

Inferring Rainfall Over the Oceans
While more than 75% of precipitation occurs over the ocean,
using satellite salinity as a direct rain gauge has proven
challenging because both freshwater fluxes and ocean dynamics
govern SSS variability (e.g., Vinogradova and Ponte, 2013a, 2017;
Hasson et al., 2014; Yu, 2015; Guimbard et al., 2017). However,
the window of opportunity may lie within a very short time
period (typically 30 min) in tropical ocean regions where SSS
freshening is strongly correlated with instantaneous rain rates
similar in magnitude to those expected from earlier conceptual
modeling studies (Boutin et al., 2016).

Despite recent advances, measurements of rain rate suffer
from significant uncertainties and discrepancies, particularly
within the ITCZ regions (Liu and Zipser, 2014). To reduce

uncertainty, information on rain rate derived from satellite
SSS sensors could provide an independent constraint over the
ocean, where very few in situ rain rate measurements exist.
Improving information on rain rates inferred from satellite
L-band radiometry has two main challenges. One is related
to difficulties in modeling the processes controlling the rain
penetration into the upper ocean, keeping in mind that L-band
radiometer signals penetrate only the upper few cm of the
surface. Another challenge is constraining the physics of L-band
radiometer measurements under rain conditions, including the
characterization of the rain-induced surface roughness (e.g., Tang
et al., 2013). In addition, reconciling point in situ observations
or one-dimensional models with satellite observations needs to
take into account the spatial heterogeneity of rain and SSS within
a satellite pixel. The latter need could be addressed by taking
advantage of the combination of multi-satellite information, such
as SMOS and SMAP crossing points that are less than one
hour apart (Supply et al., 2017), as well as measurements from
synthetic aperture radar (SAR), rain radar, and other global
precipitation mission (GPM) radiometers for characterizing the
variability of rainfall, which is very intermittent.

Ocean Forecasting on the Horizon
Operational ocean forecasting systems, including those
contributing to GODAE OceanView (Le Traon et al., 2015),
assimilate ocean observations into high-resolution ocean models.
Reanalyses and real-time forecasts produced by these systems
are used to generate information about the past, current, and
future ocean state, which is provided to downstream users. The
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quality of the information provided is dependent on the model
and observations, and on the data assimilation system used to
combine them. Unlike climate models, operational systems run
close to real time, and thus the input streams need to be robust
and timely, as well as be of good quality with known accuracy. To
meet this need, sequential data assimilation (e.g., Carton et al.,
2018) offers an alternative to the costly adjoint computations of
climate-oriented ocean state estimates, ensuring computational
efficiency of the operational ocean estimates and forecasts.

Although, at the moment, no ocean forecasting systems
assimilate satellite SSS data operationally, there have been a
number of efforts to develop schemes to do so by investigating
the SSS data’s impact on the ocean analyses and forecast. For
example, as part of the ESA SMOS-NINO15 project, Martin
et al. (2018) show how assimilation of satellite SSS data into
the Met Office Forecasting Ocean Assimilation Model (FOAM)
had a positive impact on the forecasting of tropical salinity
changes, with an overall reduction in the root-mean-square
(RMS) difference to Argo near-surface salinity data by 8%. These
improvements in near-surface salinity also led to improvements
in other modeled variables, including sea surface temperature
and sea level. Positive impacts (a 5% RMS difference reduction)
were also found in the Mercator-Ocean analysis and forecasting
system, which was used to carry out a similar experiment during
the 2015 ENSO event.

Another contributor to the GODAE OceanView program
that aims to exploit satellite SSS data is NOAA’s Real-Time
Ocean Forecast System (RTOFS) for global and regional
(United States west coast) applications. The project is at an early
stage, with data streams from SMOS and SMAP incorporated
into NOAA’s environmental modeling data tank for model
initialization and future assimilation. Ongoing test studies
are encouraging, demonstrating improved representations of
extremes of simulated sea-surface height anomalies, ocean
surface density, mesoscale dynamics, and upper-ocean heat
content), as well as better salinity constraints for downscaling to
nested regional ocean/coastal models (Boukabara et al., 2016).

While recent results demonstrate the potential for operational
assimilation of satellite SSS data (Toyoda et al., 2015), a number
of issues need to be addressed prior to it becoming a reality.
The bias correction of the satellite data relies on good quality
in situ reference data, so improving the coverage of in situ SSS
data should be a priority, especially in marginal seas, coastal
regions, and high-latitude oceans. The timeliness (latency) of the
data streams also needs to improve so that data are available
for use within 24 h of measurement time, with the delivery
of near real-time data being robust. Continuing improvement
in the quality of the SSS retrievals and error/uncertainty
information provided with the data will also feed into improved
assimilation results.

OPPORTUNITY FOR INTEGRATION

As a newcomer, salinity remote sensing seamlessly integrated
into the broader salinity network and global Earth observing
system. Having global coverage with more uniform and

finer spatio-temporal sampling, satellite SSS data complements
sparser in situ salinity observations, filling in sampling gaps
for regions with few in situ measurements such as in
river plumes, coastal oceans, and marginal seas (Figure 2).
Exploring how satellite SSS observations fit into a broad
observing system in more detail, the following thoughts
suggest a path for making satellite SSS data integration
more meaningful.

Complementing the in situ
Salinity Network
Ship observations, as well as measurements from drifters and
moorings, tend to have high temporal resolution and accuracybut
limited spatial coverage. Thus, satellite SSS measurements are
useful for placing in situ observations in a broader context.
Satellite SSS measurements are often used to interpret in situ
observations during field experiments (e.g., Mahadevan et al.,
2016), as well as to verify the presence of various ocean features
that have large spatial scales, such as river plumes (Grodsky
et al., 2014), eddies (Reul et al., 2014a), and ENSO signatures
(Hasson et al., 2014).

In general, salinity data from satellite and Argo profiling
floats are highly complementary: gridded satellite data have
spatial resolutions as fine as a few tens of km on approximately
weekly intervals, while the Argo array has a nominal sampling
of one float per 3◦

×3◦ at 10-day intervals. Thus, combining
the two datasets improves detection and characterization of
mesoscale features, such as fronts and eddies that are not
well captured by Argo alone (e.g., Grodsky et al., 2012; Reul
et al., 2014a; Grodsky and Carton, 2018; Kao and Lagerloef,
2018) while mitigating the large-scale biases of satellite SSS.
These synergistic products show particular improvement of
salinity variability in regions where Argo floats are sparse
(Toyoda et al., 2015; Lu et al., 2016) or regions with high
variability such as that caused by ocean currents (Chakraborty
et al., 2015). Moreover, satellite SSS alleviate the sparse
sampling of in situ measurements in coastal oceans and
marginal seas, thereby enhancing the capability to study
land-sea linkages.

Prominent examples of the successful synergy between the
satellite and in situ salinity observations are the NASA field
campaigns Salinity Processes in the Upper-Ocean Regional
Study, experiments 1 and 2, or SPURS-1 and SPURS-2,
respectively (Lindstrom et al., 2015; SPURS-2 Planning Group,
2015). The SPURS program seeks better understanding
of the global freshwater cycle through investigation of all
the physical processes controlling the upper-ocean salinity
balance. Set in ocean regions with evaporating (SPURS-1) and
precipitating (SPURS-2) regimes, SPURS involves coordinated
field work using moorings, autonomous instruments, ship-based
process studies, remote sensing, and modeling. By combining
large-scale Argo arrays with synoptic satellite images and
local measurements from moorings, drifters, gliders, and
microstructure profiling, the SPURS framework allows salinity
variability to be observed across a range of scales, placing local
and high-resolution salinity signals into a broader, mesoscale and
basin-wide context.
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Synergies With Other Satellite
Measurements
In addition to complementing the in situ salinity network,
satellite SSS has become an integral part of the globalspace-
based Earth observing system, further enhancing a synergistic use
of multi-variable satellite observations to address various Earth
system science questions and applications.

Combined use of satellite SSS with other satellite measure-
ments has enabled an array of new discoveries and capabilities,
examples of which were highlighted above. Blended satellite
and in-situ SSS (e.g., Melnichenko et al., 2014) enhanced the
salinity monitoring capability. In particular, NOAA’s Blended
Analysis of Surface Salinity (Xie et al., 2014) based on Aquarius,
SMOS, SMAP, and in situ salinities are produced operationally
and used for monthly global ocean monitoring. Satellite SSS
and SST together have made it possible to estimate surface
density from space, facilitating the study of the surface water-
mass formation processes (Sabia et al., 2015b) and linkages
between the atmosphere and the deeper ocean. Combining SSS
with altimetric measurements of sea surface height has allowed
the quantification of eddy energy balance and to identify new
features in mesoscale and large-scale oceanography. Combining
satellite SSS, ocean currents, and precipitation has provided a
powerful tool to study the effect of ocean circulation in mediating
the ongoing changes in the hydrological cycle. The combined
use of satellite SSS, soil moisture, precipitation, and ocean color
data has helped identify the influence of riverine waters on
ocean circulation.

Synthesis of satellite SSS and other ocean observations (both
satellite and in situ) using ocean general circulation models
in systems like ECCO help constrain the relatively uncertain
estimates of freshwater exchange across the air-sea interface and
produce multi-platform salinity estimates for climate research.
As coupled assimilation capabilities advance in the coming
decade, the value of satellite SSS to constrain air-sea and land-sea
freshwater fluxes in coupled models will become even greater.

Complimentary by nature, physical-biogeochemical coupling
provides another niche for satellite SSS integration opportunities.
All carbon-related algorithms require contemporaneous
information on SSS, SST, ocean color, and winds in order to
estimate air-sea CO2 flux, highlighting the need of satellite SSS in
researching Earth’s carbon. Promising results of such synergies
were reported as part of the Pathfinders Ocean Acidification
project and call for sustained and increasing research efforts
in space-based biochemistry. In this regard, the ESA project
OceanSODA aims to develop novel algorithms to advance the
synergistic exploitation of satellite data for producing carbonate
system parameters and to assess the potential impacts of these
products on science, applications, and society.

Improving the Satellite SSS Error Budget
for More Meaningful Integration
Reconciling and integrating information from various sources
requires careful consideration of data uncertainties and errors.
Traditionally, evaluation of satellite SSS data is performed
through comparisons with in situ near-surface salinity

measurements from ground-truth targets collected by Voluntary
Observing Ships, Argo floats, tropical moorings, and ship-based
CTD or thermosalinograph (TSG) measurements, as well as
with gridded maps based on these in situ salinity measurements
(Drucker and Riser, 2014; Tang et al., 2014, 2017; Boutin et al.,
2016, 2018; Lee, 2016). Comparison against this ground-truth
data provides a measure of satellite data biases and uncertainties.

In general, the differences between two salinity estimates
from various sources (e.g., satellite vs. in situ) are attributed to
two types of errors: observational errors and sampling errors.
Sampling errors arise when one data type does not represent a
process (or scale) that the other does2, e.g., due to the differences
in their spatial and/or temporal samplings. Sampling errors
are the “expected” differences, the low bound at which two
estimates are allowed to differ, and should not be confused
with measurement errors. Thus, to interpret and understand the
differences between datasets, it is crucial to separate those error
sources. This is particularly important to assess whether a satellite
dataset meets the mission accuracy requirement, by taking into
account the sampling differences from in situ measurements that
are considered ground truth.

Typically, observational errors for calibrated in situ salinity
data are very small, on the order of ±0.01 (e.g., Delcroix
et al., 2005). For satellite SSS, observational errors are much
larger primarily due to the relatively low signal to noise
ratio, and to inaccuracies in satellite data calibration and SSS
retrievals, ranging from imprecise modeling of the surface
roughness impact, galactic radiation scattered by the sea surface,
contamination by signals from land, rainfall, sea ice, sun, and
radio frequency interference (RF), cold water sensitivities, and
inaccuracies of ancillary data used in retrievals such as wind and
SST (Le Vine et al., 2005, 2007; Font et al., 2010). For comparison,
the accuracy for monthly satellite SSS at 100 × 100 km2 is
between 0.13 and 0.20, on average (Lagerloef et al., 2015; Tang
et al., 2017; Boutin et al., 2018; Kao and Lagerloef, 2018).

Unlike the observational errors, sampling errors are couple-
dependent (i.e., dependent on the two measurements being
compared), and what is noise for one couple can be a non-
issue for another. For example, satellite SSS retrievals represent
the Gaussian-weighted average within the satellite footprint
(40 km for SMOS and SMAP, and 150 km for Aquarius).
In contrast, in situ measurements are pointwise observations.
Thus, variability within a satellite pixel is smoothed in the satellite
footprint, giving rise to a sampling error when compared with
a point measurement (Figure 11). Sampling noise associated
with sub-footprint variability can be a significant source of
errors for in situ measurements in regions with strong transient
dynamics, such as tropical regions influenced by rain bands,
or regions affected by meandering currents and river plumes
(Vinogradova and Ponte, 2013b; Boutin et al., 2016). While
an issue in satellite/in situ comparisons, small-scale error is
not a concern for comparing satellite and climate models with

2Other names have been also adopted in the community, with interchangeable
use of “sampling” and “representation” errors; the latter is being more common
in the modeling community. Observational errors have a variety of names, with
most common being “measurement error,” “instrument noise,” “sensor noise,” and
“data accuracy.”
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FIGURE 11 | Example of potential sampling errors associated with small-scale (sub-footprint) variability, temporal aliasing of satellite monthly fields, and salinity
near-surface stratification in the upper ten meters. Total expected difference (as data error variance, in units pss2) for the Aquarius SSS and a climate model. While
small in the open ocean, sampling errors can be large in coastal regions and should be taken into account (removed) when estimating pure observational error for
satellite salinity, as well as when reconciling (assimilating) it with other information. For example, such a correction can reach 0.7 pss near the Amazon, 0.5 pss in the
Gulf Stream, and 0.4 pss in the Bay of Bengal. For details, see Vinogradova and Ponte (2012, 2013b) and Vinogradova et al. (2014).

similar horizontal resolutions of ∼1◦. A potential concern for
model/satellite comparisons is temporal aliasing of the satellite
monthly fields (Vinogradova and Ponte, 2012). Models generally
have high temporal resolution (an hour or less) and hence
produce robust monthly mean average fields, unlike satellite
SSS retrievals that have 3 to 7-day sampling intervals that can
introduce aliasing errors when representing the true monthly
averages (Figure 11).

With a few exceptions, both in situ and model pairings with
satellite SSS will likely have representation errors associated with
the sampling depth. While L-band satellites measure salinity in
the top few cm of the ocean, the shallowest measurement depths
for in situ sensors are typically 2 to 5 m (for most Argo floats)
and 1 m for tropical moorings. Recent measurements of near-
surface salinity structure show that there are situations where
salinity stratification exists above 1 m, especially in the tropics
where the effect of transient rain is important (Boutin et al., 2016;
Drushka et al., 2016). The effect of near-surface stratification
is summarized in a community paper by Boutin et al. (2016),
providing the first step toward creating a systematic process of
satellite SSS validation and performance assessments.

Until recently, sampling errors arising from sub-footprint
variability, smoothing, and unresolved vertical gradients were
not taken into account as they were assumed to be an order
of magnitude smaller than the noise in satellite SSS. However,
this is not the case in areas of high salinity variability. In
order to improve the assessment of satellite SSS data and its
integration with in situ measurements, it is necessary to better

characterize the spatio-temporal distribution and decorrelation
scales of the SSS variability at various scales. As an illustration,
Figure 11 shows the possible amplitudes of the known sources
of sampling error for satellite, in situ, and model SSS estimates.
These uncertainties are typically small in the open ocean, but
could be significant regionally, particularly near the outflows
of major rivers, western boundary currents, etc., and can reach
one in extreme cases. If trying to estimate pure observational
error for the satellite SSS retrievals by comparing it with in situ
measurements, these sampling errors should be taken into
account (removed). If the RMS difference between the satellite
and in situ data is a measure of satellite SSS error, all sampling
errors should be subtracted from the total RMS in a root-sum-
square sense (assuming that all contributions are uncorrelated).
While relatively small in the open ocean, such corrections can be
significant. For example, using the values from Vinogradova and
Ponte (2012, 2013b) and Vinogradova et al. (2014) and Figure 11,
the sampling error correction can reach 0.7 in the vicinity of
the Amazon river, 0.5 along the Gulf Stream, and 0.4 in the Bay
of Bengal, indicating the importance of taking into account the
sampling errors of pointwise in situ measurements in evaluating
the uncertainties of satellite SSS.

In addition to comparing satellite SSS with in situ data and
estimates from climate models, satellite-to-satellite comparisons
open another route for evaluating data performance. Outside
of the aforementioned regions with high sampling noise, the
agreement between the satellite SSS data from different missions
is remarkable (Boutin et al., 2018), allowing potential errors
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in in situ measurements to be identified (Tang et al., 2017).
To facilitate this a potential way forward is to develop a
common validation framework for multiple salinity satellites.
Such a framework could include data from all L-band salinity
satellites (SMOS, SMAP, and Aquarius), additional related
datasets (precipitation, evaporation, and SST), databases of in situ
salinity measurements for match-ups (Argo, TSG, moorings,
and drifters), and inter-comparison reports at different spatio-
temporal scales. On the horizon, ESA’s Pilot Mission Exploitation
Platform for Salinity project (Pi-MEP) aims to implement such a
framework for SMOS salinity data. Similar efforts for SMAP and
Aquarius in a potential partnership between ESA and NASA are
under discussion.

Finally, another way to have more meaningful estimates of
the satellite SSS error budget is to define appropriate metrics
and indicators of data performance. The most commonly used
quality indicators are the bias, the standard deviation, and
the RMS differences between satellite and in situ salinities.
These indicators enable a broad assessment of improvements or
degradations of different versions of satellite products, provided
that the reference in situ measurements and the spatio-temporal
smoothing applied to the satellite measurements are the same.
However, the details in how the data are processed and compared
can affect the comparisons. For example, stringent filtering and
data smoothing can potentially result in a very good standard
deviation and RMS difference, while discarding the outliers that
contain the true natural variability. Examples include eddies in
river plumes (Akhil et al., 2016), small-scale salinity gradients
relevant for advection studies (Hoareau et al., 2018), and others.
Moving forward, it is desirable to expand the list of quality
indicators that can provide information on the regional signal-
to-noise ratios and the scales of variability detectable by satellite
SSS measurements. For example, comparison of statistical
distributions of SSS, could be effective for detecting outliers and
quantifying extreme events (Supply et al., 2017; Olmedo et al.,
2018), assuming sampling errors are properly addressed.

Complementary to the empirical approach to estimating the
accuracy of satellite SSS, estimates of retrieval errors for satellite
SSS from Aquarius have also been made available to users. The
retrieval errors include the uncertainties related to factors such as
instrument noise, ancillary data product uncertainties (e.g., wind
and SST data to correct for surface roughness effect and thermal
effects on brightness temperature measurements; Lagerloef et al.,
2015), contamination near land and sea ice, and lack of sensitivity
to salinity signals in cold waters (<5C, e.g., Meissner et al.,
2018). Effort is also underway to obtain similar retrieval error
estimates for SMAP SSS.

LOOKING AHEAD

Although progress in the satellite salinity observing system
is commendable, its continued existence, maintenance,
and innovation cannot be taken for granted. Drawing
on the previous sections, we summarize the need for
system continuity and enhancement, suggesting potential
strategies for the upcoming decade and identifying potential

stakeholders that could benefit from the uniqueness of satellite
salinity products.

The Need for Continuity
Many of the science and application drivers discussed in Sections
“Scientific Drivers for Satellite Salinity” and “Application Drivers
for Satellite Salinity” require the continuity of satellite SSS.
A longer record of satellite SSS will greatly benefit the
understanding and prediction of interannual climate variability,
including ENSO. In order to improve the robustness of a model’s
forecast skills, records of multiple realizations of interannual
events are required, given the diversity of events such as the
various flavors of ENSO.

Satellite SSS continuity is necessary to support longer-term
monitoring and forecasting of synoptic extreme events, such
as hurricanes and flooding. We have just scratched the surface
of the ocean’s salinity role in hurricanes, potentially bringing
new approaches into the mix of tools necessary for tropical
cyclone monitoring and forecasting. A way forward in hurricane
forecasting is through improving the representation and coupling
of physics in the underlying atmospheric and ocean models.
Satellite SSS data, with its unique very-near surface as well
as synoptic coverage, is key to understanding the exchange of
heat across the air-sea boundary that fuels hurricane formation
and evolution, particularly in regions that are influenced by
strong freshwater input. Terrestrial floods, as another type of
extreme event that impacts marine ecosystems, infrastructure,
and economy, will also benefit from the continuity of satellite
SSS data. This is especially the case because the continuity of
satellite SSS is pivotal to monitoring the impacts of the changing
water cycle on land-sea linkages. Newly developed techniques
for monitoring and predicting extreme events using salinity are
promising, but require continued measurements in order to be
statistically robust.

Increasing statistical robustness through a longer satellite SSS
record is also required to confirm new discoveries in mesoscale
oceanography enabled by salinity remote sensing. A large and
growing body of evidence suggests that temporal variability in
eddy freshwater transports is particularly important and can
be related to large-scale climate forcing. This interplay between
scales is, however, poorly understood. Continuing satellite SSS
observations at mesoscale resolution to accumulate a longer
observational record is therefore critical to understanding these
processes and scale interactions.

For operational oceanography, such as ocean and ecological
forecasts, continuity of satellite SSS is key. There is little
incentive from operational centers to exploit observations
within an operational modeling framework without a sustained
measurement system.

Moving toward decadal and longer observational coverage will
clarify the role of salinity in the broader climate system and its
linkages with the Earth hydrological and carbon cycles. As an
interwoven component of ocean circulation and stratification,
ocean biochemistry, and the global water budget, salinity is an
important link connecting Earth’s fundamental cycles. As the
Earth’s systems are undergoing dramatic transformations, long-
term salinity trends will be another independent indicator of
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the Earth’s health, now and in the future. Sustaining an accurate
global satellite salinity observing system will make connecting
the dots a reality. SSS is an essential climate and ocean variable
of the GCOS. Recognizing the importance and advantages of
satellite SSS, the 2016 GCOS Implementation Plan specifically
recommended “Action 032: Ensure the continuity of space-based
SSS measurements” (Belward et al., 2016).

The Need for Enhancement
Although it has been demonstrated that satellite SSS
measurements improve many areas of science and applications
much improvement in salinity remote sensing is still needed. The
community recommends potential enhancements in three areas:
accuracy, resolution, and coverage of satellite SSS.

Accuracy – Reducing Uncertainties
Despite their profound impact, salinity variations are rather
subtle. Long-term trends in salinity are particularly subdued,
ranging by 0.2 over multiple decades. In order to detect variations
in salinity with high fidelity, including those variations associated
with long-term climate changes, the accuracy of satellite SSS
retrievals needs to be improved.

Similarly, accuracy must be improved to better resolve other
ocean features of small magnitude, including eddies. With
a typical eddy signal in SSS of 0.1–0.5 and an RMS error
of satellite retrievals of a similar scale, the signal-to-noise
ratio at mesoscale time and space scales is low. Therefore, to
enhance the stability of the satellite SSS observing system SSS
accuracy of less than 0.1 would be desirable. To achieve this
goal, improvements in both retrieval algorithms and sensor
technology are needed.

There is a sense of urgency to monitor high-latitude regions,
making it imperative that salinity remote sensing reduces large
uncertainties from satellite SSS data in cold waters, where
retrievals are affected by reduced sensitivity of L-band brightness
temperature and sea ice contamination. The unprecedented
changes in sea ice melt, precipitation, and river runoff in the
Arctic Ocean impact both geophysical and biochemical systems,
including freshwater storage and export, ocean–ice–atmospheric
interactions, primary production, and the ocean’s response to
acidification. Enhancing the accuracy of satellite SSS data over the
Arctic will allow systematic monitoring of the changing Arctic
SSS patterns and tracking of the pathways of freshwater as it
enters the North Atlantic Ocean. Similar issues arise with large
uncertainties of cold Antarctic waters, affecting our ability to
accurately document the variability of the Subantarctic Front and
Polar Front zones, along with the related water-mass formation
processes that affect global overturning rates. To monitor the
ongoing changes in the polar oceans, technology development
that addresses the current capability gap in a cost-effective
way is necessary.

Resolution – Monitoring Mesoscale Features
While current satellite missions have substantially advanced our
understanding of variations in SSS, a significant part of the
ocean variability associated with mesoscale and submesoscale
processes is still missing. In practice, resolving ocean features

requires capturing the scale of the so-called Rossby radius of
deformation – a length scale at which ocean currents feel the
effects of the Earth’s rotation. In the ocean, the Rossby radius
varies geographically, ranging from 200 km near the equator
to 10–20 km in high latitudes (Chelton et al., 1998). The SSS
measurements from the currently operating satellite missions
SMOS and SMAP have spatial resolutions of approximately
40 km, which means that they only resolve the Rossby radius (and
ocean eddies) up to 30◦ away from the equator. Therefore, it is
advantageous to increase the spatial resolution of satellite SSS to
better resolve mesoscale variability and to measure closer to the
coasts to further enhance the studies of land-sea linkages.

Recent studies elevated the role of ocean submesoscale
currents O(1–10 km), demonstrating their key contribution to
the Earth energy budget and marine biogeochemistry (e.g., Su
et al., 2018). However, measuring submesoscale SSS from space is
beyond the current capability of L-band satellite remote sensing.
Significant technology innovation is underway with the SMOS
High Resolution (SMOS-HR) concept currently studied at CNES
that can potentially provide 10-km resolution data during the
coming decade.

Coverage – Better Sampling of Coastal Oceans
Better satellite coverage is needed near the continental margins,
including near major river plumes that have implications for
hydrological cycle closure. Although current salinity missions
provide SSS data as close as 40 km to the coast, land
contamination remains a concern, with uncertainties exceeding
1 within 100 km distance from the coast. With growing
scientific and public interest in SSS data near the coasts, it is
becoming critical to resolve coastal processes, including land-sea
exchange, hydrological and biochemical cycles, coastal upwelling,
freshening, pollution, and other processes that impact biology,
the ecosystem, and human health.

Overall Strategy for Next Decade
Because salinity is an essential ocean and climate variable,
the future of salinity observations impacts the success of the
Global Ocean Observing System, including the network of Earth
observing satellites. Given the network’s integrated nature, future
satellite SSS missions will benefit from a synergistic approach
to the observing system that will target critical components of
the Earth system, including ocean circulation, air-sea exchanges,
the hydrological cycle, and biogeochemistry. The longevity of
the satellite SSS observing network relies on both technological
developments and strong partnerships, driven by the common
goal of advancing science and applications for societal benefit.

Strategy for Technological Innovations –
Simultaneous Measurements by
Multiband Radiometers
The science and application drivers, together with the challenges
ahead, set specific requirements for the coming decades for
satellite SSS in order to better support end-users. With a
synergistic observing system in mind, one requirement is
to monitor SSS at 25-km spatial resolution or less, which
is the resolution of current SST and wind measurements
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made by passive microwave radiometers, and with global
coverage at least every 3 days. Coincident measurements
of SST and wind greatly facilitate SSS retrieval because,
as Section “Introduction: Remote Sensing of Salty Oceans”
notes, SST and wind are needed as ancillary data in SSS
retrievals. The possibility of simultaneous measurements of
SSS, SST, and winds is especially relevant for the tropical,
low-latitude regions, where existing satellite SSS measurements
are most accurate. The concept of multifrequency radiometers
is being explored, specifically those covering a combination
of P-, L-, C-, and/or X-bands. As all geophysical parameters
can be measured at multiple microwave frequency bands,
multiband microwave radiometers will be able to combine data
retrieved from several bands in order to achieve improved and
simultaneous measurements.

In order to enable remote sensing of SSS in cold water
around the polar regions, concepts involving P-band radiometers
are being considered. It has been recognized since the 1970s
that the optimal radio frequency for salinity remote sensing
is between 500 and 800 MHz (Wood et al., 1975; Swift and
Mcintosh, 1983; Kendall et al., 1985). At these frequencies, the
sensitivity to salinity is nearly invariant with water temperature
and is up to 3 times more sensitive than at L-band for water
temperatures less than 10◦C. However, the first missions were
formulated with radiometers that operated in the protected
Earth Exploration Satellite Service (EESS) spectrum from 1.4
to 1.427 GHz for passive radiometry use due to concerns of
radio-frequency interference (RFI) (Kerr et al., 2001; Lagerloef
et al., 2008; Entekhabi et al., 2010; Oliva et al., 2016). Recently,
microwave radiometer technology has evolved to filter RFI
and extract clean signals if present, expanding the potential
spectrum of operation (Ruf et al., 2006; Misra et al., 2013,
2018; Piepmeier et al., 2014). Radiometers with the ability to
measure the spectrum in the range of 0.8–3 GHz can give
the same benefit of simultaneous wind and SST retrieval, and

significantly improve salinity measurements in general and in
cold water in particular.

Such a system would also have applications for the
cryosphere and the polar oceans (Lee et al., 2016). Current
radar measurements of sea ice thickness have relatively large
uncertainties, particularly for thin sea ice of less than 1 m;
the combined multi-frequency (P-/L-band) radiometry also
aims to fill a capability gap in measuring the thickness of
seasonal sea ice. Improvement of sea ice thickness measurements
and SSS in marginal ice zones are important to ocean-
ice interaction studies and seasonal ice forecasts, as well
as sub-seasonal/seasonal weather forecasts. Additionally,
L/P-band radiometry has the capability to measure ice-
shelf temperature, which has important implications for
sea level research.

The challenge of a multi-band approach is the trade-off
between the cost and the resolution of the satellite retrievals,
which requires further analysis.

Building Partnerships – Exploring International,
Domestic, and Commercial Spaces
International collaboration is important to ensure the consistency
of satellite SSS across different missions, as well as mission
continuity supporting research and applications. With both
SMOS and SMAP in orbit, there is a need for collaboration
on validation platforms and cross-calibration between the two
satellites’ SSS measurements.

In addition to cross-calibration, a platform that enables cons-
istent validation and merging of multi-satellite SSS measurements
is needed. Such capabilities are being explored within ESA’s Pi-
MEP framework and Climate Change Initiative project, as well
as in NASA’s MEaSUREs (Making Earth System Data Records
for Use in Research Environments) programs. Through close
collaboration, ESA and NASA salinity teams need to perform
an inter-comparison of the various algorithms and ancillary

TABLE 1 | Summary of recommendations for salinity remote sensing for next decade.

RECOMMENDATION

(1) CONTINUITY Ensure the continuity of space-based salinity measurements to support the scientific and operational drivers such as the monitoring of
longer-term changes of the ocean’s large-scale and mesoscale variability and the relationship with climate variability, characterizing
land–ocean interactions and oceanic linkages with hydrological and biogeochemical cycles, constraining ocean state estimates,
supporting operational oceanography, and improving forecasting of extreme events and their impacts (e.g., floods and droughts).

(2) ENHANCEMENT Enhance satellite SSS observing system to improve accuracy, resolution, and coverage in order to better support the aforementioned
scientific and operational applications. In particular, it is important to improve satellite SSS accuracy in polar oceans through technological
innovations and better retrievals. At a minimum, future satellite missions should have accuracy, resolution, and coverage that are no
worse than what have been demonstrated with the previous and existing missions.

(3) INTEGRATION Advance the integration of satellite SSS into global ocean observing network and modeling/assimilation. Improve the understanding of
satellite SSS uncertainties by characterizing satellite SSS measurement errors, the effect of sampling differences from the ground-truth
in-situ salinity observations, and the underlying physical processes that contribute to the effects of the sampling differences. Improving the
understanding of satellite SSS uncertainties and the effects of sampling differences from in situ measurements are critical to the synthesis
of satellite SSS from different missions to produce climate data record, to synthesize satellite SSS with in situ salinity measurements (e.g.,
blended products), and to integrate satellite SSS with other satellite and in situ measurements effectively through data assimilation.

(4) INNOVATION Develop innovative, cost-effective solutions to meet continuity and enhancement requirements for future satellite SSS observing system.
Explore multi-frequency instrument concept to enable simultaneous measurements of various parameters (e.g., sea surface salinity, sea
surface temperature, ocean surface winds, sea ice properties) to better support the aforementioned scientific and operational drivers.

(5) PARTNERSHIP Pursue international collaborations to support the continuity, enhancement, integration, and innovations for satellite SSS observing
system. The collaborations include technology and cost sharing, consistent model function for satellite SSS retrievals, and common
framework for satellite SSS calibration and validation.
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datasets employed in the SSS retrievals of each satellite mission.
Choosing a common set of ancillary parameters and models, as
well as refining methods used for characterizing SSS uncertainties
will provide consistent information on the characteristics of
retrieved SSS, particularly in regard to uncertainty, allowing
the development of more accurate, merged SSS products that
address the requirements expressed by end-users and the
science community.

In summary (see also Table 1), a way forward to
continue and enhance salinity remote sensing as part
of the integrated Earth Observing System addressing
societal needs is by implementing innovative solutions and
synergistic measurement concepts, by leveraging current
technological advances, by coordinating with international
partners to ensure complementary capabilities, and by
taking advantage of emerging capabilities in the commercial

sector to lower the cost of making research-quality
Earth observations.
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