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Traditional ecological research has focused on taxonomic units to better understand
the role of organisms in marine ecosystems. This approach has significantly contributed
to our understanding of how species interact with each other and with the physical
environment and has led to relevant site-specific conservation strategies. However, this
taxonomic-based approach can limit a mechanistic understanding of how environmental
change affects marine megafauna, here defined as large fishes (e.g., shark, tuna, and
billfishes), sea turtles, marine mammals, and seabirds. Alternatively, an approach based
on traits, i.e., measurable behavioral, physiological, or morphological characteristics of
organisms, can shed new light on the processes influencing structure and functions of
biological communities. Here we review 33 traits that are measurable and comparable
among marine megafauna. The variability of these traits within the organisms considered
controls functions mainly related to nutrient storage and transport, trophic-dynamic
regulations of populations, and community shaping. To estimate the contributions
of marine megafauna to ecosystem functions and services, traits can be quantified
categorically or over a continuous scale, but the latter is preferred to make comparisons
across groups. We argue that the most relevant traits to comparatively study marine
megafauna groups are body size, body mass, dietary preference, feeding strategy,
metabolic rate, and dispersal capacity. These traits can be used in combination with
information on population abundances to predict how changes in the environment can
affect community structure, ecosystem functioning, and ecosystem services.

Keywords: body size, cetacean, dietary preference, fish, seabird, sea turtle

USING ORGANISMAL TRAITS TO INVESTIGATE ECOLOGICAL
PATTERNS

Most of the traditional research on the conservation of biological diversity focuses on species
identities and on how their numbers and abundances change in space and time (Rosenzweig,
1995). Observations on biodiversity and ecosystem functioning relationships suggest, for example,
that as species richness increases, the productivity and stability of communities also increase
(Tilman, 2001; Tilman et al., 2014). It has been argued, however, that a focus on taxonomic units
(e.g., species or genus) alone is not sufficient to predict the effects of environmental change on
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biological communities and their ecosystem functions
(Díaz and Cabido, 2001; McGill et al., 2006; Violle et al.,
2007). Species that go extinct can be replaced by species with
similar traits and functions (Violle et al., 2014), and intraspecific
trait variability (i.e., variability among individuals due to
phenotypic plasticity or genetic differences) can be as broad as
trait variations across species (Des Roches et al., 2017; Messier
et al., 2010; Violle et al., 2012).

A trait-based perspective to community ecology thus
resurfaced as a potential approach to enhance our mechanistic
understanding of how structure and functions of communities
vary along environmental gradients (McGill et al., 2006).
Central to this perspective are traits, which are morphological,
physiological, or behavioral features of organisms that can be
quantified at different organizational levels, from individuals
to ecosystems (McGill et al., 2006; Violle et al., 2007). Changes
in habitat can strongly affect trait distributions and coexistence
because organisms sharing traits that favor habitat occupancy
are likely to persist in a given community, whereas those
with poorly adapted traits are likely to disappear (Luck et al.,
2013). Thus, traits can help us understand and quantify niche
occupancy (Violle et al., 2007). Also, the traits that define the
fitness of organisms are closely related to ecosystem functions.
For example, a seabird behavioral trait such as migration
ability can be related to functions like nutrient transport
(Doughty et al., 2016).

Trait-based approaches are being promoted for studying
community structure and functions of various groups of
organisms, including terrestrial plants (Kattge et al., 2011; Kraft
et al., 2015), phytoplankton (Litchman and Klausmeier, 2008;
Acevedo-Trejos et al., 2018), zooplankton (Litchman et al.,
2013) corals (Madin et al., 2016), mammals (Jones et al.,
2009), fishes (Stuart-Smith et al., 2013; Ladds et al., 2018),
and microbes (Krause et al., 2014). This approach is also
fostering global collaborative efforts through the establishment
of open trait databases (Jones et al., 2009; Kattge et al., 2011;
Parr et al., 2014; Wilman et al., 2014; Kremer et al., 2017).
However, the lack of a consistent trait-based framework for
the study of marine megafauna, here comprising large fishes
(e.g., billfishes, tuna, and sharks), sea turtles, marine mammals
(i.e., pinnipeds, sirenians, and cetaceans) and seabirds, prevents
a mechanistic understanding of the effects that changes in
diversity can have on ecosystem functioning, a challenge still
difficult to address for many aquatic communities (Meunier
et al., 2017; Degen et al., 2018). Also, marine megafauna has
been largely affected by mortality related to bycatch, various
forms of pollution, overfishing, habitat degradation, and climate
variability, problems that are causing population declines and
loss of functional diversity at a global scale (Croxall et al.,
2012; Albouy et al., 2017; Pimiento et al., 2017). Finally, the
decline of populations within marine megafauna communities
can reduce functional diversity, but the impacts on ecosystem
functioning are far from being understood (Naeem et al., 2012;
Lynam et al., 2017).

Here we list, categorize and describe relevant traits shared by
communities of large fishes, sea turtles, marine mammals, and
seabirds to guide further investigations and comparisons over

these organisms. We then highlight the relationships between
these traits and ecosystem functions and services relevant
for studying the community ecology and the conservation of
marine megafauna.

LITERATURE REVIEW

We listed traits of marine megafauna and the associated
ecosystem functions and services based on a systematic review of
scientific articles published over the last 15 years and up to March
2018. We performed the literature search in Web of Science for
the terms: (1) seabird + trait; (2) marine mammal + trait; (3)
dolphin + trait; (4) whale + trait; (5) seal + trait; (6) sirenian +
trait; (7) manatee + trait; (8) sea turtle + trait; (9) fish + trait;
(10) shark + trait; and (11) marine megafauna + trait. From the
resulting list of articles, we selected those that clearly dealt with
traits of marine megafauna. After an initial screening of potential
traits, we defined the traits terminology based on specialized
literature (Spitz et al., 2014; Costello et al., 2015; Albouy et al.,
2017; Beauchard et al., 2017; Ladds et al., 2018).

DEFINING TRAITS, ECOSYSTEM
FUNCTIONS, AND SERVICES

Traits of marine megafauna are measurable behavioral,
physiological, or morphological characteristics of sea turtles,
large fishes, marine mammals, and seabirds. Functional traits
are those that can affect the performance of organisms and their
ecosystem functions (McGill et al., 2006). Examples include
body mass, locomotion mode, feeding strategy, and life span.
Functional diversity comprises the diversity of functional traits
(Mason and Mouillot, 2013). Ecosystem functions encompass
vital activities of organisms, including feeding, growing, moving,
and excreting, and influence ecosystem functioning (DeLaplante
and Picasso, 2011). Ecosystem services are defined as functions
that provide goods to humans (Costanza et al., 1997; Cardinale
et al., 2012; Mace et al., 2012).

TRAITS SHARED BY LARGE FISHES,
SEA TURTLES, MARINE MAMMALS,
AND SEABIRDS

We identified a total of 33 traits that can be measured
and used comparably over sea turtles, large fishes, marine
mammals, and seabirds (Table 1). These traits are classified
into conceptual categories related to morphology, behavior,
demography, physiology, biogeochemical composition, and
socioeconomic importance. Characteristics such as taxonomic
family, common names, IUCN threat categories can be also
found in the literature (e.g., Costello et al., 2015), but were
not considered here since they are derived from other traits
and constitute imprecise or redundant information. We also
did not consider traits related to the size of body parts because
they typically scale with body size, and a number of them are
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TABLE 1 | Summary of traits of marine megafauna and the related ecosystem functions and services.

Trait type Trait Description Functions Services Example

M Body size Total length in cm, or m. Nutrient storage and
transport.

Nutrient cycling, promotion of
biological diversity, and food
provision.

(Andersen et al., 2016;
Beauchard et al., 2017)

M Body mass Total weight in g or kg. Nutrient storage and
transport.

Nutrient cycling, promotion of
genetic diversity, and food
provision.

(Andersen et al., 2016;
Blanchard et al., 2017)

M Body
condition

Body condition indexes (e.g.,
kg/m).

Nutrient storage and
transport.

Nutrient cycling, and promotion
of biological diversity.

(Jenouvrier et al., 2015)

B Migration Distance traveled per day, year,
or month; or with categories,
e.g., resident or migratory.

Nutrient transport, and
community shaping
through organism dispersal.

Support of trophic state in low
productive areas, biodiversity
promoting, and maintenance of
genetic diversity.

(Doughty et al., 2016)

B Dispersal
performance

Speed of locomotion (km/h) or
trip duration (h/day).

Nutrient transport, and
community shaping
through organism dispersal.

Support of trophic state in low
productive areas, biodiversity
promoting, and maintenance of
genetic diversity.

(Cavallo et al., 2015;
Jenouvrier et al., 2015)

D Mortality
rate

Number of deaths per unit of
time.

Nutrient transport, and soil
fertilization via carcass
decomposition.

Support of trophic state in low
productive areas, biodiversity
promoting, maintenance of
genetic diversity, and soil
fertility.

(Foote, 2008;
Robeck et al., 2015)

D Fecundity Number of eggs or neonates
per reproductive season.

Nutrient storage. Nutrient cycling, and food
provision, in case of sustainable
harvest by traditional societies.

(Abadi et al., 2017)

D Incubation
time

Time in days. Nutrient storage. Nutrient cycling, maintenance
of trophic interactions and
ecosystem stability.

(Cavallo et al., 2015)

D Life-span Time in years. Nutrient storage. Nutrient cycling, maintenance
of trophic interactions and
ecosystem stability.

(Plot et al., 2012)

D Life stage Age measured in years or
categories, e.g., juveniles and
adults.

Nutrient storage,
trophic-dynamic regulations
of populations, and
biodiversity promotion.

Nutrient cycling, maintenance
of trophic interactions,
biological control and
ecosystem stability.

(Putman et al., 2018)

D Reproductive
success

The number of offspring per
breeding attempt or lifetime.

Nutrient storage. Nutrient cycling, maintenance
of trophic interactions and
ecosystem stability.

(Fay et al., 2018;
Lowther and Goldsworthy, 2011)

D Survival
rate

The number of individuals per
period season or year.

Nutrient storage and
transport, and soil
fertilization via carcass
decomposition.

Nutrient cycling, support of
trophic state in low productive
areas, and promotion of
biological diversity.

(Szostek and Becker, 2015;
Abadi et al., 2017)

D Recruitment
age

The proportion of recruitment
age in relation to the lifetime.

Nutrient storage. Biodiversity promoting. (Fay et al., 2017)

D Reproductive
location

Multiple categories, e.g.,
beach, water column, rocks,
and trees.

Nutrient storage and soil
fertilization associated to
excretion.

Biodiversity promotion,
maintenance of genetic
diversity, and soil fertility.

(Costello et al., 2015)

D, B Sociability Number of individuals per
group or flock.

Nutrient storage,
ecosystem engineering via
bioturbation, soil fertilization
via excretion and
community shaping by
altering primary productivity.

Biodiversity promotion,
maintenance of genetic
diversity and ecosystem
stability, and soil fertility.

(Costello et al., 2015;
Durrett et al., 2014)

B Food intake
rate

The amount of prey or other
resource, e.g., fish, milk, and
ingested per unit of time.

Trophic-dynamic
regulations of populations,
community shaping and
nutrient storage.

Biological control of pests and
invasive species, and
maintenance of trophic
interactions and ecosystem
stability.

(McDonald et al., 2012;
Beauchard et al., 2017)

(Continued)
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TABLE 1 | Continued

Trait type Trait Description Functions Services Example

B Dietary preference Categories: omnivore,
planktivorous, carnivore,
herbivorous or scavenger,
which can be organized in
ordinal scale, or relative
importance (%), or prey groups.

Nutrient storage and
trophic-dynamic regulations
of populations.

Biological control of pests and
invasive species, nutrient
cycling, maintenance of trophic
interactions, and proxy for
fishery targets.

(Wilman et al., 2014;
Houle et al., 2016)

B Prey-predator mass
ratio

The mass of the prey divided by
the mass or the predator.

Nutrient storage and
trophic-dynamic regulations
of populations.

Nutrient cycling, biological
control, and maintenance of
trophic interactions and
ecosystem stability.

(Carbone et al., 2014)

M, B Optimal prey size Averaged size of the prey. Nutrient storage and
trophic-dynamic regulations
of populations.

Nutrient cycling, biological
control, and maintenance of
trophic interactions and
ecosystem stability.

(Houle et al., 2016;
Blanchard et al., 2017)

B Feeding strategy Multiple categories:
benthic-feeding,
pelagic-feeding,
surface-feeding, or more
specific; or organized in ordinal
scale.

Nutrient storage and
trophic-dynamic regulations
of populations.

Nutrient cycling, biological
control of pests and invasive
species.

(Paredes et al., 2015)

B Feeding distance Distance between the breeding
location and foraging area.

Nutrient storage,
community shaping via
organism dispersal.

Nutrient cycling and promotion
(or maintenance) of biological
diversity.

(Copello et al., 2016)

B Dive depth The diving depth in meters. Nutrient storage, nutrient
storage and
trophic-dynamic regulations
of populations.

Nutrient cycling, promotion (or
maintenance) of biological
diversity, and biological control.

(Grémillet et al., 2012;
Spitz et al., 2014)

B Dive duration The amount of time spent on
each diving, per unit of time.

Nutrient storage and
trophic-dynamic regulations
of populations.

Nutrient cycling, promotion (or
maintenance) of biological
diversity, and biological control.

(Hassrick et al., 2013;
Ciancio et al., 2016)

B Foraging depth The foraging depth in meters. Nutrient storage and
trophic-dynamic regulations
of populations.

Nutrient cycling, promotion (or
maintenance) of biological
diversity, and biological control.

(Young et al., 2010;
Ceia and Ramos, 2015)

B Dive profile Dive depth divided per dive
duration, or frequency of
undulation (substantial changes
in depth, e.g., >0.3 m) during
diving.

Nutrient storage and
trophic-dynamic regulations
of populations.

Nutrient cycling, and promotion
(or maintenance) of biological
diversity.

(Simeone and Wilson,
2003; Gleiss et al., 2011;
Meir et al., 2013)

B Defense
mechanism

Mechanism to reduce
predation/parasitism:
behavioral (e.g., complex nest
building), morphological (e.g.,
turtle shell), chemical (e.g., bird
odorants against parasites).

Nutrient storage. Nutrient cycling, and promotion
of biological diversity.

(Douglas et al., 2004)

P Temperature
preference

The optimum habitat
temperature selected by most
of individuals, or body
temperature.

Nutrient storage. Nutrient cycling, and promotion
of biological diversity.

(Grémillet et al., 2012;
Cavallo et al., 2015)

P Metabolic rate The oxygen consumption per
unit of time (e.g., ml/min).

Nutrient storage and
trophic-dynamic regulations
of populations.

Biological control of pests and
invasive species, nutrient
cycling, and promotion of
biological diversity.

(Teixeira et al., 2014)

P Growth rate The weight or length gained per
unit of time (e.g., g/day).

Nutrient storage. Nutrient cycling, and promotion
of biological diversity.

(Amano et al., 2014)

P Excretion rate The amount of excreted
material per unit of time (g/day).

Nutrient storage, soil
fertilization via excretion,
and community shaping by
altering primary productivity.

Nutrient cycling, promotion of
biological, and soil fertility.

(Hilton et al., 2000, 2008)

(Continued)
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TABLE 1 | Continued

Trait type Trait Description Functions Services Example

BG Nutrient
composition

The mean amount of nutrients
per individual, or stoichiometric
ratios.

Nutrient storage and
transport, and soil
fertilization.

Nutrient cycling, support of
trophic state in low productive
areas, and promotion of
biological diversity.

(Louzao et al., 2008)

P Prey sensing The way organisms locate prey:
mechanosensing, visually,
chemosensing, or
echolocation.

Nutrient storage and
trophic-dynamic regulations
of populations.

Biological control of pests and
invasive species, and
maintenance of trophic
interactions and ecosystem
stability.

(Friesen et al., 2017)

S Charismatic
potential

Low, medium, or high potential
for attracting tourists,
measured in ordinal scale, or
the estimated annual income in
a given region generated by
tourists attracted by organisms.

Recreation and cultural. Providing opportunities for
recreational activities.

(Daniel et al., 2012)

Trait types include: morphological (M), demographical (D), behavioral (B), physiological (P), biogeochemical (BG), and socioeconomic (S). Functions and services are
classified according to scientific literature (following the creteria of Costanza et al., 1997; de Groot et al., 2002; Hattam et al., 2015). Example includes at least one
reference reporting on the trait listed. This list highlights associations between traits, functions and services, but different associations can be considered depending on
the perspective of a given study.

not comparable (or display different functions) across different
groups of marine megafauna (e.g., bill culmen, toes, size of legs,
dorsal, and caudal fins). Furthermore, a trait such as diving
depth can be quantified in many ways, including, for example,
minimum, maximum, or average diving depth, but to avoid
redundancy, here we considered average diving depth, diving
duration, and diving profile (Gleiss et al., 2011; Meir et al., 2013;
Ciancio et al., 2016).

Due to allometric effects, body size and body mass constitute
key traits because they are correlated with many other
morphological, physiological, and behavioral characteristics. Size
of jaws, mobility, feeding distance, incubation time, life-span,
recruiting rate, growth, metabolic rate, and excretion rate all
scale with body size and body mass (Schreiber and Burger,
2002; Louzao et al., 2008; Froy and Richard, 2013; Fraija-
Fernández et al., 2015; Nunes et al., 2017). This property
makes body size useful for reducing the dimensionality of the
broad trait space. Body size also holds the potential to describe
marine life from bacteria to whales, to help overcome some
of the limitations inherent to taxonomic-based studies, and to
understand variability in functional diversity over very distinct
classes of organisms and environmental gradients (Andersen
et al., 2016; Blanchard et al., 2017). Body size and body mass
are also very useful to predict organismal vital functions (e.g.,
metabolic rates: West et al., 2002), and their contributions to
ecosystem functioning.

Metabolic theory predicts how body size scales with metabolic
rate (Brown et al., 2004). However, variability can be observed
across different groups of marine megafauna, due to differences
in diet composition (Jobling, 1981; Lutcavage and Lutz, 1986;
McNab, 1988; Williams et al., 2001). Carnivore killer whales
Orcinus orca display metabolic rates of 20–30 mL O2 kg−1 min−1,
substantially higher than filter-feeding sharks of similar sizes,
such as the basking shark Cetorhinus maximus which the
metabolic rate is estimated at around 0.01 mL O2 kg−1 min−1

(Sims, 2000; Guinet et al., 2007). For example, the carnivorous

bottlenose dolphin Tursiops truncatus can exhibit a basal
metabolic rate (10.12 mL O2 kg−1 min−1), which is two times
higher than the one of the omnivorous leatherback sea turtle
Dermochelys coriacea (4.77 mL O2 kg−1 min−1), although they
both have similar body size and mass (Lutcavage and Lutz,
1986; Williams et al., 2001). Also, sea turtles feed by pursuing
preys through the water column and low metabolic rates are
a consequence of the long dives and of the fact that increased
metabolic rates in ectoderms impose energetic imbalances (Butler
et al., 1984; Lutz and Musick, 1996; Fossette et al., 2012). To
better predict the effects of organisms on ecosystem functions and
services, body size should, therefore, be used in combination with
traits that shape the fundamental ecology of marine megafauna,
including thermal tolerance (Pimiento et al., 2017), metabolic and
food intakes rates (Woodward et al., 2005), and dietary preference
(Houle et al., 2016).

Phenotypic trait variation within species (intraspecific
variation) can be as broad as trait variation across species of
fishes, sea turtles, marine mammals, and birds (Albert et al.,
2010; McClain et al., 2015; Samarra et al., 2017). Total length
in basking sharks, for example, ranges between 1.5 and 10 m
(McClain et al., 2015). However, food web models usually rely
on the biomass of organisms, which is inferred using values of
body mass averaged within species level (Costa et al., 2017). This
approach may overlook a substantial variation in body mass
across individuals of the same species. Finding new approaches
for addressing intraspecific variations in food web models can
lead to improved predictions of nutrient and energy fluxes via
trophic interactions and ecosystem stability. Efforts are being
made to build databases that includes trait values within species
of marine megafauna (Petchey et al., 2008; Wilman et al., 2014;
McClain et al., 2015; Des Roches et al., 2017), but information on
intraspecific trait variation is fragmented and species-specific.

A large body of research on the trait ecology of marine
megafauna is based on categorical traits because these
properties are straightforward to measure (Costello et al., 2015;
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Albouy et al., 2017). However, the qualitative nature of
categorical traits can limit comparisons between different
groups of organisms (McGill et al., 2006). Regarding the level
of sociability, for example, an organism can be classified as
gregarious, colonial, solitary, or even in intermediary categories
(Costello et al., 2015). For sharks, dolphins, and whales, the
term gregarious can refer to small groups of 5 to 200 individuals
(Mann et al., 2000; Baird, 2009; Crowe et al., 2018), but for
colonial seabirds, the term refers to thousands of individuals
(Schreiber and Burger, 2002; Jovani et al., 2008). Alternatively,
traits estimated quantitatively can be standardized and compared
across different groups of organisms, and potential trade-offs
can be explored (Genovart et al., 2013; Shoji et al., 2015; Gravel
et al., 2016; Yamamoto et al., 2016). Some traits, such as body
size, can be easily quantified, but others cannot. Preferred diet,
for example, is largely treated as a categorical trait and categories
usually include zooplankton, invertebrate, and fish (Albouy
et al., 2017). Categories of food items can be standardized
into semiquantitative information by considering their relative
importance (Wilman et al., 2014). Furthermore, an increasing
amount of numerical data for dozens of megafauna species
can be freely downloaded from the COMADRE Animal Matrix
Database1. Compiled information on morphological, behavioral,
physiological, and demographical traits of marine megafauna
can also be easily found in specialized books providing ground
knowledge on the natural history of these organisms (Schreiber
and Burger, 2002; Spotila, 2004; Jefferson et al., 2015).

LINKING TRAITS TO ECOSYSTEM
FUNCTIONS AND SERVICES

The traits shared by marine megafauna are mainly related to
ecosystem functions including nutrient storage, trophic-dynamic
regulations of populations, community shaping, and habitat
provision (Table 1). Also, almost all traits can be linked to
nutrient storage and cycling (Table 1). Although we made a
number of suggestions on how to link traits with ecosystem
functions and services, establishing relationships between these
properties broadly depends on the perspective of a given
study. For example, food intake rate and dietary preference
are intrinsically related to trophic-dynamic regulations of
populations of specific taxa (Levin et al., 2001; Myers et al.,
2007; Costa et al., 2017), but these traits can be also related
to nutrient storage, because nutrients are transferred from the
consumed to the consumer (Roman et al., 2014). Organismal
dispersal performance and sociability are associated with soil
fertilization via excretion (Zwolicki et al., 2013; Doughty et al.,
2016), and can be related to nutrient storage by changes in
primary production (Table 1). Especially body size and body
mass correlate with a large number of traits and can serve as
a master trait to investigate the drivers of various ecosystem
functions and services (Figures 1A,B). Food intake rate, for
example, varies according to body size and is related to trophic-
dynamic regulations of populations and community structure

1http://www.compadre-db.org/

since it regulates the abundance of specific prey taxa (Thomsen
and Green, 2016; Figure 1B). Food intake rate can be linked to
nutrient storage and cycling because it reflects nutrient flows via
trophic interactions. Also, the almost ubiquitous association of
nutrient storage with different traits and functions results from
fundamental interactions among and between organisms and
their environment, which in turn influences food chain length,
trophic biomass, and nutrient cycling at a planetary scale (Loreau,
1995; Leroux et al., 2012).

Nutrient storage, which is closely related to the contribution
of marine megafauna to nutrient cycling, is also fundamentally
related to food production, the latter being an essential ecosystem
service for human well-being (Pauly and Christensen, 1995;
Costanza et al., 1997). Nutrient storage, converted to food source
for humans by means of fishing or aquaculture production, had
intensified over past half-century leading to overexploitation of
various populations of marine megafauna (Pauly et al., 2002;
Springer et al., 2003). Body size, in combination with population
abundances is highly associated to food production because
fishing methods typically select for larger piscivorous organisms
(e.g., haddocks, bonitos, rays, billfishes, tunas, sharks, and marine
mammals), which have higher nutritional and economic value
(Pauly and Christensen, 1995; Clements et al., 2017). However,
as larger fishes get scarcer, fishing targets shift to smaller
planktivorous fishes and invertebrates (Pauly, 1998; Pauly et al.,
2002). This shift has been altering the structure of marine food
webs, and posing a risk not only to global biodiversity, but also
to food production (Springer et al., 2003; Worm et al., 2006;
Butchart et al., 2010).

Large fishes, sea turtles, marine mammals, and seabirds are
particularly important for the biogeochemical cycle of major
elements because they are widespread, display high mobility,
and are abundant worldwide (Speakman, 2005; Wing et al.,
2014). Body size, is one of the most crucial traits related to
nutrient transport because bigger animals hold more nutrients
and feature impressive dispersal capacities (Andersen et al.,
2016; Doughty et al., 2016; See Figure 1). For example, a
15 m long humpback whale Megaptera novaeangliae weights ca.
35,000 kg (Lockyer, 1976), which is thousands times heavier
than seabirds such as the Manx shearwater Puffinus puffinus,
which has an average size of 0.34 m and a weight 0.46 kg
(Schreiber and Burger, 2002). However, the global population
of shearwaters (790,000 individuals) is 13 times larger than that
of humpback whales (about 60,000 individuals), thus making
the contribution of seabirds to nutrient cycling also quite
important. Combining body size and population abundances
is thus crucial for understanding the contribution of different
marine megafauna communities to nutrient storage and cycling.
This is particularly relevant because the capacity of marine
megafauna to transfer nutrients across land and ocean decreased
by 6% of its global natural capacity due to population declines
(Doughty et al., 2016). Global seabird populations, for example,
have declined by almost 70% over the last 50 years (Paleczny
et al., 2015), with unknown impacts on nutrient storage and
transport worldwide.

Information on population abundances is often valuable
to trait-based approaches since the number of organisms can
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FIGURE 1 | Key traits shared by marine megafauna and their relationships with ecosystem functions and services. Body length and body mass are correlated with
each other and vary over several groups (A). Body size can be considered as a master trait as it influences other physiological, behavioral, and demographic
characteristics such as dietary preference, dispersal performance, metabolic rate, and mortality rate. These traits are associated to specific ecosystem functions and
services (B). Trophic regulation refers to trophic-dynamic regulation of populations. Community shaping refers to shifts in community composition driven by
ecosystem engineering and/or species interactions (e.g., predation). The nomenclature of ecosystem functions and services follows Costanza et al. (1997).

affect the variability and dominance of traits within biological
communities. For example, whaling activities during the first
half of the nineteen century have reduced the population of
blue whales Balaenoptera musculus in the southern hemisphere
to about 1% (Christensen, 2006), with only a slow recovery
being forecasted in the next decades (Tulloch et al., 2017). The
dramatic population decline of these large whales provoked an
excess in krill availability, which not only reshaped the krill
community but also increased the populations of other smaller
vertebrates, such as mink whales B. acutorostrata, penguins,
and various pinnipeds (Estes, 2009; Roman et al., 2014). The
current population of Caribbean green sea turtles is 3–7% the
size of the population prior to the exploitation period, i.e., by
about 1800, when turtles and their eggs were intensively and
persistently harvested (Jackson, 1997, 2001). The decrease in
the number of sea turtles triggered an expansion of their main
food source, the seagrass Thalassia testudinum, which, in turn,
caused an increase in the density of epibiont. These changes
facilitated the deposition of the substrate and the colonization
for diverse species of invertebrates and fishes (Bjorndal and
Jackson, 2003). Compared to sharks, dolphins and whales,
seabirds are relatively small, but with larger population sizes
they can shape biological communities by transferring matter
between distant areas via nutrient uptake, excretion, and carcass
deposition (Polis and Hurd, 1996). Soils hosting large colonies
of seabirds, such as blue-footed boobies Sula nebouxii show
very high concentrations of ammonium and phosphate, which
favors the establishment of creeping vegetation and the associated
invertebrates (Havik et al., 2014; Lynam et al., 2017; Graham
et al., 2018). However, the impact of seabird population declines
on biological communities associated to breeding colonies is
still limited. To investigate the contribution of megafauna to

community structure, population abundance can be used in
combination with other traits related to nutrient storage and
nutrient cycling, such as excretion rate, reproductive location,
and level of sociability.

Marine megafauna includes large, widespread and easily
observable organisms displaying a set of traits appreciated by
humans. These organisms are thus among the most charismatic
in the world (Albert et al., 2018). Charismatic potential can be
considered as trait contingent on human (or societal) perception
with a strong association to recreational and cultural ecosystem
services (Costanza et al., 1997). Such trait leads to services that
provide economical (tourism) or cultural (aesthetic) benefits. The
economical revenues derived by such services can, in turn, help to
mitigate the negative impacts of biodiversity loss (Costanza et al.,
1997; Whelan et al., 2015; Table 1). For example, whale watching
generates an income of 10 billion US $ per year worldwide,
and national parks in the United States and Germany earn,
respectively 10 billion US $ and 500 million € per year (Mayer
et al., 2010; Daniel et al., 2012). These activities provide a wealth
and an environmental awareness that can indirectly influence
other ecosystem functions and services.

FUTURE PERSPECTIVE

Trait-based approaches can help us to understand how the
structure of marine megafauna communities re-organize under
environmental change and adverse conditions, including habitat
loss, increasing pollution, and disease spreading (Keesing
et al., 2010; Cardinale et al., 2012; Pimiento et al., 2017).
A relatively unexplored avenue of research in the ecology
of marine megafauna is the use of trait-based approaches to
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elucidate the importance of functional diversity, an essential
component of overall biodiversity (Tilman, 2001). This field
of research can provide valuable insights into the mechanisms
shaping the patterns of megafaunal trait diversity and ecosystem
function relationships.

One of the most significant quests in ecology today is to
understand the impacts of plastic pollution on populations
of marine megafauna. Evidence is accumulating about the
ingestion of plastic by fishes, sea turtles, seabirds, and marine
mammals (Schuyler et al., 2016; Lynam et al., 2017; Tavares
et al., 2017). Plastics are also abundant in nests of some
seabirds, such as the brown boobies S. leucogaster, with unknown
consequences to chickens and the quality of breeding habitats
(Grant et al., 2018; Battisti et al., 2019). Future research
should concentrate efforts on investigating which type of
traits are most closely related to plastic accumulation among
marine vertebrates. Feeding strategy and depth, for example,
may play an important role in relation to plastic ingestion
(Tavares et al., 2017).

Information on the frequency and number of individuals
stranded among sea turtles, pinnipeds, cetaceans, and seabirds
has been used recently to quantify mortality patterns (Moura
et al., 2016; Tavares et al., 2016; Flint et al., 2017). Carcasses
found washed onshore can be collected easily and with low costs,
and constitute a convenient source of information for assessing
the distribution and variability of morphological, physiological,
and demographical traits in relation to local environmental
stressors (Spitz et al., 2006; Thompson et al., 2013; Amano
et al., 2014; Fruet et al., 2015). This approach is particularly
useful for species that are rare and difficult to observe, such
as melon-headed whales Peponocephala electra (Amano et al.,
2014). Examining stranded carcasses is also a non-invasive way
of measuring traits in species with critical conservation status
and in declining populations, such as the white-chinned petrel
Procellaria aequinoctialis (Cipro et al., 2013).

Measuring traits of marine megafauna can be a challenging
task. In contrast to plants, coral reefs, plankton, and invertebrates,
marine megafauna is highly mobile and hard to capture. For
example, some rare and cryptic marine mammals, such as the
dwarf sperm whale Kogia sima and the franciscana dolphin
Pontoporia blainvillei are difficult to detect in the field (Moura
et al., 2009; Hodge et al., 2018). For these types of organisms, it
is challenging, if not impossible, to measure traits such as food
intake rate and metabolic rate. Hence, body size and body mass
are particularly valuable as they can be precisely quantified and
correlated with other traits at different levels of organization,
from individuals to communities.
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