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Climate change and fishing are two of the greatest anthropogenic stressors on marine
ecosystems. We investigate the effects of these stressors on Hawaii’s deep-set longline
fishery for bigeye tuna (Thunnus obesus) and the ecosystem which supports it using
a size-based food web model that incorporates individual species and captures the
metabolic effects of rising ocean temperatures. We find that when fishing and climate
change are examined individually, fishing is the greater stressor. This suggests that
proactive fisheries management could be a particularly effective tool for mitigating
anthropogenic stressors either by balancing or outweighing climate effects. However,
modeling these stressors jointly shows that even large management changes cannot
completely offset climate effects. Our results suggest that a decline in Hawaii’s longline
fishery yield may be inevitable. The effect of climate change on the ecosystem depends
primarily upon the intensity of fishing mortality. Management measures which take this
into account can both minimize fishery decline and support at least some level of
ecosystem resilience.

Keywords: climate change, fishing, pelagic, bigeye tuna, size-based model, food web model

INTRODUCTION

Climate change and fishing are two of the greatest anthropogenic stressors on marine
ecosystems and commercial fisheries. Additionally, these stressors are impacting marine systems
simultaneously, potentially exacerbating one another. Given that current carbon emissions are
outpacing the most emission-heavy scenario being used in climate models (RCP8.5; Riahi et al.,
2011) and that a growing human population derives nearly one-sixth of its animal protein from
the sea (Pentz et al., 2018), it is imperative that we understand the effects of these joint stressors
now and in the future (Perry et al., 2010). Furthermore, we need to do so in an ecosystem
context in order to understand the full ramifications of these stressors’ effects (e.g., Pikitch et al.,
2004; Brander, 2007). In this study, we examine the effects of climate change and fishing on
Hawaii’s longline fishery for bigeye tuna (Thunnus obesus) and its supporting ecosystem. This
fishery operates largely outside the United States EEZ, extending from equatorial waters to the
northern limits of the North Pacific subtropical gyre (35–40◦N) and from the dateline to the outer
limits of the California Current region (roughly 125◦W), excluding the eastern tropical Pacific’s
oxygen minimum zone (Figure 1). Yet, a sizeable portion of the fishery operates in waters with
little to no international competition (Woodworth-Jefcoats et al., 2018). This means that local
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FIGURE 1 | Map of the fishing grounds of Hawaii’s deep-set longline fishery
for bigeye tuna (shaded blue).

management measures have the potential to effect broad
ecosystem change. Additionally, Honolulu ranks 6th among
United States commercial fishing ports in terms of the value
of fish landed ($106 million; NOAA Fisheries, 2017) and over
half the nation’s tuna landings are from this fishery (NOAA
Fisheries, 2018). These factors create a strong incentive to ensure
the fishery’s future ecological and economic viability.

Commercial fishing has reduced the abundance of large
high-trophic level predators in this ecosystem by over 20%
(Ward and Myers, 2005) and at the same time has led to
increasing catch rates of smaller mesopredator species (Polovina
et al., 2009). Modeling studies have replicated these historical
observations using both species-based (Cox et al., 2002; Kitchell
et al., 2002) and size-based (Polovina and Woodworth-Jefcoats,
2013) models. Similar modeling approaches have projected future
effects of fishing and/or climate change over the 21st century.
These approaches range from highly specific single species
models (Lehodey et al., 2010, 2013; Del Raye and Weng, 2015)
to multi-species ecosystem (Howell et al., 2013; Woodworth-
Jefcoats et al., 2015) and dynamic bioclimate envelope (Cheung
et al., 2010) models to size-based approaches without species-
level resolution (Woodworth-Jefcoats et al., 2013, 2015; Lefort
et al., 2015). Collectively, they suggest climate-driven declines in
food availability may reduce fish body size (Lefort et al., 2015;
Woodworth-Jefcoats et al., 2015) and biomass (Howell et al.,
2013; Dueri et al., 2014; Lefort et al., 2015; Woodworth-Jefcoats
et al., 2015), as well as future fishery yields (Howell et al., 2013;
Woodworth-Jefcoats et al., 2015). The location of spawning and
fishing grounds may also change with climate change (Cheung
et al., 2010; Lehodey et al., 2010, 2013; Dueri et al., 2014;
Erauskin-Extramiana et al., 2019). A number of these studies
included the effects of increasing temperatures. Multi-species
or species-blind approaches relied on statistical relationships
(Cheung et al., 2010; Erauskin-Extramiana et al., 2019) or
monotonically increasing costs of metabolism (Woodworth-
Jefcoats et al., 2013), while species-specific models were able to
incorporate more complex temperature effects. These include
linking spawning to ocean temperature (Lehodey et al., 2010,
2013) and incorporating temperature into physiological rates
(Dueri et al., 2014; Lefort et al., 2015).

Despite the array of approaches discussed above, there has not
been, to our knowledge, a multi-species approach that includes
both size and species resolution as well as the physiological
effects of rising ocean temperatures. In this study, we use a food
web model that integrates both size and species. This approach
allows us to examine species-specific change in terms of biomass,
abundance, and size structure. The model also incorporates
temperature’s effects on metabolism as well as aerobic scope,
providing more realistic future projections. Aerobic performance
is closely linked to temperature (e.g., Pörtner and Peck, 2010;
Pörtner, 2012) and affects fishes’ ability to forage. Our simulations
include climate change’s effects on two variables which most
directly affect fishes’ fitness: food supply, via changes to the
plankton community, and temperature. We also examine a
range of future fishing scenarios. Our results offer insight into
the simultaneous effects of these stressors, and the modeling
framework we developed offers a new tool for supporting
strategic management decision-making in this and other regions.

MATERIALS AND METHODS

Model
We developed the size-based food web model therMizer, which
is a modification of mizer, a well-documented multi-species
size spectrum model (Blanchard et al., 2014; Scott et al., 2014).
Such models describe predation, mortality, reproduction, and
physiological processes at the individual level and scale them
up to population and community levels (Blanchard et al., 2017).
They track the flow of biomass through fully resolved body
size classes (size measured in mass) via growth and size-based
predation (Blanchard et al., 2017). In mizer, the smallest fish
size classes feed upon a background resource size spectrum
that exhibits semi-chemostat growth dynamics (Blanchard et al.,
2014; Scott et al., 2014). Our model therMizer contains two
key modifications from mizer. The primary modification was
incorporating the effect of ocean temperature on metabolic scope.
Temperature dependencies are absent in mizer. We also replaced
mizer’s semi-chemostat background resource with a resource that
is input at each time step.

The effect of temperature on metabolic scope was determined
by including temperature’s effect on both metabolic rate and prey
encounter rate. This was incorporated into the model by scaling
both rates as described below and illustrated in Figure 2. In all
cases, temperature was averaged over each species’ depth range.

As temperature increases, metabolic rate increases. To capture
this relationship, we modeled temperature’s effect on metabolic
rate, TEM, following Eq. (1):

TEM = e25.22− E
kT (1)

where T is vertically averaged temperature in Kelvin, k is
Boltzmann’s constant (8.62 × 10−5 eV K−1), and E is activation
energy (0.63 eV; Brown et al., 2004; Jennings et al., 2008).
TEM was then scaled to TEM′, a value ranging from 0 to 1,
following Eq. (2):

TEM′ = (TEM – Minsp) / Rsp (2)
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FIGURE 2 | Schematic diagram illustrating how temperature is incorporated into therMizer. TEM, TEM′: unscaled and scaled temperature effect on metabolic rate,
respectively. Rsp, Minsp: Range and minimum value of TEM, respectively, for species sp. TER, TER′: unscaled and scaled temperature effect on encounter rate,
respectively. Tmin, Tmax: lower and upper limits of a given species’ thermal tolerance range. Maxsp: Maximum value of TER for species sp.

where Minsp and Rsp are the minimum value and range,
respectively, of TEM for each species (Figure 2). TEM′ was then
used as a multiplier for standard metabolic rate. This has the
effect of standard metabolic rate being at its minimum at the
lower limit of a species’ thermal range and at its maximum at the
upper limit of a species’ thermal range.

In addition to influencing metabolic rate, temperature also
influences aerobic scope and fishes’ ability to successfully forage.
To capture this relationship, we incorporated temperature into
prey encounter rate. While species-specific thermal performance
parameters are largely lacking in the literature, the relationship
between temperature and aerobic scope is broadly understood
(Pörtner and Peck, 2010). Therefore, we modeled the effect of
temperature on encounter rate, TER, using a generic polynomial
rate equation (van der Heide et al., 2006):

TER = T (T − Tmin) (Tmax − T) (3)

where T is vertically averaged temperature, Tmin is a species’
minimum thermal tolerance, and Tmax is a species’ maximum
thermal tolerance (Figure 2). All temperatures in Eq. (3) are
in ◦C. TER was then scaled to TER′, a value ranging from 0
to 1, by dividing by Maxsp, the maximum value of TER for
each species (Figure 2). TER′ was then used as a multiplier for

encounter rate. This has the effect of species being able to realize
peak aerobic performance and encounter the maximum amount
of prey possible when they are at their optimal temperature.
Foraging success declines to either side of this temperature.

The joint effects of temperature on metabolic rate and prey
encounter rate (TEM′ and TER′, respectively) are shown in
Figure 3. At temperatures outside species’ thermal range, both
TEM′ and TER′ were set to 0 representing local extinction.
Species’ thermal and vertical ranges are listed in Table 1.

Model Parameters and Input
We attempted to include as many species as possible of the
top 20 species caught by the Hawaii deep-set longline fishery,
regardless of species’ commercial value. The 12 species listed
in Table 1 are those for which there was sufficient life history
and thermal tolerance information available to parameterize
the model. Together, these species account for 76% of the
fishery’s observed catch.

Parameters and Calibration
Global model parameters were left unchanged from the default
mizer settings (Blanchard et al., 2014; Scott et al., 2014), with
the exception of kappa (κ) which we set at 1012. This variable
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FIGURE 3 | Scaled thermal effects on metabolic and encounter rates for each species at the beginning, middle, and end of the 21st century, along with the mean
temperature at the beginning of the century (black text), and its projected change by the middle and end of the century (blue text). Values plotted are the multi-model
mean from the CMIP5 models used in this study. Gray lines show the full range of values possible for each species.

is used in determining species’ initial size spectra (Blanchard
et al., 2014). Also as in Blanchard et al. (2014), all teleosts enter
the model as larvae weighing 1 mg. Blue sharks enter at 354 g,
an average of mean male and female birth weights (344 and
362 g, respectively; Shark Working Group Report, 2017). The
additional species-specific parameters are listed in Table 1. Values
in Table 1 were taken from the literature as noted, with the
exception of the Brody growth coefficient, kvb, for lancetfish.
Estimates of this parameter for lancetfish were not available in the
literature. Based on available values for similar species (Morales-
Nin and Sena-Carvalho, 1996; Lorenzo and Pajuelo, 1999;

Harada and Ozawa, 2003; Figueiredo et al., 2015; Froese and
Pauly, 2017), we used the median value of the lower quartile of
teleost kvb values.

Predation in therMizer is both species- and size- specific. All
fish have a log-normal prey size preference that is dependent
upon predator body size, species’ predator-prey mass ratio
(100 for teleosts, Blanchard et al., 2014; 400 for blue sharks,
Barnes et al., 2008), and the width of the prey selection window
(1 for all species, Blanchard et al., 2014). Prey selection is
further informed by the interaction matrix (Supplementary
Table 1). Interaction, θij, between species i and j ranges from
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TABLE 1 | Species-specific model parameters.

Proportion of

Species wmat wmax kvb Rmax wF0 wF1 Tmin (◦C) Tmax (◦C) Max depth (m) observed catch

Lancetfish (Alepisaurus ferox) 109 8,273 0.235 132,894 229 631 2a 30a 1,200a 0.2215

Bigeye tuna (Thunnus obesus) 29,000 95,200b 0.354c 3,404 4,771 13,122 3d 29d,e 500f 0.1913

Mahi mahi (Coryphaena hippurus) 1,024∗ 29,800g 1.2991h,∗∗ 19,439 1,417 2,124 21e 30e 85e 0.0885

Male 1,112 – 1.1871h – – – – – – –

Female 936 – 1.411h – – – – – – –

Blue shark (Prionace glauca) 38,880∗ 104,604∗ 0.132i,∗∗ 2,956 5,841 16,065 5e 23e 980j 0.0854

Male 43,113 126,876 0.117i – – – – – – –

Female 34,647 82,332 0.147i – – – – – – –

Skipjack tuna (Katsuwonus pelamis) 1,200 10,400b 0.7k,l 94,287 2,124 3,897 10m 33d 300m 0.0394

Yellowfin tuna (Thunnus albacares) 28,480 93,400b 0.724n 3,503 2,600 7,151 7d 31d,e 250e 0.0385

Albacore tuna (Thunnus alalunga) 15,220 37,200b 0.2483o 13,938 5,841 13,122 7d 25e 600e 0.0243

Opah (Lampris guttatus) 20,050∗ 89,000p 0.218q 3,766 13,122 19,668 8r 22r 400r 0.0204

Wahoo (Acanthocybium solandri) 7,030 43,200g 1.58s 11,137 3,183 7,151 22t 28t 20e 0.0200

Striped marlin (Kajikia audax) 59,400 68,000b 0.24u 5,639 7,151 10,718 11d 30d 200e 0.0178

Swordfish (Xiphiaus gladius) 33,699∗ 181,604∗ 0.259v,∗∗ 1,292 1,735 3,183 2d 30d 1,200w 0.0080

Male 17,493 154,644 0.271v – – – – – – –

Female 49,905 208,564 0.246v – – – – – – –

Blue marlin (Makaira nigricans) 77,560∗ 455,400b 0.26x,∗∗ 325 16,065 29,479 17d 31d,e 200e 0.0052

Male 69,890 – 0.29x – – – – – – –

Female 85,230 – 0.23x – – – – – – –

Weights (w) are in grams. Unless otherwise indicated, weight-at-maturity (wmat), and maximum weight (wmax) are calculated using the length-weight conversions detailed
in Supplementary Table 3. kvb is the Brody growth coefficient. Maximum recruitment (Rmax) is scaled from maximum size as 1011

× wmax
−1.5 following Blanchard et al.

(2014). wF0 and wF1 are the sizes at which species are initially and fully susceptible to fishing mortality. Species are listed in rank order of their numeric abundance in catch
of Hawaii’s deep-set longline fishery for bigeye tuna (1995–2016, pooled). ∗Average of male and female size, calculated using the values found in Supplementary Table 3.
∗∗Average of male and female values. aEstimated from Portner et al., 2017. bUchiyama and Kazama, 2003. cNicol et al., 2011. dBoyce et al., 2008. eBoettiger et al.,
2012 and Froese and Pauly, 2017. fHowell et al., 2010. gUchiyama and Boggs, 2004. hUchiyama et al., 1986. iShark Working Group Report, 2017. jStevens et al.,
2010. kMaunder, 2001. lBayliff, 1988. mSchaefer and Fuller, 2007. nWild, 1986. oBillfish Working Group Report, 2014a. pHawn and Collette, 2012. qFrancis et al.,
2004. rPolovina et al., 2008. sZischke et al., 2013. tSepulveda et al., 2011. uBillfish Working Group Report, 2015. vDeMartini et al., 2007. wAbecassis et al., 2012.
xShimose et al., 2015.

0 to 1. Previous size spectrum models have determined the
interaction matrix values based on horizontal overlap as inferred
from bottom trawl surveys (Blanchard et al., 2014; Reum et al.,
2019). Here, we determined interaction based on species’ vertical
overlap following Eqs (4) and (5) and illustrated in Figure 4:

θij = Dij
2/DiDj (4)

Dij = a – (a – b) – c (5)

where Di and Dj are the depth ranges of species i and j,
respectively; Dij is the range of overlapping depths for species i
and j; and a is the greater maximum depth, b is the lesser
maximum depth, and c is the greater minimum depth for the
pair of species i and j. All species have a minimum depth of 0
m, with the exception of opah which has a minimum depth of
50 m (Polovina et al., 2008). For all species pairs, the interaction
matrix determines the proportion of total prey biomass of the
appropriate size that is available to the predator.

Fishing mortality increases linearly from 0 to F over a size
range unique to each species. Fishing mortality is phased in over
a range of body sizes to account for longline gear’s inefficiency in
catching smaller body sizes (Polovina and Woodworth-Jefcoats,
2013). To establish these sizes, we used time-averaged (2006–
2016, pooled) catch records from the Pacific Islands Region

Observer Program, which since 2006 has recorded the size of
every third fish caught by Hawaii’s longline bigeye tuna fleet.
Roughly 20% of this fishery’s effort is observed, and observer
records have been found to correlate well with vessel logbooks
(Woodworth-Jefcoats et al., 2018). We binned observed sizes
of fish caught into equally spaced logarithmic size classes as in
therMizer (Scott et al., 2014; Edwards et al., 2017). Each species
is initially susceptible to fishing mortality at the size which
contributes at least 1% toward that species’ total observed catch.
Fish are fully susceptible to fishing mortality at the size which
contributed the most to that species’ total catch. The sizes at
which each species is first and then fully susceptible to fishing
mortality are listed in Table 1.

Climate Forcing Variables
We used output from a suite of earth system models included
in the 5th phase of the Coupled Model Intercomparison Project
(CMIP5; Taylor et al., 2012; Supplementary Table 2). CMIP is
a coordinated international climate and earth system modeling
approach that centers around common model forcings and
output variables (Taylor et al., 2012). Phyto- and zooplankton
densities (Figure 5) were vertically integrated over the upper
200 m of the water column. Numerical abundance within
each size class was determined by dividing density by mean

Frontiers in Marine Science | www.frontiersin.org 5 July 2019 | Volume 6 | Article 383

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00383 July 3, 2019 Time: 15:55 # 6

Woodworth-Jefcoats et al. Relative Impacts of Simultaneous Stressors

FIGURE 4 | Schematic diagram illustrating how predator – prey interactions
are calculated. θij, interaction between species i and j. Di, Dj, depth ranges of
species i and j, as determined from species’ minimum and maximum depths
(e.g., imin and imax). Dij, range of overlapping depths for species i and j.

size. Plankton size spectra were created as linear fits to log-
transformed abundances and sizes. Model-specific plankton size
classes are listed in Supplementary Table 2.

As with the original mizer model, some calibration of the
background resource was required (Blanchard et al., 2014). To
this end, we compared the above described plankton spectra
with the background spectrum generated by the semi-chemostat
resource model to determine appropriate scaling for the slope
(×1.2) and intercept (×0.8) of the CMIP5-generated plankton
spectra. These scaled spectra were extended to therMizer’s full size
range to determine the background resource at each time step.
Initial spectra for individual fish species were determined as in
the original mizer model (Scott et al., 2014).

Ocean temperature for each species was determined by
averaging across each species’ depth range. Initial temperatures

are from World Ocean Atlas 2013 v2 data (Locarnini et al.,
2013). Temperature changes from the CMIP5 models were then
applied to these initial temperatures. This approach accounts for
potential bias in the CMIP5 models.

Model input plankton densities are summed and temperatures
averaged over the footprint of the Hawaii-based deep-set longline
fishery targeting bigeye tuna: 0◦–40◦N from 180◦–150◦W and
15◦–36◦N from 150◦–125◦W (Figure 1; Woodworth-Jefcoats
et al., 2018). Across the CMIP5 models used, phytoplankton
densities declined by an average of 6% by mid-century and
12% by 2100. Declines in zooplankton density were twice that
of phytoplankton, i.e., 12% by mid-century and 24% by 2100
(Figure 5). All species, regardless of vertical range, were projected
to encounter rising ocean temperatures (Figure 3). For the
deepest-living species modeled which have a maximum depth
of over 1000 m, temperatures increased by about 0.5◦C by mid-
century and 1◦C by 2100. For the shallowest-living species which
live within 100 m of the ocean’s surface, temperatures increased
by nearly three-times this amount or roughly 1.5◦C by 2050 and
3◦C by 2100.

Model Verification
Model output from a run forced with a static climate (1986–
2005 mean) and constant fishing mortality (F = 0.2) was
compared to time-averaged records of observed catch (see
description of the observer data above). Observed sizes were
binned as in therMizer to create size spectra of catch. Modeled
and observed catch size spectra were well correlated, with
Pearson’s correlation coefficient, r, ranging from 0.39 to 0.85
(Supplementary Figure 1). We used a value of F = 0.2 for model
verification because, for the species for which there are stock
assessments, most of these assessments estimate fishing mortality
to be close to this value (e.g., Billfish Working Group Report,
2014a,b, 2016; McKenchie et al., 2017; Shark Working Group
Report, 2017; Xu et al., 2018).

Scenarios Modeled
We evaluated the individual and joint effects of climate change
and fishing on the ecosystem and on fishery catch. In all scenarios,
the model was run for 600 years with a static climate (1986–
2005 mean) and constant fishing mortality (F = 0.2) to account
for spin-up effects and allow the model to reach equilibrium.
Projections run from 2006 through 2100. To assess the impact
of climate change alone, we held fishing mortality constant at
F = 0.2. To assess the impact of fishing alone, we used a static
climate scenario. In all cases where a variable was held static,
we held the spin-up value constant over the 21st century.

We examined four scenarios in which fishing mortality
changed linearly over the projection period (2006–2100):
doubling from F = 0.2 to 0.4, increasing five-fold to 1, halving
to 0.1, and declining to one fifth or 0.04 (hereafter referred
to as 2F, 5F, 0.5F, and 0.2F, respectively). These scenarios were
chosen based in part on trends in effort of Hawaii’s deep-set
longline fishery. Over the logbook record, effort has risen more
than five-fold from 8.4 million hooks set in 1995 to over 47
million hooks set in 2015 (Woodworth-Jefcoats et al., 2018).
Fishing effort does not translate equally to fishing mortality,
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FIGURE 5 | Change in phyto- (green) and zooplankton (brown) densities projected by CMIP5 models by the middle (dark shading) and end (light shading) of the 21st
century. Change is relative to the average of the last 20 years of the historical run (1986–2005) which is listed adjacent to each set of bars. Initial plankton biomass
densities are in units of g C m−2.

and therefore we consider 5F to be a fairly aggressive future
fishing scenario. We also considered the effect of fishing mortality
doubling (2F) as a more moderate scenario. We simply used
the reciprocals of the fishing increase scenarios to model a
decline in fishing mortality. This facilitated scenario comparison.
To further facilitate scenario comparison, we used the same
value of F for all species. This approach eliminated potential
confounding influences of fishing different species at different
levels of intensity and replicated observed catch reasonably well
(see section “Model Verification” above). However, we note that
therMizer is capable of incorporating species-specific F values
(Scott et al., 2014).

We evaluated several measures of ecosystem structure and
fishery performance. Total biomass and abundance provide
species-specific measures of the fishery’s catch and its relation to
the ecosystem. We refer to ecosystem biomass as “biomass” and
catch in weight as “yield.” The large fish indicator (LFI; Blanchard
et al., 2014) is a broad measure of the numerical proportion of fish
≥15 kg (Polovina and Woodworth-Jefcoats, 2013; Woodworth-
Jefcoats et al., 2015). The LFI provides insight into both the
size structure of the ecosystem as well as the potential value
of fish catch, as larger fish are generally more valuable. As a
complementary measure to the LFI, we also examined the change
in species’ mean size.

We assessed these measures both through time series over the
projection period as well as with 20-year averages in an effort to
minimize the confounding influence of interannual variability.
We averaged results over three 20-year time periods to capture
the beginning, middle, and end of the 21st century: 1986–2005,
2041–2060, and 2081–2100 (hereafter referred to as 2000, 2050,
and 2100, respectively). The 1986–2005 average corresponds to
the equilibrium value at the start of the therMizer projections.

RESULTS

We find that, taken as individual stressors, climate change and
increasing fishing mortality act to reduce fish biomass and size
across all species. The effects of reduced fishing mortality are
generally of the opposite sign. However, when modeled jointly,
there were no scenarios in which yield increased. Results for the
ecosystem supporting the fishery are slightly more optimistic,
with reduced fishing mortality somewhat offsetting the negative
effects of climate change.

Total Biomass and Yield
Climate change, with constant F, acts to reduce bigeye biomass
by 7% by 2050 and by 20% by 2100. Across all species modeled,
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FIGURE 6 | Percent change in species’ (A) biomass and (B) yield under five fishing scenarios (indicated by line color) both with (solid lines) and without (dashed
lines) climate change.

these declines range from 3% (skipjack) to 14% (blue shark) by
2050 and from 7% (skipjack) to 37% (wahoo) percent by 2100.
Declines in yield reflect declines in ecosystem biomass (Figure 6).

For all species, in the absence of climate change, decreasing
F leads to increasing biomass, and vice versa. This is because
lower levels of F result in less biomass being removed as yield.
Both scenarios with increasing F lead to declining yield for all
species, due to declining biomass. Likewise, the 0.2F scenario
also leads to declining yield, due to less fishing effort, for all but
the largest species (swordfish, blue shark, and blue marlin). The
yield of these three largest species increases an average of 7%
by 2050 and 8% by 2100 (Figure 6). The 0.5F scenario leads to
similarly little change in yield by 2050 (<10% change). By 2100,
roughly half the species modeled see an increase in yield of 25%
or less, while two see no change, and three see small (<10%)
declines (Figure 6).

We find that when changes in F are paired with climate
change, reducing F can compensate somewhat the climate-driven
biomass declines for all species. Bigeye biomass increases to
within 10–12% of what it would be in the absence of climate
change by 2050 under the 0.5F + climate change and 0.2F +
climate change scenarios. Across all species, this value ranges
from 4 to 23% (Figure 6). By 2100, biomass of all species except
wahoo more than doubles (bigeye biomass increases 136%) when
climate change is incorporated into the 0.2F scenario. When
climate change is included in the 5F scenario, yield increases
over the initial ∼15 years and then declines. Other than this
short-term increase, there is a decline in yield for all species
under all fishing scenarios; none of the modeled fishing scenarios
were able to compensate for the climate-driven declines in yield.
Furthermore, climate change amplified the biomass declines seen
under scenarios with increasing fishing mortality.
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FIGURE 7 | Percent change in (A) species’ numerical abundance and (B) number of fish caught under five fishing scenarios (indicated by line color) both with (solid
lines) and without (dashed lines) climate change.

Total Abundance
Climate change, in the absence of changing F, increases the
abundance of a number of species (Figure 7). By 2050, all
species except blue shark experience an increase in abundance
of 1–9%. By 2100, all species except blue shark, yellowfin, wahoo,
striped marlin, and swordfish experience increases in abundance
of 1–17%. Blue shark abundance declines by 10 and 21%
across these time points. Yellowfin, wahoo, and striped marlin
abundance decline by 9, 9, and 10%, respectively. Swordfish
abundance is unchanged by 2100, despite increasing earlier in the
century (Figure 7).

The effects of changing F on abundance are essentially the
same as those on biomass: declining fishing mortality leads to

increased fish abundance and vice versa. The effects on the
number of fish caught, however, are different than those of
biomass (i.e., decreasing fishing mortality leads to a decline in the
number of fish caught, Figure 7).

The effects on abundance of pairing climate change and
changes in F varied by species. For species that saw abundance
increase under climate change, the climate effect somewhat
dampened the abundance declines resulting from increasing
F and amplified increases in abundance under decreasing F.
For species that saw abundance decline under climate change,
these declines were exacerbated by increasing F. When F was
reduced, climate change dampened the expected increases in
abundance (Figure 7).
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FIGURE 8 | Large fish indicator (LFI) for (A) the ecosystem and (B) the catch under five fishing scenarios (indicated by line color) both with (solid lines) and without
(dashed lines) climate change.

Large Fish Indicator
The effect of climate change on the large fish indicator (LFI)
was small in the absence of changing F. LFI declines from 0.129
to 0.119 by 2050 and to 0.105 by 2100. Catch LFI declines
as well, falling from 0.218 to 0.201 by 2050 and to 0.173 by
2100 (Figure 8).

The effects of changing F on LFI were greater than those from
climate change. Reducing F led to LFI increasing from 0.129 in
2000 to 0.143–0.162 by 2050 and to 0.153–0.191 by 2100, across
both the 0.5F and 0.2F scenarios. Increasing F had a greater effect
on LFI, reducing it to 0.069–0.107 by 2050 and to 0.046–0.091 by
2100, across both the 2F and 5F scenarios. The effects on catch
LFI were similar (Figure 8).

We found that when paired with climate change, halving F
almost equally offset the decreased LFI caused by climate change
alone (Figure 8). Climate change acted to undermine the increase
in LFI caused by decreasing F to one fifth the initial value. Climate
change also exacerbated the decline in LFI caused by increasing F.
When looking at modeled catch, we found that neither modeled
decrease in F was able to offset the decline in LFI after 2050. By
2100, catch LFI declined to 0.208 under the 0.2F+ climate change
scenario and to 0.109 under the 5F+ climate change scenario.

Mean Size
Mean size declined for all species under climate change alone. By
2050, declines in mean size range from 4% (blue shark) to 13%
(yellowfin, wahoo, striped marlin, and swordfish) across species,
with bigeye mean size declining by 11%. By 2100, mean size
declines by 8–38% across species, with blue shark experiencing
the least and wahoo experiencing the greatest decline in mean
size (bigeye declines by 23%). Declines in the mean size of fish
caught are slightly smaller (Figure 9).

Because fishing targets a species’ largest body sizes, the effects
on mean size of changing F are fairly straightforward: In the

absence of climate change increasing F leads to mean body
sizes decreasing by 11–62% by 2050 across both the 2F and
5F scenarios, with bigeye size decreasing by 19–48% across
these scenarios. By 2100, increasing F leads to mean body
size decreasing by 19–77% (bigeye by 32–64%). Decreasing F
has the opposite effect on mean size. By 2050, the increase
is somewhat less than opposite that of the reciprocal fishing
scenario. However, by 2100, reciprocal fishing scenarios result in
nearly opposite effects on mean size. As with other indicators,
these effects are somewhat dampened in the catch relative to the
ecosystem due to the size-selective nature of fishing (Figure 9).

The joint effect of fishing and climate change on species’ mean
size varied by species. Reduced F was able to offset the climate-
induced decline in mean size, to some degree, for all species.
By 2100, the 0.2F + climate change scenario led to increases in
mean size for all species except wahoo. The 0.5F+ climate change
scenario allowed mean size to increase for roughly half the species
modeled. These results were dampened in the modeled catch. By
2050, the mean size of fish caught changed by −8–+11% across
species under the 0.5F + climate change and 0.2F + climate
change scenarios. The change in size of bigeye caught in 2050
ranged from −2–+2% across these two scenarios. By 2100, the
0.5F + climate change scenario allowed mean size of fish caught
to increase in four species (lancetfish, blue shark, swordfish, and
blue marlin). The 0.2F + climate change scenario allowed mean
size caught to increase in all but four species (mahi, yellowfin,
wahoo, and striped marlin; Figure 9).

DISCUSSION

We used therMizer, a size-structured food web model with
individual species that is capable of capturing the metabolic
effects of rising ocean temperatures, to assess the effects of climate
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FIGURE 9 | Percent change in (A) species’ mean size and (B) the mean size of fish caught under five fishing scenarios (indicated by line color) both with (solid lines)
and without (dashed lines) climate change.

change and fishing on Hawaii’s deep-set longline fishery and its
supporting ecosystem. Our results show that while a decline in
this fishery’s yield seems likely, this may mask resilience in the
ecosystem supporting the fishery. The contrast between changes
in catch and changes to the ecosystem is particularly noteworthy
as it highlights the limited ability of some fishery dependent data
to fully capture ecosystem trends.

Outlook for Future Yield and Ecosystem
Our results show that as the climate continues to change, a decline
in the yield of Hawaii’s bigeye tuna fishery seems inevitable.
None of the changes in fishing mortality that we modeled,
whether increasing or decreasing, allowed yield to increase after
more than about 15 years. These results reinforce those of
Howell et al. (2013), who found that climate change is projected

to reduce the Hawaii longline fishery’s target yield even when
fishing mortality is halved. Their study used an Ecopath with
Ecosim model to simulate food web and fishery response to
climate change. That two dissimilar modeling methods produce
similar projections for declining yield should be noted by regional
fishery managers. Additional modeling (e.g., Cheung et al., 2016;
Fu et al., 2018; Queirós et al., 2018) and empirical (Watson et al.,
2012) studies of other ecosystems have led to similar projections.

In addition to total yield declining, we also find that the
proportion of large fish in the catch declines in all scenarios
after 2050. This suggests that not only will yield be reduced,
but all else being equal, the fish caught may be less valuable
because there will be fewer large fish. That said, increasing fishing
mortality does lead to increased numbers of fish caught for some
species (Figure 7). This is likely because therMizer models fishing
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mortality as a removal of a numeric percentage rather than a
biomass percentage (i.e., as F increases, a greater number of
individuals is removed, though yield may still decline if those
individuals’ mean size declines).

Despite the poor outlook for fishery yield, we find that the
ecosystem may be more resilient under specific future scenarios.
Biomass of all species increases when climate change is modeled
jointly with a reduction in fishing effort (Figure 6). This result
reinforces calls from previous authors that reduced fishing can
help reduce the effects of climate change (e.g., Brander, 2013).
We also find that halving fishing mortality allows the LFI to
remain essentially unchanged over the 21st century, and that
reducing fishing mortality to one fifth initial values allows the
LFI to increase. Ultimately, the decision of whether to lower
fishing mortality in favor of ecosystem resilience comes down
to societal values. Models such as therMizer can help fishery
managers and other stakeholders understand a broad range
of fishery management consequences (Blanchard et al., 2014;
Cheung et al., 2016).

Mechanisms Driving Change
One value in modeling studies is that they allow for investigation
of the mechanisms driving change. This is particularly valuable
when different stressors have the same effect; without being able
to examine the underlying mechanisms it can be easy to assume
that they are the same. We find that both climate change and
increasing fishing mortality have similar effects on the central
North Pacific’s ecosystem and fishery yield: reduced biomass
and a decline in mean body size. However, the mechanisms
driving this response are different. The declining plankton
biomass projected as a result of climate change reduces the
amount of energy (food) available to all predators. This leads
to reduced growth and, in turn, lower biomass. The shift in
the plankton community’s size structure also propagates through
the food web, with proportionally less food available to larger
body sizes, further reducing growth at larger body sizes. This
disproportionate allocation of limited resources shifts the size
structure toward smaller body sizes, resulting in a decline in
mean body size across species (see also the discussion of species-
specific effects below). Further, the disproportionate allocation
of resources favoring smaller body sizes, paired with the
inverse relationship between abundance and body size, explains
why climate change leads to increased numerical abundance
for some species.

Fishing, on the other hand, selectively removes the largest
individuals from the population. Because a single large individual
can be orders of magnitude larger than smaller individuals,
removal of numerous large fish reduces both total biomass and
mean size. Conversely, allowing more large individuals to remain
in the ecosystem by reducing fishing effort more than counteracts
the effect of removing them (Figures 6, 9).

Modeling climate change and fishing jointly highlights
the different mechanism at work to drive ecosystem change.
Regardless of how fishing mortality changes, climate change
acts to lower the system’s carrying capacity, thereby reducing
potential biomass, abundance, and yield. This interaction of
stressors is only apparent when they’re modeled together.

Such interaction may explain the diminished impact of climate
change as fishing mortality increases. As fishing increases, its
effects may overshadow the lower carrying capacity resulting
from climate change (Blanchard et al., 2012). This result is
somewhat surprising given that a number of studies have found
that the effects of climate change are stronger on more heavily
fished systems (e.g., Blanchard et al., 2012; Brander, 2013). One
possible explanation for this disparity may be tied to model
structure (Woodworth-Jefcoats et al., 2015). Application of mizer
to another ecosystem produced results similar to ours. Fu et al.
(2018) found that higher trophic level fish were more likely
than those at lower trophic levels to see dampened effects
when fishing and climate change were combined. The species
considered in our study are nearly all high trophic level species.
We encourage further ecosystem modeling comparisons across
modeling frameworks and ecosystems to help separate model
structure from ecosystem structure (e.g., Tittensor et al., 2018).
We also encourage further studies to consider the joint effects
of stressors, especially in the open ocean beyond the limits of
EEZs and LMEs given the relative paucity of studies doing so
(Ortuño Crespo and Dunn, 2017).

Another mechanism that we investigate in this study is the
role that temperature plays in driving species’ response to climate
change. We find that shallower-living species, most notably
wahoo, see the greatest effect from climate change. On the other
hand, species projected to see the least warming (e.g., lancetfish,
swordfish, and blue shark) experience an increase in mean body
size under both scenarios where decreasing fishing mortality is
paired with climate change. Rising temperatures exacerbate the
effect of reduced food availability by both increasing metabolic
demand and reducing aerobic scope. This means that as climate
change progresses fish will need more food despite there being
less available, and that they’ll be less able to successfully forage for
this food. The large effect that rising temperature has on wahoo
and, to some degree, on mahi mahi, suggests that shallower-
living species may be bellwethers of larger ecosystem changes.
It also creates the potential for a shifting species composition of
both the ecosystem and catch as species are differentially affected
by rising ocean temperatures. Conducting additional therMizer
simulations with more spatially discrete temperature projections,
both vertically and horizontally, or with temperature exposure
varying across life stages could provide further insight into how
species may be affected by the ocean’s warming.

Our method for incorporating temperature’s effect on
metabolic demand and aerobic scope requires only minimal
parameterization (universal constants and species’ thermal
tolerance limits). This potentially increases the utility of the
approach across other modeling frameworks. Similarly, it could
provide an independent first approximation of how individual
marine species may be affected by climate change. Others
have highlighted the need to better incorporate aerobic scope
into projections of climate effects (e.g., Pörtner, 2012). If a
similarly simple approach could be applied to the relationship
between oxygen or carbon dioxide and aerobic scope, this would
significantly enhance our abilities to meet this challenge.

Food web interactions are also an integral mechanism in the
response to fishing and climate change. We find that the impact
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of warming is somewhat offset by the effect of body size on
predation. For example, blue marlin, the largest species in our
simulations, experiences an increase in mean size when climate
change is paired with decreasing fishing mortality, despite being
a fairly shallow-living species (Table 1). This is likely due to the
lack of competition between blue marlin and other species for
prey, as its maximum body size exceeds those of other species
(Kitchell et al., 2002). Conversely, yellowfin tuna, which has a
maximum body size nearly one-fifth that of blue marlin sees its
mean size decrease or remain constant under these scenarios
despite having a deeper vertical range. This might be a result
of yellowfin tuna being both predator and prey simultaneously
(Cox et al., 2002; Kitchell et al., 2006). We note also that food
web interactions would perhaps be more important in scenarios
where different species are subject to different levels of fishing
mortality, as they are in real systems. In this case, food web
interactions could act to amplify or dampen fishing effects or the
effects of climate change.

Sources of Uncertainty
Three primary sources of uncertainty emerged in this study.
The first is linked to the range of the CMIP5 models’ plankton
densities. While there is broad agreement across CMIP5 models
regarding change in temperature, these models vary substantially
in their values for plankton densities (Figure 5; Woodworth-
Jefcoats et al., 2017). We’ve presented the multi-model mean
across CMIP5 models in this study for clarity. However, the
range of plankton values and change in plankton values leads
to quite a wide range in therMizer output forced by different
CMIP5 models. To some degree, this is expected as CMIP5
was the first CMIP to include zooplankton among the output
variables. Skill will likely improve in future generations of earth
system models and CMIP6 has intercomparisons planned toward
this goal (Eyring et al., 2016). We note, though, that a reliable
baseline to which modeled changes could be applied (which is
how temperature is treated in this study) would be valuable to
future earth system and ecosystem modeling efforts. It could
also help reconcile differences in the magnitude of observed
and modeled size spectra (Supplementary Figure 1). Such an
empirical baseline exists for physical oceanographic variables in
the World Ocean Atlas. While there are global plankton databases
(e.g., COPEPOD; O’Brien, 2010), their coverage is fairly limited.

The second major source of uncertainty is the species-
specific model parameters. For example, the effect of rising
temperature depends in part on where thermal habitat places
species’ metabolic scope (Rountrey et al., 2014). For species
with narrow thermal ranges (e.g., wahoo), a small change in
temperature can have a large impact on metabolic scope. We note
that our modeled metabolic scope is dependent on the accuracy
of species’ thermal tolerance limits. For well-studied fish such as
tuna, these tolerance limits are likely accurate. However, for other
species, particularly those of no commercial value, these tolerance
limits are inferred from data such as diet or vertical range. Better
understanding of how species use their full three-dimensional
habitat would reduce model uncertainty.

Uncertainty around other species-specific parameters such as
maximum recruitment, growth rate, and size-at-maturity also

likely influences the model’s results. A mizer sensitivity analysis
found uncertainty around life history parameters to be the
second greatest source of model uncertainty (Zhang et al., 2015).
Furthermore, we know very little about how these parameters
may change as climate changes. Improved understanding of
species’ life history and its relationship with environmental
influences would not only reduce model uncertainty, but also
improve fisheries management more broadly by enabling it
to incorporate the effects of climate change (Brander, 2007;
Koenigstein et al., 2016; Pentz et al., 2018). Such information
would also better inform ecosystem-based approaches to fisheries
management by allowing for more accurate parameterization,
especially for non-target and bycatch species.

The third source of uncertainty is that linked to fundamental
assumptions about the nature of the central North Pacific’s
pelagic ecosystem. The most critical assumption is that this is
a food-limited system. If this weren’t the case, then declines
in biomass at the base of the food web wouldn’t necessarily
result in reduced biomass across the food web. A number of
factors may be contributing to this assumed food limitation.
Competition and prey switching can result in bottom-up forcing
and aren’t well captured in therMizer. It’s also possible that there’s
a benefit to be had for fish being less than fully satiated. Perhaps
they’re better able to evade predators (MacLeod et al., 2007).
Or perhaps feeding to a level below that of satiation optimizes
the risks and benefits of foraging (Heithaus et al., 2008) or the
balance of energy gained from food ingested with that needed
to forage further (Enberg et al., 2012). While delving further
into this question is beyond the scope of the present study, it is
important to highlight that this assumption underpins this and
likely many other projections about the ecosystem impacts of
climate change. Additionally, uncertainty around feeding levels
was found to be the greatest source of uncertainty in a set of
mizer simulations (Zhang et al., 2015). Ecosystem models such
as mizer and therMizer are one tool that can be used to evaluate
the validity of this assumption and others. Future work on this
topic is encouraged.

Model Limitations and Future Directions
Our results raise several interesting questions that therMizer’s
limitations make challenging to address in this study. For
example, food supply (via plankton) and temperature are only
two variables shaping pelagic habitat. Oxygen concentration is
important and isn’t included in this variation of mizer. Beyond
shaping pelagic habitat, oxygen concentration also influences
aerobic scope, as do both carbon dioxide concentration and pH
(Pörtner, 2012). Including any of these variables may provide a
clearer picture of how different species will respond to climate
change. Additionally, marine species can move in response to
environmental change (Pinsky et al., 2013; Montero-Serra et al.,
2015), and climate change has the potential to redistribute marine
species (Cheung et al., 2010; Lehodey et al., 2010, 2013; Jones
and Cheung, 2014; Woodworth-Jefcoats et al., 2017; Erauskin-
Extramiana et al., 2019). Incorporating two or three spatial
dimensions into therMizer would allow us to address questions
related to fish movement. For example, can fish simply exploit
deeper depths to escape rising temperatures, or will decreasing
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light levels at depth diminish their foraging success? How might
spatial changes in species’ pelagic habitat affect their catchability?
Finally, our representation of the fishery is quite simplistic in
that it does not include fisher behavior. We recognize that this
is a critical aspect of modeling fishery response to climate change
(Haynie and Pfeiffer, 2012), and look forward to exploring this
dimension in future work.

This study models the effects of declining food availability and
rising ocean temperatures on species caught by Hawaii’s deep-
set longline fishery for bigeye tuna. We show how these climate
effects interact with a range of changes in fishing mortality.
While increasing the yield of Hawaii’s longline fishery may
not be possible, projections for potential ecosystem resilience
are encouraging.
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