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Blue carbon is the organic carbon in oceanic and coastal ecosystems that is captured on
centennial to millennial timescales. Maintaining and increasing blue carbon is an integral
component of strategies to mitigate global warming. Marine vegetated ecosystems
(especially seagrass meadows, mangrove forests, and tidal marshes) are blue carbon
hotspots and their degradation and loss worldwide have reduced organic carbon stocks
and increased CO, emissions. Carbon markets, and conservation and restoration
schemes aimed at enhancing blue carbon sequestration and avoiding greenhouse gas
emissions, will be aided by knowing the provenance and fate of blue carbon. We
review and critique current methods and the potential of nascent methods to track the
provenance and fate of organic carbon, including: bulk isotopes, compound-specific
isotopes, biomarkers, molecular properties, and environmental DNA (eDNA). We find
that most studies to date have used bulk isotopes to determine provenance, but this
approach often cannot distinguish the contribution of different primary producers to
organic carbon in depositional marine environments. Based on our assessment, we
recommend application of multiple complementary methods. In particular, the use of
carbon and nitrogen isotopes of lipids along with eDNA have a great potential to identify
the source and quantify the contribution of different primary producers to sedimentary
organic carbon in marine ecosystems. Despite the promising potential of these new
techniques, further research is needed to validate them. This critical overview can inform
future research to help underpin methodologies for the implementation of blue carbon
focused climate change mitigation schemes.
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INTRODUCTION

Blue carbon ecosystems (i.e., tidal marshes, mangrove and
seagrass meadows) constitute hotspots of carbon cycling and are
among the largest carbon sinks in the biosphere (Nellemann
et al., 2009; Duarte et al., 2013). Among the multiple ecosystem
services that coastal vegetated ecosystems provide, the potential
to sequester and retain large carbon stocks over millennial
timescales has generated interest among scientists and policy
makers (Nellemann et al., 2009; Fourqurean et al., 2012; Duarte
et al., 2013). Blue carbon strategies describe a range of activities
for preventing or mitigating carbon dioxide (CO;) emissions
through the conservation and restoration of coastal vegetated
ecosystems (Wylie et al., 2016), which rank among the most
threatened ecosystems on Earth (Duarte et al., 2013).

The accumulation of carbon stocks is the result of higher
accretion rates than decomposition and erosion rates of
C-containing materials (detritus and sediment). There are several
reasons why blue carbon ecosystems accumulate organic matter
and are hotspots of carbon sequestration. First, they are highly
productive ecosystems converting CO, into plant biomass.
Second, above-ground macrophyte biomass enhances deposition
through altering water flow, and the below-ground biomass
reduces erosion and adds organic matter to anoxic soils. These
characteristics result in the net accumulation of both living
and dead organic material produced within the ecosystem
(autochthonous), and/or from external sources (allochthonous)
(Kennedy et al., 20105 Saintilan et al., 2013). Third, soils within
blue carbon ecosystems have low oxygen concentrations which
reduce decomposition, thereby contributing to the accumulation
and preservation of organic carbon (Corg) in the marine
environment (Nellemann et al, 2009; Mcleod et al., 2011;
Duarte et al, 2013). Although soil and sediment can have
distinct definitions, we use them interchangeably to facilitate
comprehension among different disciplines.

The value of blue carbon ecosystems in sequestering Corg
has intensified conservation interests as a measure to mitigate
climate change and offset CO, emissions. However, while both
autochthonous and allochthonous sources contribute to the
soil Corg pool in blue carbon ecosystems (Kennedy et al,
2010), the presence of allochthonous Corg complicates carbon
accounting exercises, because of the risk of duplicating carbon
sequestration gains that may have already been accounted for
where allochthonous carbon from terrestrial environments is
concerned. In contrast, carbon derived from seaweed (Krause-
Jensen and Duarte, 2016; Krause-Jensen et al., 2018), epiphytes or
plankton, also included in the allochthonous inventory (Kennedy
et al., 2010), are not accounted elsewhere and could be included
in reports of carbon inventories from blue carbon habitats.

Knowing the origin of Cog (often termed “provenance” within
carbon accounting settings) in marine depositional environments
is important to decipher biogeochemical cycles and underpin
management as it indicates: (1) the key producers of organic
matter accumulated within blue carbon ecosystems and other
marine depositional environments; (2) the degree of connectivity
within and among marine and terrestrial ecosystems; (3) the
ultimate fate of the large Cyyg flux exported from vegetated coastal

habitats; and (4) the potential shifts in ecosystem functioning
under global change threats.

Knowledge of carbon sources and fluxes among terrestrial
and marine ecosystems is useful for managers and policy-
makers. This includes the determination of whether local site
management is suitable to enhance or maintain blue carbon
ecosystems, or whether activities that are off-site, for example
those occurring in adjoining watersheds or habitats, are needed
to achieve ecosystem management goals. For instance, epiphytic
macroalgae are often abundant in seagrass meadows and
associated with mangrove areal roots, yet the contribution of
algae to soil Corg stocks, food webs or its export to adjacent
habitats is debated (Howard et al., 2017). Additionally, carbon
from macroalgae (Krause-Jensen and Duarte, 2016) and seagrass
(Duarte and Krause-Jensen, 2017) growing in coastal habitats can
be found in deep ocean environments, and there is the possibility
that carbon from mangroves and tidal marshes is also exported
to the deep ocean.

Thus, there is a need to elucidate both the sources of
Corg in blue carbon soils as well as the contribution of these
habitats and other primary producers to carbon sequestration
in depositional environments (Krause-Jensen and Duarte, 20165
Duarte and Krause-Jensen, 2017). Understanding connectivity,
in terms of carbon flows across marine ecosystems, is key
to support blue carbon accounting as well as the successful
management of aquatic ecosystems within land- and seascapes
(Smale et al., 2018).

The purpose of this paper is to synthesize existing information
on Corg provenance in marine systems and the methods used,
and then determine what techniques could be used to improve
our understanding of blue carbon sources. Although we focus on
well-studied vegetated habitats, depositional environments in the
open ocean can also provide an important global sink of blue
carbon, including carbon from planktonic sources and carbon
exported from blue carbon ecosystems reaching the deep sea
(Duarte and Krause-Jensen, 2017). Export of carbon from the
surface ocean to oceanic sinks is enhanced by oceanic fronts
(Stukel et al., 2017), and marine canyons also concentrate carbon
fluxes from coastal vegetated systems to oceanic sinks (Krause-
Jensen and Duarte, 2016). Embedding deep ocean sinks into
blue carbon frameworks is currently hindered by, among other
things, difficulty in identifying the sources of carbon to those
sinks (Krause-Jensen et al., 2018). The methods we discuss are
also applicable to trace the Corg provenance in the deep ocean and
possibly to track oceanic fronts (Khare and Chaturvedi, 2012).

Overview of Blue Carbon Provenance

Bulk properties of soils such as C and N elemental (%) and
stable isotopic (3'>C and 8!°N) composition have been widely
tested and used for quantifying sources of organic matter
in mangrove, tidal marsh and seagrass soils (Kennedy et al.,
2010; Greiner et al., 2016). These tracers have been used to
differentiate between terrestrial and marine sources of organic
matter (Fry and Sherr, 1989), among marine sources with distinct
isotopic ratios such as seagrasses, seston, and macroalgae (e.g.,
Kennedy et al., 2010; Greiner et al., 2016) and between C3
and C4 vegetation (Smith and Epstein, 1970). Apportioning
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of organic matter sources using C and N concentration and
isotopes depends on: (1) accurate knowledge of potential source
values; (2) sources with significantly different values; and (3)
the assumption of little or no alteration of source values during
decomposition (Fourqurean and Schrlau, 2003; Bouillon et al.,
2008). Yet, sources of organic matter in coastal ecosystems can
be complex with variable and overlapping isotopic values among
plant species, tissues, microhabitats, seasons and growth cycle,
which complicates the use of bulk C and N isotopic ratios to
discern Corg sources (Marchand et al.,, 2003; Blair and Aller,
2012). For example, it is difficult to distinguish the contribution
of mangrove, tidal marsh and other terrestrial plants to soil Corg
using 8!°C because these sources have similar isotopic values
(Saintilan et al., 2013). Thus, there is a need for methods to
complement the information provided by C and N isotopic
values (Cloern et al., 2002). Recent studies have highlighted that
more specific markers, such as eDNA and compound-specific
isotopes, could help reduce uncertainty when determining the
sources of Corg (Reef et al,, 2017). Therefore, the analyses of
additional proxies that are reviewed here, have the potential to
greatly enhance our understanding of the fluxes of Cyyg in marine
systems (see Table 1 for summary).

Recent Developments in Tracing Carbon

Provenance

Bulk Hydrogen, Oxygen and Sulfur Isotopes

In addition to '3C and 3'>N isotopic ratios, studies tracing the
origin of organic matter in marine and freshwater ecosystems
have measured 8'30, 82H, and §°*S (Peterson and Fry, 1987).
The emerging use of 8*H in marine soils has potential to
provide evidence for the source of organic matter. $?H values
have been used to measure resource use by aquatic consumers
demonstrating the utility of this method to potentially be
used to track Corg provenance. For example, a combination
of 82H and C and N isotopes was used to determine clams’
consumption of organic matter derived from macroalgae and
microalgae (Hondula and Pace, 2014). Discriminating the diet of
clams was possible because microalgae, macroalgae, seagrass and
wetland macrophytes differ in 82H (Hondula and Pace, 2014).
In addition, Duarte et al. (2018) recently showed that Red Sea
seagrass and macroalgae have distinct §?H signatures and that
the combination of 82H and 8'3C holds promise to discriminate
these carbon sources in Corg sediment stocks. Several factors
such as photosynthesis, lipid content, isotopic discrimination
during water uptake, biochemical and biophysical processes, and
environmental seasonality allow differentiation of 8*H values in
primary producers (Hondula et al., 2014; Ladd and Sachs, 2015;
Adame et al., 2016).

A combination of 8§80 with 3*H could be used to
determine the provenance of C,ry in sediment and although
using this combination has not been used for this to our
knowledge, the following examples demonstrate its relevance
for tracking Corg provenance. While 3180 is not altered upon
water uptake by plants (Roden et al., 2000), it is fractionated
during photosynthesis leading to variation of §!80 values of
plant biomass (Barbour et al, 2007). Variation of §%0 in

mangrove woody biomass has been linked to variation in rainfall
(Verheyden et al., 2004) and salinity (Ish-Shalom-Gordon et al.,
1992). Yet, direct watershed comparison of §'80 of biomass from
co-occurring terrestrial and aquatic species are needed to validate
this technique. Moreover, the isotopic values of 82H and §'80 of
water in mangrove stem water are distinct from those of adjacent
terrestrial plants (Wei et al., 2013) and vary with rainfall and
among species (Santini et al., 2015; Lovelock et al., 2017), but
direct comparison of isotopic values in water with biomass from
the same plants have not yet been made.

There are complexities in using '80 and 8*H ratios to identify
unique carbon sources. First, isotopic composition of primary
producers is not universal and second, the source materials are
required to determine provenance on a case-by-case basis. Some
complications such as the presence of inorganic hydrogen and
the exchange of hydrogen after soil collection, may be overcome
with the use of stringent extraction and drying methods (Chesson
etal., 2009; Meier-Augenstein et al., 2013; Ruppenthal et al., 2013;
Soto et al., 2017). However, other complications remain to be
solved including measuring only a small fraction of total organic
matter due to incomplete extraction (<80% of the total organic
matter; Ruppenthal et al., 2013), accounting for source specific
element ratios (i.e., C/H and C/O), isolating non-exchangeable
H, and determining the effect of bacterial degradation on 8*H
and 3'80. While these isotopic tracers are successfully used to
study animal movement (Rubenstein and Hobson, 2004) and
could assess food web interactions (Zanden et al., 2016), there is
little or no information on how bulk values may change during
decomposition. In summary, *H along with §!80 may be used to
determine contribution of different primary producers to organic
matter in soils or possibly even organic matter derived from
mangrove trees in different environments. However, their use to
discriminate sources of Corg in blue carbon sediments has not
yet been attempted and the complications mentioned should be
addressed to determine the accuracy of these methods.

Measuring sulfur isotopes also has the potential to
discriminate ~sources of Corg in marine depositional
environments. Exposure of plant roots to sulfide in marine
soils affects their sulfur isotopic values due to incorporation of
34S_depleted sulfides (leading to lower 8348 values), which does
not occur in non-rooted primary producers such as macroalgae
(Peterson and Fry, 1987). When used in combination with
other tracers, sulfur stable isotopes improve the elucidation of
sources of organic matter. For instance, Moncreift and Sullivan
(2001) used 84S, in combination with 3!3C and 8'°N, to resolve
the contribution of seagrass and epiphytic algae to the diet of
marine consumers. Connolly et al. (2004) reviewed estuarine
and marine food web studies to conclude that the use of §>*S
isotopes, in combination with 3!3C, yields a high probability of
distinguishing the contribution of different producers to aquatic
food webs. However, whereas 3*4S has been used extensively to
resolve food sources in food web studies, the use of this isotope
ratio to discriminate sources of Corg in marine soils is more
complicated. Soils containing sulfide mineral are common when
anoxic conditions pertain in the sediment and these minerals
are about 40% depleted in 34S compared to seawater sulfate.
Isotopic analysis for 3**S uses roughly the same technology as
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TABLE 1 | Summary of the advantages, and potential limitations for techniques to discern the flow of organic carbon in marine ecosystems.

Method Advantages Disadvantages Discern source Discern source Cost per
identity contribution sample ($US)

Bulk C and N isotopes Wealth of information on Limitations in discerning medium medium ~10
sources and limitations multiple sources

Bulk H and O isotopes Discern contribution of Changes in hydrogen isotope  unknown unknown ~25
terrestrial and mangrove after collection and presence
carbon sources and possibly  of inorganic hydrogen
different plant tissues

Bulk Sulfur isotopes Showed utility in food web Not enough known about unknown unknown ~20
studies transformation in soils

Biomarkers (e.g., lipids) Good for discerning between  Can be difficult to apportion medium medium ~50-300
terrestrial and marine organic  to specific sources
matter

Compound-specific isotopes  Larger specificity and stability ~ Not enough known about medium high ~200

(e.g., lipid isotopes and than bulk org. matter transformation in soils

amino acid isotopes)

eDNA Identify source to species Breadth and accuracy of high medium* ~30

macrophyte primers need to

be tested

*Experiments still need to be conducted to test both the variation in DNA degradation among species and compared to other organic carbon components.

for $!°C and 3'°N, but it is recommended that non-acidified
samples are run to maintain the integrity of the soil 3**S for
sulfur isotope analysis (Connolly and Schlacher, 2013), and if
bulk soil is analyzed the resultant 8°*S values is a measure of
both inorganic and organic sulfur isotopic composition which
can be much more isotopically depleted than any of the potential
Corg sources (Oreska et al., 2018). Although this represents an
untapped research opportunity, a first step would be to employ
methodology that separates inorganic from organic sulfur in the
soils prior to analysis. In addition, it remains to be investigated
how the incorporation of reduced sulfur into organic matter
affects the 8**S of Corg during diagenesis.

Molecular Properties of Bulk Organic Matter

There are multiple methods to characterize the chemical
composition of organic carbon in soils (Derrien et al., 2017).
The most common sources of organic matter in blue carbon
ecosystems (vascular plants, macroalgae, phytoplankton, fungi,
bacteria, zooplankton, etc.) can have different biopolymer
chemical composition (e.g., polysaccharides, proteins, lignin,
chitin, peptidoglycan). Differences in biopolymer identity and
abundance can be analyzed with infrared spectroscopy (IR) to
characterize marine Corg (Benner et al., 1992; Trevathan-Tackett
et al., 2017). IR is a rapid, non-destructive and cost-efficient
method and is therefore a very useful tool for bulk chemical
characterization of blue carbon. However, a disadvantage of using
IR is that some sources can have similar biopolymer fingerprints.
Another complementary method to characterize the composition
of Corg is nuclear magnetic resonance spectroscopy (solid-
state 1°C NMR). Broad morphological, physical and chemical
characteristics of organic matter fractions can be determined
with 13C NMR, including dissolved and particulate Corg, and
recalcitrant organic matter. Although '*C NMR has been used to
describe Corg in terrestrial soils (Baldock et al., 2004), the use in
marine systems maybe more complex because the marine Corg

often undergoes greater levels of processing before deposition
compared to Corg in terrestrial systems (Baldock et al., 2004;
Hayes et al., 2017; Kelleway et al., 2017; Macreadie et al., 2017).
An area for future research is to develop molecular mixing
models with the application of chemometric approaches (Doucet
et al., 2008) based on both IR and NMR results to characterize
blue carbon sources.

Gas chromatography coupled with mass spectrometry (GC-
MS) can also be applied to blue carbon fingerprinting.
Similarly, pyrolysis has been used to discern allochthonous and
autochthonous organic matter in mangrove soils (Marchand
et al, 2008). GC-MS can identify the thermal or chemical
degradation of macromolecules. For example, lignin composition
differs between angiosperms vs. gymnosperms and between
woody tissues vs. non-woody tissues (Haddad and Martens,
1987). Thus, lignin can be analyzed by GC-MS after cupric oxide
oxidation, which can provide information on the abundance
and source of plant material. Lignin can also be analyzed
by thermal degradation using analytical pyrolysis which can
then be analyzed with GC-MS (Py-GC-MS; Carr et al,
2010; Zhang et al, 2016). Due to the invasive nature of
pyrolytic breakdown, Py-GC-MS is quantitatively weak but
has the advantage that it also provides information on other
macromolecular materials, such as polysaccharides, proteins,
chitin (in zooplankton and fungi), peptidoglycan (in bacteria),
chlorophyll (in phytoplankton), charred organic matter (an
important type of recalcitrant organic matter) and others (e.g.,
cutin, suberin, algaenan, and tannin; Carr et al, 2010 and
references therein). Such information can be useful not only
as a molecular screening method to identify sources, but can
also be used to compliment or validate less complex data from
IR, elemental or isotopic analysis. Analysis of the molecular
properties of bulk organic matter does necessitate specific and
advanced analytical methodologies such as IR, NMR, GC-
MS, and PY-GC-MS.
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Biomarkers (Targeted Compounds)

Biomarkers, such as n-alkanes and phenolic compounds, have
been proposed as taxonomic fingerprints and the biomarker
profile of some marine primary producers has been characterized
(Zidorn, 2016; Gachet et al., 2017). Lipids can provide convenient
biomarkers to trace the source and fate of Coy and have
great potential as a molecular biomarker for coastal systems
(Derrien et al., 2017). For example, n-alkanes lipids together
with stable C and N isotopic compositions, have been used
to quantify the source of Corg along estuarine gradients (Jaffé
et al.,, 2001; He et al., 2014). In addition, n-alkanes can indicate
the relative proportion of terrestrial and marine sources of
organic matter (Silliman et al., 1996; Ortiz et al, 2013) and
can differentiate the source of organic matter within coastal
systems among terrestrial sources, emergent aquatic plants, and
submerged macrophytes (Sikes et al., 2009). Other compounds
with the potential to fingerprinting Cyrg include proteins, such
as glomalin which has been used to indicate terrestrial-derived
carbon in blue carbon soils (Adame et al., 2012; Lépez-Merino
et al., 2015; Wang et al,, 2018). In general, biogeochemical
plasticity of biomarkers can exist within species based on their
geographical distribution and through time (Derrien et al,
2017). Similar to molecular properties of bulk organic matter,
biomarker analysis requires advanced analytical methodologies,
for example liquid chromatography (LC, HPLC), GC and MS.
Biogeochemical plasticity of biomarkers can exist within species
based on their geographical distribution and through time
(Derrien et al., 2017). A recent review provides a good overview
of using biomarkers to trace organic matter (Derrien et al,
2017). To date, few studies have used this approach to fingerprint
sources of Cyrg in blue carbon soils, and some studies have used
biomarkers in combination with compound-specific isotopes
(Apostolopoulou et al., 2015).

Compound-Specific Isotopes (Amino Acids,
Carbohydrates, Lipids)

Compound-specific stable isotopes of organic matter can enable
the molecular specificity and isotopic value of compounds to be
exploited concomitantly to trace the origin and fate of organic
matter (Evershed et al., 2007; Chikaraishi, 2014). Many types of
amino acids, carbohydrates, and lipids have been used for isotopic
fingerprinting and to trace Corg sources through food webs (De
Troch et al., 2012; Larsen et al., 2013), with the finding that they
seem to be considerably more stable and specific than that of
the bulk organic matter (Larsen et al., 2015). The $§!*C and §?H
values of sterols in living algae are consistent with those found
in marine sediments, suggesting that the isotopic compositions
of algal sterols are well-preserved in sediments and therefore
could be used as tracers of Corg origin (Chikaraishi, 2006). Lastly,
isotopes of amino acids, have also been identified as a powerful
tracer of material origin, because environmental conditions have
a minimal effect on 3'3C patterns of different amino acids
in seagrass (Posidonia oceanica) and giant kelp (Macrocystis
pyrifera) (Larsen et al., 2013). Thus, patterns of 3'*C among
individual amino acids have a much greater potential than bulk
813C to distinguish between Cory derived from algae, seagrass,
terrestrial plants, bacteria and fungi (Larsen et al., 2013). Over

time, sedimentary diagenesis may lead to increased contribution
of bacterial sources (Larsen et al., 2015), but the method still
seems a promising complementary approach to overcome some
of the limitations of bulk isotope analysis in estuaries and other
complex environments with mixed aquatic and terrestrial inputs
for determining the origin of organic matter. A few studies have
used both bulk and compound-specific isotopes to track changes
in the provenance of blue carbon including stable isotopes within
higher plant leaf wax lipids (Johnson et al., 2007) or n-alkanes
(Tanner et al., 2010).

Environmental DNA

Fingerprinting marine organisms through environmental
DNA (eDNA) has recently become a widely used technique
to determine the presence and abundance of individual
macroorganisms (Rees et al., 2014; Thomsen and Willerslev,
2015). Most of the marine research using eDNA has targeted
macrofauna, while minimal attention has been given to
macroflora (Thomsen and Willerslev, 2015; Goldberg et al,
2016), with only one paper to our knowledge on eDNA of
macrophytes in marine sediments (Reef et al, 2017). Given
that approximately 3% of cellular Corg is DNA (Landenmark
et al., 2015) and that eDNA can identify individual species,
this approach has great potential for determining the
provenance of Cor in soils of blue carbon ecosystems. In
aquatic environments, phytoplankton identified from eDNA
isolated from sediments in deep water were representative
of the pelagic community (Corinaldesi et al, 2011; Capo
et al, 2015). However, eDNA analysis may underrepresent
phytoplankton that lack hard structures (Boere et al., 2011b), and
underrepresent phytoplankton compared to terrestrial plants
(Boere et al., 2011a), due to differential preservation of their
DNA. Currently, the sole study using eDNA to measure the
provenance of blue carbon found that seagrass meadows had
a greater input of autochthonous Cory based on eDNA than
when sources of Corg where estimated using 313C and 3!°N
(Reef et al., 2017). This discrepancy between methods highlights
the need to experimentally test the relationship between bulk
organic carbon sources and sequenced eDNA during diagenesis
at different timescales.

The basic steps in analyzing eDNA using metabarcoding
include isolating DNA from sediment, replicating target
DNA sequences through polymerase chain reaction (PCR),
determining the base pairs of the replicated sequences using next
generation sequencing, and matching the sequences to known
taxa. The relationship between eDNA and natural abundance is
better when focusing on single taxon or species using quantitative
PCR or related techniques (Yates et al., 2019), as compared to
using PCR and metabarcoding which may not have a relationship
between initial DNA concentration and final sequences but have
the benefit of uniquely identifying many species in a single
sample. To relate the number of DNA sequences to the
abundance of organisms based on metabarcoding, knowledge
of the factors that affect eDNA quantity in sediment and PCR
bias (i.e., the preferential replication of some DNA sequences
relative to others) should be identified and measured (Yoccoz
et al., 2012). When using eDNA reads as an indicator of blue
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carbon provenance, the factors that may alter the relationship
between DNA and C,g should also be understood. Potential
artifacts that deserve attention when using eDNA to track
blue carbon include: (1) DNA may degrade at a faster rate
than other Corg components, such as carbohydrates and other
macromolecules (Volkman, 2006), so there is the potential
for eDNA to underestimate allochthonous Corg and species
with relatively less resistant cellular structure (e.g., algae vs.
vascular plants); (2) primers need to be tested to ensure that the
species thought to contribute to the Corg in soil are amplified
because primer amplification is imperfect (Deagle et al., 2014);
(3) the initial and amplified number of sequences may not be
related when using PCR (Acinas et al., 2005); and (4) accurate
fingerprinting requires that sequences for the putative source
primary producers be deposited in reference data banks, which
is not always the case. Recent studies have used mock samples
to assess whether PCR amplicons are related to initial DNA
concentration, finding that this relationship does exist for most
species (Thomsen et al., 2016). Given that eDNA within aquatic
sediments have been used to track changes over millennia in
the surrounding terrestrial and aquatic autotroph communities
(Capo et al., 2015; Sjogren et al., 2016) and Corg contributions
(Coolen et al., 2007; Boere et al., 2011a), there is great potential
for using eDNA to track the provenance and fate of Copy
within blue carbon ecosystems (Reef et al., 2017). The potential
resolution of eDNA to detail carbon contribution to species level,
makes this approach unparalleled by any other approach used
to fingerprint the sources of Cog in blue carbon soils. However,
the limitations mentioned when using PCR should be addressed
before inferring a relationship between metabarcoding results
and contribution of Coyg.

Common Methodological Issues

The disparate techniques described here share limitations that
can likely be addressed to improve our ability to determine
the provenance of sequestered Cyrg in the marine environment
(Table 1). First, all the techniques assume conserved relationships
between the source of specific markers and those in sedimentary
Corg pools, yet changes in the markers through space and
time may occur, hence these changes need to be quantified.
Thus, some of these methods should be considered qualitative
or semi-quantitative until this assumption has been tested.
Second, all methods are based on known standards, such as
a comprehensive library of known DNA sequences, isotopic
values of source materials or biomarker profiles, and it requires
a community effort to develop and expand these standards so
as to enable the full power of these techniques. Third, these
methods often depend on large databases and/or necessitate
computationally intensive programs to match samples with
standards. For example, mixing models are often used for stable
isotopes but have multiple limitations (Fry, 2013), and advances
have been made such as Bayesian methods that can include
additional information to reduce uncertainty in undetermined
systems (Moore and Semmens, 2008). Mixing models for isotope
ratios of specific compounds are less developed than for bulk
isotope ratios and need further refinement to validate their use.
Finally, methods are constantly being developed and specialized

to determine Corg properties and many are associated with
specialized equipment that can be esoteric and too expensive for
many researchers (see Table 1 for estimated cost). However, as
is the case with DNA sequencing, many methods have and will
become available to a broader scientific community as technology
improves and costs continue to decrease, a consequence of the
increasingly large number of researchers using these techniques.

CONCLUSION

We reviewed and critiqued multiple methods that have the
potential to improve our understanding of the provenance and
fate of Corg within and among coastal ecosystems. Our goal is
to encourage research aimed at improving the assessment of
the Corg origin in blue carbon ecosystems which is needed to
decipher biogeochemical cycles and underpin management such
as blue carbon initiatives. This advance would include assessment
of species of macroalgae, microphytobenthos and epifauna,
which can have high production rates, but their contribution to
blue carbon has been illusive because of current limitations in
tracking their origin and fate. In addition, recent research has
suggested that coastal primary producers, such as macroalgae
and seagrass, could significantly contribute to Corg sequestration
beyond their habitat, including in the deep ocean (Krause-
Jensen and Duarte, 2016; Duarte and Krause-Jensen, 2017), but
direct measures of their contribution are limited at best. The
ability to accurately determine the identity and contribution
of primary producers to soil Corg will likely depend on a
combination of the previously discussed methods that minimize
the associated limitations. In our opinion, the methodologies
with the greatest potential to determine the provenance of soil
Corg are the C and N stable isotopes of lipids to determine
the quantity of discerned taxa in combination with eDNA to
identify the species that contribute to the isotopic composition.
The ability to mitigate the negative effects of elevated atmospheric
CO; can be aided by management schemes that maintain
existing carbon storage and promote carbon sequestration.
The marine environment, and blue carbon ecosystems in
particular, are hotspots of carbon storage. Enhanced knowledge
of the sources and fate of Cory stored in marine sediments
is important for both managing coastal carbon stocks and
understanding carbon cycling.
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