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This study relates the lipid content of two marine filter-feeding demosponges,
Halichondria panicea and H. bowerbanki to the seasonal availability of their suspended
food, mainly free-living bacteria and phytoplankton at two study sites in Danish waters.
The aim was to investigate if the lipid content of sponges is linked to food availability and
season, and to what extend free-living bacteria are available in starvation periods where
the phytoplankton biomass is low. The highest concentrations of bacteria were observed
during summer when also chlorophyll a concentrations were high, and therefore bacteria
and phytoplankton were available in similar ratio at all seasons. Bacterial cell carbon
was estimated to contribute 2.9 and 4.6% compared to phytoplankton cell carbon in
the food at the two sites, respectively, and free-living bacteria were available only as a
minor food source at all seasons. Highest lipid contents (29.5% of sponge dry weight)
were seen in H. panicea at the site with lowest food availability, while the lipid content
of H. bowerbanki was 11.5% of dry weight. No seasonal variations in lipid content as
fraction of sponge dry weight were observed, and the lipid content was not affected by
food availability or starvation. It remains unclear why the lipid-content levels at the two
study sites were conspicuously different.

Keywords: free-living bacteria, phytoplankton, fatty acids, filter-feeding, seasonality, lipids, Porifera

INTRODUCTION

Halichondria is a common demosponge in for example coastal Dutch (Hummel et al., 1988),
German (Barthel, 1986, 1989), Polish (Chojnacki, 2000), and Danish waters (Riisgård et al., 1993;
Olesen and Weeks, 1994). Sponges are sessile filter-feeders, evolutionary adapted to nourish on
a dilute suspension of microscopic food particles, mainly phytoplankton and free-living bacteria
(Riisgård et al., 2016). Food uptake is low in autumn and winter (Koopmans et al., 2015) when
low phytoplankton biomass may result in starvation and temporarily decreasing condition index,
i.e., the ratio of organic to inorganic matter (Barthel, 1986; Lüskow et al., 2019). The seasonal role
of possible energy-storage compounds in sponges is largely unknown. Analysis of the biomass
composition of H. panicea from Kiel Bight revealed glycogen and lipid contents of 10–30 mg
per g ash-free dry weight and 80–140 mg per g ash-free dry weight, respectively (Barthel, 1986).
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Neither the lipid, nor the glycogen content seemed, however,
to be affected by season (Barthel, 1986). Glycogen is present
only in low quantities (<1–3.7% of the dry weight), while lipids
may constitute up to 17.3% of the dry weight in demosponges
(Stone, 1970; Elvin, 1979). Potentially, lipids may therefore pose
the largest energy-storage potential in demosponges, but this has
hardly been studied since sponges have no organs or real tissue
that may store fat (Rod’kina, 2005).

Sponges contain the greatest diversity of fatty acids among
aquatic animals (Rod’kina, 2005), including a variety of long
chain (>C22) fatty acids, which are synthesized by elongation
of fatty acids from the diet (Carballeira et al., 1986; Rezanka
and Sigler, 2009) and used as structural components in cellular
membranes (Rod’kina, 2005). Short chained C16 and C18 fatty
acids may also be abundant in H. panicea and other sponges
(Lawson et al., 1984; Rod’kina et al., 2003, Rod’kina, 2005).
Palmitic acid (C16:0) and stearic acid (C18:0) account for 1.5–
33.0% of the fatty acids in most sponges (Rod’kina, 2005). These
fatty acids can be acquired directly from the diet, but their
metabolic roles in sponges have not attracted much attention.
Sponges also contain filter-feeding trapped phytoplankton and
free-living bacteria (Thomassen and Riisgård, 1995) as well as
various symbiotic microorganisms (Lee et al., 2001; Hentschel
et al., 2006), which also contribute to the lipids that can be
extracted from sponges (Rod’kina, 2005).

Sponges efficiently retain free-living bacteria and other
particles down to about 0.1 µm in diameter (Fjerdingstad, 1961;
Reiswig, 1971, 1975; Langenbruch, 1983; Leys et al., 2011) and
are thus more efficient in retaining such small particles than
other co-occurring marine filter-feeding animals, such as, e.g.,
blue mussels (Lüskow and Riisgård, 2018). The importance of
bacteria versus phytoplankton has therefore been debated (see,
e.g., Koopmans et al., 2015; Riisgård et al., 2016) and bacteria
contribute approximately 20% of the diet of sponges in Danish
waters (Lüskow et al., 2019). Since odd numbered long chain fatty
acids, stemming from elongation of shorter chain odd numbered
fatty acids of bacterial origin can be found in sponges, including
H. panicea from coastal Dutch waters, bacteria certainly play a
nutritional role (Carballeira et al., 1986; Koopmans et al., 2015).

Coastal seawater contains 106 to 5 × 106 free-living bacteria
ml−1 (Azam et al., 1983; Fenchel, 2008). Higher concentrations
may also occur (Andersen and Sørensen, 1986) and vary with
season (Bernbom et al., 2011; Lüskow et al., 2019; Richert et al.,
2019). It is generally observed that the concentration of free-
living heterotrophic bacteria living on dissolved organic matter
lost from the phytoplankton is positively correlated with the
concentration of chlorophyll a in marine environments (Azam
et al., 1983; Bird and Kalff, 1984; Guererro et al., 1996; Lüskow
et al., 2019; Richert et al., 2019), apparently with the tendency
that the bacterial biomass make up a larger proportion of the total
suspended biomass when phytoplankton biomass is low (Bird
and Kalff, 1984; Pedrós-Alió et al., 1999).

This study relates the lipid content of sponges to the seasonal
availability of free-living bacteria and phytoplankton at two study
sites in temperate Danish waters; of which one is characterized
by relatively low phytoplankton biomass and the presence of
the common breadcrumb sponge H. panicea, and the second

by relatively high phytoplankton biomass and the presence of
a closely related species, H. bowerbanki. The aim was to link
the lipid content of sponges to seasonal food availability with
particular emphasis on the importance of free-living bacteria
in order to achieve a better understanding of their nutritional
role for sponges.

MATERIALS AND METHODS

Collection and Storage of Sponges
Halichondria panicea (Fleming, 1828) was regularly collected
in the inlet to Kerteminde Fjord, Denmark (55◦26'59.1"N
10◦39'41.0"E), while H. bowerbanki (Burton, 1930) was collected
in Frederik den VII’s Kanal, an excavated harbor channel
connected to Limfjorden, Denmark (56◦57'51.1"N 9◦14'27.0"E)
between October 2016 and September 2017. Five specimens were
cleaned of epifauna, weighed and stored separately in plastic
bags at −20◦C until analysis. Specimens were identified based
on spicule morphology as H. panicea in Kerteminde Fjord and
as H. bowerbanki in Frederik den VII’s Kanal.

Dry Weight and Lipid Content
The wet weight of sponge specimens was measured after
water at their surface had been removed by a napkin. Dry
weight was measured after drying for 24 h at 100◦C. Ash free
dry weight was measured after incubation for 6 h at 500◦C.
Concentrations of carbon present in sponges were estimated
using a conversion factor of 0.142 mg C per µg sponge dry weight
(Thomassen and Riisgård, 1995). Lipid contents were quantified
in lyophilized subsamples of sponge tissue (approximately 1 g)
after 24 h of extraction in chloroform/methanol and subsequent
evaporation of the solvent as described by Pleissner and Eriksen
(2012). Fatty acids were subsequently transmethylated in 3 ml
CH3OH:HCl:CHCl3 (10:1:1 v/v/v) at 90◦C for 1 h, and the fatty
acid methyl esters were extracted in hexane and analyzed using
GC-FID, as also described by Pleissner and Eriksen (2012).

Chlorophyll a and Bacterial
Concentrations
In the inlet to Kerteminde Fjord chlorophyll a concentrations
were measured using an YSI 650 hand held fluorimeter
(Yellowstone Scientific Instruments) at 1 m depth and 1 m away
from the harbor wall. In Frederik den VII’s Kanal, phytoplankton
was trapped on GF/F glass microfiber filters (Whatman) by
vacuum filtration of 1 l of water sampled 20 cm below the surface
at calm weather conditions. Chlorophyll a was extracted from
the filters for 24 h at 4◦C in 80% ethanol and its concentration
was measured spectrophotometrically as described by Arvola
(1981). Concentrations of carbon present in the phytoplankton
were estimated using a conversion factor of 0.04 mg C per µg of
chlorophyll a (Li et al., 2010).

The concentration of free-living bacteria was quantified in
water sampled at the same time and position as chlorophyll
a was measured. Bacterial cells were stained with either DAPI
or acridine orange and counted under the microscope using
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either UV or blue light for excitation. Concentrations of carbon
present in the suspended bacterial cells were estimated using
a conversion factor of 7.8 × 10−15 g C per bacterial cell
(Ferguson and Rublee, 1976).

Weight-Specific Chlorophyll a Content in
Sponge Tissue
Sponges sampled at the inlet to Kerteminde Fjord were separated
into two groups. One group of sponges was used for immediate
quantification of chlorophyll a in the freshly collected sponge
tissue. The second group was placed in bio-filtered (by blue
mussels) and aerated seawater (the water was changed every 24 h,
ambient salinity) and starved for up to 77 h before chlorophyll
a was extracted and quantified. The sponges were cut into pieces
of 0.33–1.80 g (n = 10) and placed in 8 ml 96% ethanol at 4◦C.
After 24 h the samples were whirl-mixed for 1 min and the sponge
remains withdrawn. The extract was centrifuged for 10 min at
3,000 rpm. Chlorophyll a was calculated as the difference between

absorbance measurements at 665 and 750 nm. The wet weight-
specific chlorophyll a content in the sponge tissue was calculated
by relating the chlorophyll a contents in the extracts to the
sponge wet weights.

RESULTS

Seasonality of Food Availability
Concentrations of chlorophyll a were generally lower in the
inlet to Kerteminde Fjord (1–6 µg l−1) than in Frederik den
VII’s Kanal (2 to 15 µg l−1). Bacterial concentrations were
comparable, ranging from a minimum of 2 × 105 cells ml−1 at
both sites to 1.3 × 106 cells ml−1 in the inlet to Kerteminde
Fjord and 1.5 × 106 cells ml−1 in Frederik den VII’s Kanal
(Figures 1A,C). Bacterial concentrations were generally highest
when also the chlorophyll a concentration was high (Figure 1B),
and bacteria and phytoplankton were primarily available from

FIGURE 1 | (A,C) Chlorophyll a (�, —) and bacterial (�, —) concentrations in the water column measured over 1-year periods. (A) Inlet to Kerteminde Fjord,
January 28, 2016 to January 30, 2017. Data redrawn from Lüskow et al. (2019), curves drawn by eye. (C) Frederik den VII’s Kanal, October 4, 2016 to September 5,
2017. Error bars indicate SEM of three samples. (B) Relationship between concentrations of bacteria and chlorophyll a in the inlet to Kerteminde Fjord [# (summer),
3 (winter), —], r2 = 0.16 and in Frederik den VII’s Kanal [ (summer) �, (winter), —], r2 = 0.63. (D) Ratio of concentrations of cellular carbon in phytoplankton and
bacteria for 1-year periods in the inlet to Kerteminde Fjord [#(summer), 3 (winter), —], r2 = 0.02 and in Frederik den VII’s Kanal [ (summer), � (winter), —].
Summer period from spring equinox (Day 80) until autumn equinox (Day 264), winter period the remaining part of the year.
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spring to autumn. On average, the estimated concentrations
of cell carbon in phytoplankton and free-living bacteria were
123 ± 44 µg C l−1 in the inlet to Kerteminde Fjord and
322 ± 193 µg C l−1 and in Frederik den VII’s Kanal, with average
contributions from bacteria of 4.6 ± 1.8 and 7.7 ± 2.8 µg C
l−1, respectively, at the two sites. The ratio between estimated
concentrations of carbon present in bacteria and phytoplankton
is shown in Figure 1D. The phytoplankton always contributed
the majority of the suspended cell carbon. In the inlet to
Kerteminde Fjord bacteria contributed on average 4.6% of the
cell carbon of phytoplankton. The relationship between bacteria
and chlorophyll a concentration was generally higher during the
summer period, from spring equinox (Day 80) until autumn
equinox (Day 264) than during the winter period (Figure 1D).
Bacteria in Frederik den VII’s Kanal accounted for 2.9% of the
cell carbon, with the highest relative contribution in February and
March (5–7%), when phytoplankton biomass was at a minimum.

Lipid Content in Sponges
Sponges in the inlet to Kerteminde Fjord had an average dry
weight content of 8.7% of the wet weight, unaffected by season
while sponges in Frederik den VII’s Kanal had dry weight content
of approximately 10% of the wet weight in October to February.
From March to September, the average dry weight content of
these sponges increased and peaked at around 20% of the wet
weight. In October to November 2016, sponges in Frederik den
VII’s Kanal had a condition index of 1.16 ± 0.17 (n = 6), which
in January to February 2017 decreased to 0.53 ± 0.07 (n = 6).
In April to May 2017, the condition index was 0.58 ± 0.09
(n = 6). The dry-weight specific lipid content in sponges from
both sampling sites remained constant over the year and was
considerably higher in sponges in the inlet to Kerteminde Fjord
than in sponges in Frederik den VII’s Kanal (Figure 2).

FIGURE 2 | Halichondria panicea and H. bowerbanki. Lipid content as
fraction of dry weight (�) in H. panicea from the inlet to Kerteminde Fjord,
October 19, 2016 to September 9, 2017 and in H. bowerbanki from Frederik
den VII’s Kanal, October 4, 2016 to September 5, 2017 (�). Error bars
indicate SEM from 3 to 5 specimens.

Composition of Short-Chain Fatty Acids
in Sponge Lipids
Palmitic and stearic acid were the most abundant short-chain
fatty acids in sponges from both sampling sites (Figure 3), as
judged from gas chromatograms. The contents of these two
fatty acids were variable, but in most specimens, each fatty
acid made up less than 10% of the total lipid content in the
sponges. They did, however, always co-occur in a C16:C18
ratio of 1.2–1.3 (Figure 3A). Other fatty acids were also
present in the sponges along with a number of unidentified
lipophilic compounds, each contributing less than 1% of the
total lipid content.

Specific Chlorophyll a Content in
Sponges
The decrease of chlorophyll a in sponges sampled in the inlet
to Kerteminde Fjord was followed after they were transferred
to seawater cleared from phytoplankton (Figure 4). Chlorophyll
a was cleared from the sponge tissue at a specific rate of
0.017 h−1, corresponding to a half-life of approximately 40 h.
Initially, the sponges contained 17 µg chlorophyll a per g wet
weight, corresponding to a phytoplankton carbon contribution
of approximately 0.5% of the organic carbon.

FIGURE 3 | Halichondria panicea and H. bowerbanki. (A) Ratio of palmitic
acid and stearic acid, C16:C18 in H. panicea from the inlet to Kerteminde
Fjord, October 10, 2016 to September 9, 2017 ( ) and in H. bowerbanki from
Frederik den VII’s Kanal, October 4, 2016 to September 5, 2017 (#).
(B) Fraction of palmitic acid, C16:0 (�) and stearic acid, C18 (�) in lipids of
H. panicea from the inlet to Kerteminde Fjord, October 4, 2016 to September
9, 2017.
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FIGURE 4 | Halichondria panicea. Wet-weight specific chlorophyll a content in
sponge tissue after transfer from the field to bio-filtered seawater without
phytoplankton. Data points show average values ± SD of 10 individual
specimens. Regression curve is a first order decay with a rate constant of
0.017 h−1, r2 = 0.94.

DISCUSSION

The concentrations of chlorophyll a and free-living bacteria
varied over the season at both study sites. Generally, chlorophyll a
concentrations were lower in the inlet to Kerteminde Fjord (3 µg
l−1 on average) than in Frederik den VII’s Kanal (8 µg l−1), while
concentrations of bacteria stayed within similar concentration
ranges at both sites (Figures 1A,C). Although food availability
was highest in Frederik den VII’s Kanal, the specific lipid content
was highest in Halichondria panicea from the inlet to Kerteminde
Fjord. The specific lipid content did not show signs of seasonal
variation. Bacteria made up a minor fraction of the available
biomass all year round and have thus played a minor role as food
for the sponges, in agreement with Lüskow et al. (2019).

In Frederik den VII’s Kanal, there was a correlation
between concentration of bacteria and biomass of phytoplankton
(measured as concentration of chlorophyll a) over the 1-year
period (r2 = 0.63, Figure 1B). In February and March (Days 41
and 74), bacteria contributed more to the suspended biomass
than in the rest of the year. In the inlet to Kerteminde
Fjord, chlorophyll a concentrations remained within a narrower
concentration range and the correlation between concentrations
of bacteria and chlorophyll a was weak (r2 = 0.16, Figure 1B).
At this site, the ratio between bacteria and chlorophyll a
was generally higher in summer, when also the primary
production and the loss of dissolved organic matter are high
(Azam et al., 1983), than in winter (Figure 1D). In 1983,
bacterial concentrations were followed from March to November
at an open-coast location in the eutrophicated Limfjorden
(Andersen and Sørensen, 1986). In early spring, bacterial
concentrations were below 106 cells ml−1, while maximal
summer concentrations were up to 15 × 106 cells ml−1. In
comparison, the availability of free-living bacteria was therefore
relatively low at both present study sites. The estimated bacterial
carbon contributions (Figure 1D) were based on a conversion
factor of 7.8 × 10−15 g C per bacterial cell (Ferguson and

Rublee, 1976). Other studies have indicated cell-specific carbon
contents of marine bacteria in Danish waters between 7 and
43 × 10−15 g C cell−1 (Fukuda et al., 1998). Thus, bacteria may
have contributed between 4.1 and 25.2% of the carbon present in
phytoplankton in the inlet to Kerteminde Fjord and 2.6 to 13.8%
in Frederik den VII’s Kanal.

The lipid content was high in H. panicea from the inlet to
Kerteminde Fjord (29.5%) compared to earlier reports, while the
lipid content in H. bowerbanki from Frederik den VII’s Kanal
(11.5%) was comparable to previously published values (Stone,
1970; Elvin, 1979; Barthel, 1986). No seasonality was observed in
the lipid content (Figure 2). It seems to be a general trend that the
lipid content of Halichondria is independent of season (Barthel,
1986), although negative growth and decreasing condition index
indicate that the sponges are starving during autumn and
winter (Barthel, 1986; Lüskow et al., 2019). Seasonality was also
not observed in the contents of palmitic acid or stearic acid
(Figure 3), indicating that the role of these fatty acids is not
directly associated with energy metabolism. The high condition
index of H. bowerbanki from Frederik den VII’s Kanal measured
in October to November 2016 (1.16 ± 0.17) and the low condition
index measured in January to February 2017 (0.53 ± 0.07) were
similar to measurements of condition indices of H. panicea in
the inlet to Kerteminde Fjord (Lüskow et al., 2019) and lipids
have therefore contributed more of the organic fraction of the
sponges in winter when the condition index was low. It is not
clear why changes in condition index were not reflected in the
lipid content as fraction of dry weight. Also in the blue mussel
Mytilus edulis, which is common in the same habitats, there seems
to be no clear relationship between lipid content and nutritional
status, but in contrast to sponges, blue mussels contain a large
pool of glycogen that can be mobilized during starvation periods
(Pleissner et al., 2012).

Lipids from bacteria may to a minor extent have contributed to
the lipids extracted from the sponges. Halichondria belongs to the
so-called low microbial abundance (LMA) sponges (Knobloch
et al., 2019), which according to Hentschel et al. (2006) contain
between 105 and 106 bacterial cells per g wet weight. With an
average dry weight of marine bacteria of 2.3 × 10−14 g cell−1

(Ferguson and Rublee, 1976) and average dry weight contents
of 8.7–13.5% in sponges from the inlet to Kerteminde Fjord
and Frederik den VII’s Kanal, respectively, the bacterial biomass
made up a maximum of only 3 × 10−5 to 4 × 10−5% of
the sponge dry weight. Furthermore, Gillan et al. (1988) found
that fatty acids from bacteria made up only 56–437 µg g−1

(0.005–0.0437%) of the total fatty acids in five tropical sponge
species. The contribution of lipids from trapped phytoplankton
was also modest, although the sponges did contain measurable
quantities of chlorophyll a (Figure 4). Chlorophyll a decayed in
the sponges at a rate of 0.017 h−1 after transfer to phytoplankton-
free seawater. This has also been observed in H. panicea by
Thomassen and Riisgård (1995), from whose data it can be
estimated that the rate of decay was 0.035 h−1 for sponges
transferred directly from the field, and 0.031 h−1 for sponges
fed algal cells in the laboratory prior to transfer to clean
seawater. These observations indicate that chlorophyll a in
Halichondria primarily stem from captured, but not yet digested
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phytoplankton. Using a conversion factor of 0.04 mg C per
µg of chlorophyll a (Li et al., 2010), it can be estimated that
phytoplankton contributed less than 0.5% to the organic biomass
of H. panicea. It is also noticeably that palmitic acid and stearic
acid were always present in a constant ratio of 1.26 ± 0.08 in
H. panicea from the inlet to Kerteminde Fjord and 1.22 ± 0.06
in H. bowerbanki from Frederik den VII’s Kanal (Figure 3). This
indicates that the composition of these lipids is under stricter
control than would be the case if lipids were derived from a
variety of trapped or symbiotic microorganisms.

CONCLUSION

Halichondria panicea and H. bowerbanki efficiently retain
phytoplankton and bacteria, and since the abundance of bacteria
follows the phytoplankton biomass and always make up the
smallest fraction of the two food sources, consumption of free-
living bacteria cannot explain why the lipid content of sponges
remains stable, even when decreasing condition index and low
chlorophyll a concentrations indicate starvation. Halichondria
does not rely on accumulated energy reserves during periods of
starvation but recycle their own cells during winter, apparently
leaving the specific lipid content as a fraction of dry weight
constant at all seasons. It remains unclear why the pronounced
variation in condition index was not reflected in the lipid content,
and why the lipid-content levels at the two study sites were
conspicuously different.
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