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Operational oceanography can be described as the provision of routine oceanographic
information needed for decision-making purposes. It is dependent upon sustained
research and development through the end-to-end framework of an operational
service, from observation collection to delivery mechanisms. The core components
of operational oceanographic systems are a multi-platform observation network,
a data management system, a data assimilative prediction system, and a
dissemination/accessibility system. These are interdependent, necessitating
communication and exchange between them, and together provide the mechanism
through which a clear picture of ocean conditions, in the past, present, and future,
can be seen. Ocean observations play a critical role in all aspects of operational
oceanography, not only for assimilation but as part of the research cycle, and

Frontiers in Marine Science | www.frontiersin.org 1 September 2019 | Volume 6 | Article 450

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2019.00450
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2019.00450
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2019.00450&domain=pdf&date_stamp=2019-09-03
https://www.frontiersin.org/articles/10.3389/fmars.2019.00450/full
http://loop.frontiersin.org/people/659778/overview
http://loop.frontiersin.org/people/634408/overview
http://loop.frontiersin.org/people/632584/overview
http://loop.frontiersin.org/people/680685/overview
http://loop.frontiersin.org/people/656733/overview
http://loop.frontiersin.org/people/642454/overview
http://loop.frontiersin.org/people/634624/overview
http://loop.frontiersin.org/people/709421/overview
http://loop.frontiersin.org/people/661581/overview
http://loop.frontiersin.org/people/606679/overview
http://loop.frontiersin.org/people/623591/overview
http://loop.frontiersin.org/people/636263/overview
http://loop.frontiersin.org/people/661275/overview
http://loop.frontiersin.org/people/698481/overview
http://loop.frontiersin.org/people/661471/overview
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00450 August 31, 2019 Time: 16:0 # 2

Davidson et al. Synergies in Operational Oceanography

for verification and validation of products. Data assimilative prediction systems are
advancing at a fast pace, in tandem with improved science and the growth in computing
power. To make best use of the system capability these advances would be matched
by equivalent advances in operational observation coverage. This synergy between
the prediction and observation systems underpins the quality of products available
to stakeholders, and justifies the need for sustained ocean observations. In this
white paper, the components of an operational oceanographic system are described,
highlighting the critical role of ocean observations, and how the operational systems
will evolve over the next decade to improve the characterization of ocean conditions,
including at finer spatial and temporal scales.

Keywords: ocean prediction, data assimilation, verification, dissemination, observations, model
intercomparisons, model skill assessment

INTRODUCTION

Oceanographers have long sought to understand, describe, and
share their knowledge of the ocean with mariners and other
operators in the ocean environment. Mathieu de Maury was
one of the first to publish a book on ocean circulation for
mariners entitled “The Physical Geography of the Sea and
its Meteorology” (Maury, 1864). His work and that of other
influential oceanographers in the century that followed provided
valuable insight into the attributes and phenomena of the
sea and led to significant decreases in transit time across the
world’s oceans, resulting in a variety of economic, efficiency, and
safety benefits.

With the advent of computers and other technological
advances, the capacity to provide useful information about the
oceans has expanded significantly. Notable observation capacities
that have contributed to this advancement include satellite
altimeter in the late 1980s, the coordination of high-resolution
satellite-based sea surface temperature (SST) data-sets by the
Group for High Resolution SST in the late 90s (GHRSST; Donlon
et al., 2007), and the start of the Argo Profiling Program in 2000
(Freeland et al., 2010). Furthermore, since 1991, the Global Ocean
Observing System (GOOS)1 has coordinated efforts to generate
impactful datasets.

In this paper, we use the term operational oceanography
to mean the activity of systematic and long-term routine
measurements of the seas and oceans and atmosphere, and their
rapid interpretation and dissemination (European Global Ocean
Observing system EuroGOOS)2. Operational oceanography
systems are comprised of several major components: (1)
observations, (2) data management, (3) ocean prediction
systems (numerical models and data assimilation), and (4) a
dissemination system to stakeholders (see Figure 1 adapted
from Schiller et al., 2018). Operational oceanographic systems
are information enhancing systems for ocean observations
or, more simply, a value chain for ocean observations to
meet societal needs (Robinson and Lermusiaux, 2001). High
quality observations are therefore a requirement for the
systems to be useful.

1http://www.goosocean.org
2http://eurogoos.eu

In the late 1990s, the international Global Ocean Data
Assimilation Experiment (GODAE) was launched to: (i)
demonstrate the feasibility and utility of ocean monitoring and
forecasting on the daily-to-weekly timescale and (ii) contribute to
building a global operational oceanography infrastructure (Smith
and Lefebvre, 1997; Schiller et al., 2018). Building on GODAE,
GODAE OceanView was established in 2009 (Bell et al., 2009)
to define, monitor and promote actions aimed at coordinating
and integrating research associated with multi-scale and multi-
disciplinary ocean analysis and forecasting systems.

In 2019, GODAE OceanView will become OceanPredict to
continue expanding the activities of GODAE and GODAE
OceanView, but with an added emphasis on ocean prediction
as part of the broader network of international operational
oceanography initiatives. To achieve this goal, OceanPredict
will develop close partnerships with entities such as the
World Meteorological Organization (WMO), the United Nation’s
Intergovernmental Oceanographic Commission (IOC), and
GOOS, as well as with organizations that focus on end user needs
(e.g., GEO Blue Planet).

Operational oceanography begins with data from a variety
of observational platforms that each provide a unique measure
of ocean conditions. These include in situ measurements (e.g.,

FIGURE 1 | A partition of components of operational oceanography. This
figure is slightly modified from Schiller et al. (2018) to better represent the
connectivity to Ocean Observations of all components and the flow of
information to the end user. Orange boxes are the components related to end
use of Ocean Observations and Predictions.
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moorings, profiling floats, drifters, Conductivity-Temperature-
Depth (CTD), tide gauges, etc.) and remotely sensed observations
(e.g., satellites and high frequency radars). Ocean prediction
systems combine the available curated observations with
numerical models through data assimilation methods to estimate
the state of the ocean. The ocean models can then be initialized
from the analyzed ocean state and run forward in time to forecast
ocean conditions hours, days, and even months (when coupled
to an atmospheric model) into the future. By evaluating forecast
and analysis system outputs against gridded (Guinehut et al.,
2012) and un-gridded observations, their accuracy and reliability
can be estimated for specific user needs. Results can then be
disseminated as data and visual products and made accessible to
end users via the web.

The data assimilation techniques used in prediction systems
provide valuable information; they can be used to quantify
the forecast error as well assess the ability of specific
observations to impact the analysis and forecast quality.
This is valuable because it can highlight the importance
of a particular observing system for a specific application.
The operational oceanographic system itself can add value
to observational data; outputs from prediction systems are
gridded time-varying information that extends the utility
of ocean observations far beyond the observation itself,
enabling understanding of physical processes, even where
no in situ observations have yet been made. This means
that ocean prediction systems can provide oceanographic
context to localized measurements (e.g., a single mooring or
ship transect), which under-sample an oceanic phenomenon
(e.g., an oceanic eddy).

This paper is organized as follows. In section Ocean
Observations and Data Management, we describe major
observation systems, their value to ocean prediction, and data
management. In section Ocean Models, the numerical models
used in the ocean prediction system are introduced and in section
Ocean Data Assimilation, a brief overview of the data assimilation
is described. Forecast verification is described in section Ocean
Prediction Verification. Section Operational Oceanography
Services and Stakeholders covers services and stakeholders
and finally, in section Outlook and Recommendations, we
provide a vision for improving operational oceanography by
strengthening information exchange between observation and
prediction groups.

OCEAN OBSERVATIONS AND DATA
MANAGEMENT

GOOS, created in 1991 by the IOC to coordinate global in situ
observations, established a list of essential ocean variables (EOVs)
that were necessary to meet the needs of the user community
(e.g., climate researchers, operational services, and ocean health
applications). EOVs were determined through criterion of
relevance, feasibility, and cost effectiveness. They are categorized
by state of readiness, i.e., concept, pilot, or mature. The readiness
is evaluated through three elements: (1) requirement processes,
(2) coordination of observation elements and data management,

and (3) information products (for details)3. The GOOS tracks
system performance through:

1. Implementation metrics, such as frequency of
observations, number of instruments deployed,
age of instruments.

2. Performance metrics in terms of how well phenomena of
interest are observed (e.g., percentage of expected coverage
and number of measured variables).

3. Data delivery metrics that help quantify how efficiently
and adequately the data and information are transferred
to users (e.g., transmission delays, adequacy of metadata,
satisfaction of data format requirements).

4. Impact metrics that help quantify the usage of the
data, information, and products for societal benefit
(e.g., number of peer-reviewed publications, number of
research projects).

A snapshot of the GOOS major programs and the variables
measured is shown in Table 1, adapted from Sloyan et al.
(2018). The six main GOOS programs are Argo, the Data Buoy
Cooperation Group (DBCP), OceanSITES, the Global Ocean
Ship-based Hydrographic Investigation Program (GO-SHIP), the
Global Sea Level Observing System (GLOSS), and the Ship
Observation Team (SOT), which is comprised of the Volunteer
Observing Ship (VOS) and Ship of Opportunity Program
(SOOP). Additionally, there is international coordination of two
new programs for ocean gliders and tagged animals.

The ocean prediction community can deliver more feedback
to the ocean observing community, in part, through additional
GOOS impact metrics. Specifically, through GODAE OceanView
(soon to be OceanPredict), national prediction centers provide
annual reports on the capabilities of their prediction systems
including which observations they assimilate. If the prediction
systems were to also report annually on how each GOOS EOV
is used by the various prediction systems, additional metrics for
evaluating and tracking the evolution of ocean observing system
impact could be made available. In addition, the ocean prediction
community would then be able to provide impact statements
on the various observation systems and how they influence the
assessment and predictions as described in Fujii et al. (2019, this
issue). Measurement strategies for new remote and/or in situ
ocean sensors can be refined using Observing System Simulation
Experiments (OSSEs) and Observing System Experiments (OSEs)
conducted with ocean modeling and data assimilation to evaluate
and enhance the impact of these observations.

At present, most ocean prediction systems within GODAE
OceanView assimilate satellite sea level anomalies (SLA) and
SST (Donlon et al., 2012), as well as in situ temperature and
salinity profiles. A key observing system for in situ profiles is
the Argo array – a global array of free-drifting profiling floats
(∼4000) that provides ∼14,000 profiles per year of temperature
and salinity in the upper 2000 m of the ocean. This array is
complemented by various surface drifting buoys, moored buoys,
ship-based observations like CTDs and XBTs, gliders, wave
gliders, and animal-deployed sensors. Most of the EOVs observed

3http://www.goosocean.org
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TABLE 1 | List of GOOS programs and variables they collect for ocean and atmosphere (from Sloyan et al., 2018).

EOV Profiling floats
(Argo)

Repeat
hydrography

(GO-SHIP)

Time series
sites –

moored/ship

Metocean
moorings (DBCP)

Drifters –
including buoys
on ice (DBCP)

Voluntary
observing ships

(VOS)

Ships of
opportunity

(SOOP)

Tide gauges
(GLOSS)

Ocean
gliders

Tagged
animals

Temp. (surface) X X X X X X X X X

Temp. (subsurface) X X X X X X

Salinity (surface) X X X X X X X X X

Salinity (subsurface) X X X X X

Currents (surface) X X X

Currents
(subsurface)

X X X X

Sea level X X X

Sea state X X X X

Sea ice X X X

Ocean Surface
Stress (OSS)

X X X X

Ocean surface heat
flux (OSHF)

X X X

Atmospheric Surface Variables

Air temperature X X X

Wind speed and
direction

X X X X

Water Vapor X X X

Pressure X X X X

Precipitation X X X

Surface radiation
budget

X X

The global ocean observing system (Chassignet et al., 2018).
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(see Table 1) in situ are used in ocean prediction systems for
assimilation and validation.

Surface drifter assimilation can have a major impact
on improving drift prediction from ocean forecast systems
(Jacobs et al., 2018). Drifters can be equipped with temperature,
salinity, and barometer sensors, and provide an efficient method
for monitoring mesoscale features, which they can track for
weeks. This is in contrast to classic satellite altimetry, which
passes over an area of the ocean every week or more. A current
challenge in ocean prediction is improving forecasts of mesoscale
features, as these features can have a strong influence on
water properties. To benefit from improved data assimilation
techniques and computing power, higher density observations
are needed that properly measure mesoscale features. Globally,
one will have to rely on new satellite missions with increased
coverage. Regionally, the in situ observations density can be
increased through the use of drifters, which also permit the
evaluation of drift projection for various applications, including
oil spill response and search and rescue (Davidson et al., 2009).

In the last decade, autonomous vessels have begun to provide
significant contributions to real-time in situ observations (Hole
et al., 2016) and they are a useful tool for validation of
remote sensing observations. One characteristic of ocean gliders
and surface wave gliders is their ability to measure fronts
and be tasked with a sampling strategy. Field experiments
for ocean observations need to acquire useful data for model
and remote sensing calibration as well as data assimilation.
Due to the intrinsic limits of in situ ocean observing systems
(e.g., endurance, the speed of autonomous surface vehicles and
autonomous underwater vehicles), effective resource allocation
for adaptive sampling would optimize monitoring of oceanic
features and phenomena of interest.

Moorings are some of the oldest ocean instrumentation
methods, first “modern” tide gauges have provided more than
a century of sea surface height estimates (e.g., Church and
White, 2011). They are classified as “time series” by the GOOS
(Table 1), and they provide at fixed locations and depths
repeated measurements of sea surface height, temperature,
salinity, currents, nutrients, carbon, or oxygen content. Some
may be equipped with cameras and imagers and are networked
for real time dissemination of the measurements. Those having
a surface structure can also provide atmospheric measurements.
Coastal moorings are distributed almost along all continents,
are usually maintained by national entities that also performs
data quality control, and many of them contribute to the GOOS
and their measurements are accessible following international
standards. For the open ocean, the OceanSite program and the
tropical mooring arrays: TAO/TRITON (McPhaden et al., 2010),
PIRATA (Bourlès et al., 2008), RAMA (McPhaden et al., 2009)
are the reference data used by operational oceanography. These
programs offer high quality data because moorings are replaced
regularly, and instruments are calibrated, which implies a strong
commitment by the community. Service cruises offer unique
opportunities for additional multidisciplinary sampling of the
ocean, repeated legs, launch of autonomous instruments, and
testing of new sensors by qualified teams [for a complementary
discussion, see Foltz et al. (2019, this issue), focusing on the

tropical Atlantic Observing System]. The main drawback of
moored time series is their poor spatial sampling. Measurements
may represent very localized and short scale dynamics, in
particular near the coast. However, they may offer very accurate
and high frequency sampling of a given phenomenon over very
long time, so, in this sense, they complement the permanent
evolving spatial distribution of less accurate autonomous sensors
like Argo profilers and drifters. Moorings are key for model
calibration and for forecast verification, and also for remote
sensing instruments calibration and accuracy monitoring.

High frequency radar is a land-based remote sensing
instrument that offers unique insight into coastal ocean
variability by providing reliable directional wave information
and surface current vector gridded maps in near real time for a
variety of temporal scales and at high spatial resolutions. The high
frequency radar network has grown worldwide rapidly in the past
decade and is becoming an essential component of coastal ocean
observation systems (Rubio et al., 2017). Accurate high frequency
radar estimations can be used as benchmark for the rigorous skill
assessment of operational wave and circulation models in key
coastal areas (Lorente et al., 2016) or can be optimally combined
with ocean circulation models via data assimilation to enhance
the model predictive skills.

With regards to satellite remote sensing of the ocean, three
new satellite observation systems have the potential to enhance
the view of the ocean from space and provide new observations
for ocean prediction improvement. The first, the Surface Waves
Investigation and Monitoring (SWIM) instrument (Hauser et al.,
2017), was deployed in 2018 as part of the China-France
Oceanography SATellite (CFOSAT) mission. The SWIM system
uses a rotating radar beam and measures surface winds and
waves, which will help achieve better calculations of surface fluxes
at the air sea interface and provide more accurate wind and
wave forcing. The second will be the wide-swath Surface Water
and Ocean Technology (SWOT) altimeter scheduled to launch
in 2021, which will provide two-dimensional observations of
sea surface topography at kilometer resolution over a 120 km
swath. This will be equivalent to having multiple Nadir altimetry
satellites and provide much more detailed observations of
sea surface height than are currently available. Wide-swath
altimetry has the potential to provide a step change in ocean
forecast performance through: (i) high spatial coverage with
instantaneous two-dimensional snapshots of surface gradients
leading to more dynamically balanced initial conditions for
forecasts; (ii) high data coverage leading to a reduction in
observation latency and thereby permitting higher forecast
skill during the forecast period; and (iii) estimates of river
discharge from major rivers leading to major improvements for
ungauged rivers and estimates for international rivers. These
improvements will be useful for coastal and shelf areas as well
as in deeper water for tracking mesoscale features and better
resolving front areas. The third satellite is the Sea Surface
KInematics Multiscale (SKIM) monitoring mission proposed
by Ardhuin et al. (2018). If approved, the SKIM proposal is
expected to deliver estimates of ocean surface currents and
surface waves. In addition to constraining the surface current,
it will complement altimetry and Argo observations. Altimetry
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only measures the geostrophic component of surface current,
whereas SKIM would provide the total current including the
Ekman component. The addition of wave observations will allow
better representation of wave current interaction, air-sea fluxes,
as well as track ocean convergence zone for marine plastic
debris. The three new satellite systems combined with evolving
in situ data programs will enable ocean prediction systems to
better reproduce mesoscale features in the ocean and increase
forecast accuracy.

Finally, it is important to mention that satellite measurements
of sea surface salinity (SSS) are becoming more reliable and
that current missions are able to provide synoptic measurements
of SSS over the global ocean with spatial scales that are
much finer that those provided by the Argo array. Planned
enhancements are to increase the spatial resolution to better
resolve mesoscale features and to improve the accuracy of
the satellite SSS observations, especially at high latitude (see
Lee and Gentemann, 2018, for a review).

Ocean data management is essential for the proper
distribution of data to the operational systems. This is addressed
by several other papers in this issue (e.g., Pearlman et al., 2019;
Tanhua et al., 2019), so it will not be addressed in detail here.
Observations networks that follow the FAIR (findable, accessible,
interoperable, and reusable) data management principles are an
asset for operational oceanography but not necessarily sufficient,
as will be discussed below. Observations are used in operational
oceanography for validation, verification, real-time assimilation,
and reanalysis assimilation. For validation (defined as assessing
the quality of a system) and assimilation into reanalysis systems,
there is the need for a standard set of quality-controlled
observations, ideally perhaps with temporal consistency to
ensure no aliasing from the observing network. In cases such as
these, the FAIR principles are critical. For verification (defined
as monitoring the quality of products in operations) and
assimilation in real-time there is the additional requirement
for timeliness and robustness of observation availability. Real-
time prediction systems normally operate on daily or more
frequent cycles, ingesting observations from the near past. A data
management system capable of delivering observations with
associated information about the quality of the observation
on a timescale suitable for real-time systems is also much
needed. Timeliness is likely to become increasingly stringent as
operational oceanography and operational meteorology come
together in coupled ocean-atmosphere prediction systems. The
rapidly evolving nature of the atmosphere and the need for rapid
updates of information for users of these coupled systems will
increasingly drive the timescale requirements and observations
available within 3–6 h will become increasingly valuable.

The real-time and delayed mode observations needed for
operational oceanography means that there must be two
versions of each observation; one with automated, robust
quality control that is available for use in real-time, and
the other one with the best available quality control, often
including manual intervention, but available with a longer
delay and expected to offer improved accuracy level. To ensure
traceability, a data management system capable of managing
both options is required. Data providers are often unwilling to

release observations until they are in the best form possible.
However, from an operational oceanography perspective it
is critical to have metadata that clearly flag what quality
control has been undertaken and the error characteristics of
each observation. That way, useful information can still be
extracted, even when the observation is not as well quality
controlled as the observation owners would like. As operational
oceanography expands from the traditional surface waves and
hydrography into chemistry and biogeochemistry where quality
control is often less-easily automated and less observations
are available in real-time, this will increasingly be an issue.
Extending data management protocols similar to those used
for drifting buoys and traditional Argo observations of profile
temperature and salinity to other observation types is key to
adding value to these observations from operational ocean
systems. Additionally as indicated by Smith et al. (2019),
all the above mentioned observation systems are needed
to provide coverage in Arctic waters, for the prediction
systems, as these are areas that are quickly evolving under
global warming.

OCEAN MODELS

Ocean numerical models are one of the essential building
blocks of global and regional operational oceanography systems.
A comprehensive operational system includes models that solve
governing equations for ocean currents, sea levels, temperature,
salinity, sea-ice, surface waves, and concentrations of tracers
relevant to environmental or biogeochemical processes.

Over the past decade, ocean circulation models have
evolved through improved understanding, numerics, spatial
discretization, grid configurations, parameterizations, data
assimilation, environmental monitoring, and process-level
observations and modeling (see companion paper by Fox-
Kemper et al., 2019, for a review). Increases in computing
power and the improved physical consistency of their numerical
formulation (Griffies et al., 2000) have allowed current state-of-
the-art ocean circulation models to routinely resolve oceanic
flows down to mesoscales globally, sub-mesoscale regionally,
and detailed structure in the coastal ocean down to harbors
(e.g., Álvarez-Fanjul et al., 2018; Le Sommer et al., 2018; De
Mey-Frémaux et al., 2019, this issue). Ocean models that do
not include observational data assimilation are mostly used to
scientifically explore underlying ocean mechanisms via idealized
or realistic configurations. In conjunction with data assimilation,
they are used to extrapolate in space and in time the available
discrete oceanic observations to build a physically consistent
estimate of the ocean state and its evolution. This, in turn allows
for the creation of reanalysis products that can describe past
evolution (Ferry et al., 2012; Carton et al., 2018; Wunsch, 2018),
or initial state to perform forecasts (Chassignet and Verron, 2006;
Dombrowsky et al., 2009; Schiller and Brassington, 2011; Bell
et al., 2015; Chassignet et al., 2018). Observational data via data
assimilation sets the stage for model state estimates and forecasts
(Chassignet et al., 2009), with the quality of the estimates and the
forecast being strongly dependent upon the ability of an ocean
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numerical model to faithfully represent the resolved dynamics of
the ocean and the parameterized subgrid scale physics.

Besides capturing large-scale ocean features, there is a strong
need for the ability to predict the variety of spatial and temporal
scales near the coastlines where a large part of the world’s
population lives. This poses both an observational as well as a
modeling challenge and necessitates the development of suitable
coastal ocean forecasting systems, capable of providing the
backbone for societal and management needs (Kourafalou et al.,
2015a,b). Models have to be able to resolve interactions between
nearshore, estuarine, and shelf processes (10–100 m resolution
is needed to resolve these processes), as well as open ocean
processes, which are reasonably represented with a resolution
of one to several km. One solution to this problem is multiple-
level nesting used in many applications as one-way nesting; thus,
the upscaling is neglected (see, for example, Shan et al., 2011;
Schulz-Stellenfleth and Stanev, 2016; Urrego-Blanco et al., 2016;
Stanev et al., 2017). A lot of progress has been made recently in
the development of unstructured grid models (see Fox-Kemper
et al., 2019, for a discussion) because they enable full interaction
between different scales, but unstructured grid models have not
yet reached the level of maturity required for them to become
fully operational on a global scale. The benefits of regional
modeling over the driving global models are generally assumed,
and a growing number of studies are investigating the added
value of such an approach (Katavouta and Thompson, 2016;
Holt et al., 2017; De Mey-Frémaux et al., 2019, this issue).

Ensemble forecasts allow for the incorporation of the
uncertainties in forecasts, coming from uncertainties in the
forecasting system including those from atmospheric forcing
fields, observations, initial conditions, and model parameters.
They provide an ensemble of likely model results and an
ensemble forecast effectively includes also the uncertainty due
to the inherent chaotic nature of the ocean (Büchmann and
Söderkvist, 2016). This approach can be extended to use models
of different types (Taylor and Brassington, 2017) to have a
better representation of the uncertainty in order to include
(at least partially) the effect of systematic errors (Golbeck
et al., 2015). From such ensembles, one can then derive
the uncertainty of the model forecast expressed often as the
ensemble standard deviation. Alternatively, it is also possible to
compute the probability of some events (e.g., ocean currents)
exceeding a given threshold or the probability of finding a
drifter within a given search area. In order to provide a
suitable ensemble forecast, it is also necessary to validate the
reliability of the probabilistic forecast (Candille et al., 2007;
Yan et al., 2017). One of the main applications of ensemble
forecast is to optimally reduce the model uncertainty using
observations with e.g., data assimilation (section Ocean Data
Assimilation) or other approaches like Bayesian Model Averaging
(e.g., Salighehdar et al., 2017).

Dynamically, variations of ocean circulation are coupled
with that of sea-ice, waves and atmospheric physics. Coupled
systems are needed for improved representation of physical
processes across oceanic boundaries, which are important not
only for seasonal to climate timescales, but also for short-
range forecasts (Brassington et al., 2015). A high-resolution

coupled wave, circulation, and atmospheric system that accounts
for the non-linear feedback between the upper ocean and
the atmosphere through wave interface, reduces prediction
errors in the coastal ocean, especially under severe extreme
conditions (Staneva et al., 2017; De Mey-Frémaux et al., 2019, this
issue). While deterministic modeling systems can provide good
accuracy at short-term weather time scales, longer subseasonal-
to-seasonal scales need ensemble-based modeling systems to
capture the uncertainty and predictability (or lack thereof). As
such modeling systems evolve, there are significant choices to
be made regarding the competing needs for refined resolution
to enhance the fidelity of resolved flow features; increased
component complexity/capability to allow for the representation
of otherwise missing processes and feedbacks; and increased
numbers of ensemble members required to extract a signal from
the noise (Hewitt et al., 2017). Finally, additional work is needed
to include biogeochemical models in the forecasting systems.
Also, in anticipation of high-resolution altimetry from SWOT
in 2021, an increase in the global models’ horizontal resolution
would be timely (Lellouche et al., 2018).

OCEAN DATA ASSIMILATION

Incorporating observations into a prediction system via data
assimilation is crucial for operational forecasting and reanalysis
systems to obtain accurate estimates of the ocean state.
Numerous data assimilation algorithms have been developed
and applied in operational ocean forecasting systems. Most
global operational global ocean forecasting systems apply three-
dimensional methods such as 3DVar or Ensemble Optimal
Interpolation (and its variants) (Martin et al., 2015), while
regional and shelf-seas systems use a wide variety of methods
including more advanced methods such as the Ensemble Kalman
Filter (e.g., Sakov and Sandery, 2015) and 4DVar (e.g., Edwards
et al., 2015). As the available computational resources increase,
many of the global ocean forecasting centers are developing
implementations of these more advanced methods (Nerger and
Hiller, 2013), as well as hybrid ensemble/variational methods. An
example of EnKF applied to a global ocean model is shown in
Figure 2. This represents the ensemble standard deviation for
temperature at a model depth of 65 m from a 96-member EnKF
applied to a global ocean model (Oke et al., 2013). The EnKF
system is based on that described in Sakov and Sandery (2015)
and is configured in a 3 days cycle, using localization of 150 km
for SLA and SST and 450 km for T and S profiles; and uses
a 3% capped inflation and simple random perturbation to the
atmospheric forcing. The gain in performance of approximately
7, 15, 15, and 29% for SST, SLA, T, and S respectively over
an operational system based on EnOI is shown in Table 2. In
addition to performance gains this system provides a 96-member
ensemble that can be exploited for probabilistic forecasting.
For a brief overview of data assimilation and its application
in operational ocean forecasting and reanalysis systems, see
Moore et al. (2019) in this issue.

The accuracy of the analysis and subsequent forecasts
produced by data assimilation is dependent on the accuracy
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FIGURE 2 | Ensemble standard deviation of temperature (◦C) at the model depth of 65 m. A daily snapshot from a 2 year hindcast using a 1/10 degree, 51 vertical
level implementation of MOM4p1 and a 96-member ensemble Kalman Filter data assimilation of satellite altimetry, satellite SST and in situ profiles. The colorbar is in
degrees C.

TABLE 2 | Performance summary table of a BlueLink ensemble Kalman filter
hindcast compared with the current OceanMAPS system using ensemble
optimal interpolation.

SLA SST T S

EnKF 0.044 0.264 0.426 0.079

OMAPS 0.052 0.283 0.503 0.112

The statistics represent the mean absolute difference of forecast innovations based
on a 3 days forecast cycle.

and coverage of the input observations, the fidelity of the
numerical model, and the quality of the data assimilation
scheme itself. The extensive and routine use of many different
observing platforms in operational forecasting and reanalysis
systems requires significant interaction between the assimilation
and observing communities. In some areas these links are well
established, but in others there could be considerable benefit to
both communities by strengthening the links. Below we describe
some examples of where feedback from the assimilation to
observing communities, and vice versa, should be improved.

Assimilation systems require information about uncertainties
in the observations and the model forecast. The observation
errors are usually considered as two components: the
measurement error, and the representation error (which
accounts for the fact that the models do not represent all the
physical processes and scales that a particular observation
measures; Janjić et al., 2018). For some observation types there
is considerable information available to the assimilation systems
about the measurement errors; for instance, satellite SST datasets
available through GHRSST provide per-observation uncertainty
estimates. In other observing systems, and particularly for new
satellite observations, there is a need to ensure that measurement
uncertainty estimates are available to assimilation systems. The
representation errors estimated by the forecasting community
for assimilation systems with different spatial and temporal
characteristics could allow the observation community to
better characterize the information content of the observations,
although representation errors also depend on the specificity
of the individual prediction systems (e.g., in terms of spatial
resolution and resolved processes).

Quality control is carried out by many of the data
assembly centers which provide observations to assimilation
systems, both in real time and delayed mode. Real time
assimilation systems also carry out an automatic quality control
step using various information including short-range model
forecasts (e.g., Storto, 2016). This is a critical component of
operational ocean forecasting systems since the assimilation of
erroneous observations can severely degrade forecast quality.
The information about which observations have been removed
from the operational assimilation systems could be very valuable
for the data assembly centers to assess and improve their
own quality control methods, and to provide input to the
delayed-mode quality control process. This would be particularly
valuable if information from multiple forecasts systems were
combined, as was tested by Wedd et al. (2015). Methods such
as Observing System Experiments (OSEs) and Observing System
Simulation Experiments (OSSEs) are often used to provide
information about observation impacts on data assimilation
systems (Fujii et al., 2019). While there have been examples
of the use of OSEs to provide information about observation
impacts in real time (Lea et al., 2014), they are expensive and
this approach has not been widely adopted. There are various
other methods for providing observation impact information
including Forecast Sensitivity to Observations (FSO; Cardinali,
2009) and Degrees of Freedom for Signal (DFS; Cardinali
et al., 2004), along with applications of adjoint-based sensitivity
metrics to regional ocean dynamics (Moore et al., 2017).
Such information is then disseminated regularly as part of the
prediction systems. It is recommended that efficient methods
to assess impact of observations in operational ocean forecast
systems be implemented in real time. The resulting information
should be combined from multiple centers and made available to
the observing community.

It would be possible to go further than this and use diagnostics
from assimilation systems to target observations. For instance,
forecast uncertainty estimates from assimilation systems (based
on either variational methods or ensemble spread) could be used
to determine the regions where new observations would have the
most impact. Some studies have been carried out to assess its
feasibility in the ocean (e.g., L’Hévéder et al., 2013), but more
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work is needed, taking account of the large number of studies
carried out in the atmospheric context (Majumdar, 2016).

Data assimilation systems estimate gridded fields of
corrections (called analysis increments) that bring the model
close to the observations, accounting for their respective errors.
The time average of these increments provide information
about systematic errors, either in the model or in the input
observations. While it can be difficult to disentangle the
effect of systematic errors in the model and observations, this
information can be valuable for understanding the biases in
the system. Comparison of average analysis increments across
multiple assimilation systems that use different models could
allow observation biases to be uncovered and help improve
the models (as illustrated by Martin et al., 2015). Some data
assimilation systems also directly estimate the biases in satellite
observations, and this information should be shared with data
providers to improve understanding of the data.

OCEAN PREDICTION VERIFICATION

Verification of ocean predictions has gradually evolved using
metrics (Crosnier et al., 2006), defined as sets of diagnostics
that compute scalar measures from ocean forecasting systems
outcomes, providing not only objective quality indicators that
can be quantitatively compared but also uncertainty estimates
and error levels (Hernandez et al., 2015). These metrics allow
for evaluation of the accuracy of ocean estimates, the forecast
skill, and the reliability for use in services (Hernandez et al.,
2009, 2018). The metrics also establish if and how a new change
in the model, data assimilation scheme or system setup has
contributed to a better result and allow an ongoing monitoring
of the quality of forecasts. Evaluations can be conducted
in a number of ways including looking at conservation of
certain quantities in the model, ensuring appropriate energy
spectrum distribution, inter comparison with reference models,
or comparing prediction output to observations. There are a
variety of challenges in developing an ocean model verification
method that includes remote and in situ data. In particular, a
characterization of the observations is required to understand
and quantify the information content (scales, observed part of the
spectrum) and any random and systematic measurement errors
(e.g., spatial representation and temporal sampling. Verification
is ideally made using independent observations that are not
assimilated into the model itself. The GODAE community
adopted the four-types metrics approach (Hernandez et al., 2015),
including gridded model output (Class-1), time-series at specified
locations and sections (Class-2), transports through sections and
other integrated quantities (Class-3), and metrics of forecast
skill (Class-4).

Class-1 metrics provide a general overview of ocean and
sea-ice dynamics from the different systems using diagnostic
two-dimensional fields, such as sea surface height, wind stress,
solar and net heat fluxes, total freshwater fluxes, and mixed-layer
depth or three-dimensional fields such as temperature, salinity,
and currents. Class-1 metrics are defined as analysis of fields
on pre-defined grids. Implicitly, grid characteristics define the

spatial scales at which ocean forecast and gridded observations
can be compared for a given phenomenon. For example, at
NWS/NCEP, three products were selected, a SSALTO/DUACS
multi-mission altimeter product produced and distributed
through the Copernicus Marine and Environment Monitoring
Service (CMEMS; Pujol et al., 2016), the NCEP/EMC real-time,
global SST analysis (Gemmill et al., 2006), and an NCEP/EMC
ice concentration analysis (Grumbine, 1997). These products are
then routinely compared against real-time model derived analysis
fields for monitoring and verification (Carrieres et al., 2017).
Visualizations of the difference fields for sea surface height and
SST and sea ice concentration are created (Goessling et al., 2016)
along with descriptive statistics (root-mean-square error, bias,
correlation coefficients, and scatter indexes). Figure 3 shows an
example of Class-1 verification of Arctic sea ice concentrations
comparing the global NCEP RTOFS model outputs and NCEP
sea ice analyses.

Class-2 verification for global systems includes vertical
sections extracted from the model along 47 defined World Ocean
Circulation Experiment (WOCE) sections, with visualizations
using contour intervals corresponding to similar WOCE graphic
images (Schlitzer, 2000). It can capture, at a specific location
for part of or the entire water column, the time series of
observed phenomena and assess how operational systems provide
the same vertical EOV distribution for the same frequency.
Mooring and repeat sections are considered here. Typically,
Class-2 moorings are computed in delayed mode: real-time
transmission of mooring data (OceanSite, PIRATA, RAMA,
TAO-TRITON. . .), or VOS and research vessel data is not
always possible, although new technologies, like T-Flex tropical
moorings and Iridium satellite transmission allow expanded and
real time data transmission.

Class-3 verification uses derived products instead of directly
observable quantities. For instance, the ongoing NOAA program
that measures the total volume transport of the Florida
Current across an unused telephone cable laid between
West Palm Beach, Florida, and Eight Mile Rock in the
Bahamas (Baringer and Larsen, 2001) is used by NCEP for
verification. Another Class-3 data set is an approximately
biweekly set of ocean frontal positions supplied by the US Naval
Oceanographic Office (NAVO) and the US Naval East Ocean
Center (NAVEASTOCEANCEN) (Mesick et al., 1998). In this
data set, three fronts are analyzed – the North Wall of the
Gulf Stream, the Loop Current in the Gulf of Mexico, and
the Kuroshio Current. The frontal positions of both the Navy
analyses and the Global RTOFS data are mapped, and a metric
is used to compute the geometric distance between the two fronts
(Dubuisson and Jain, 1994). Such observational programs require
significant resources, manpower, and expertise.

Class-4 metrics aim to measure the performance of a
forecasting system, its capability to describe the ocean (in
hindcast mode), as well as its forecasting skill (analysis and
forecast mode). Class-4 metrics are model and observation
products defined in the observational space, i.e., the operational
system is evaluated where observations are gathered. Class-
4 metrics can be applied in delayed mode or in real time,
knowing that in real time, less observations are available. Near
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FIGURE 3 | Class-1 metrics of Arctic ice concentrations comparing Global RTOFS model results and NCEP Ice Analysis. Difference field of sea ice concentrations
for a single day and time series of descriptive statistics collected for the previous 180 days.

real-time monitoring of ocean performance through Class-4
metrics has been one of the more successful outcomes from
GODAE OceanView, and it is the backbone of the CMEMS
product quality evaluation. Since 2013, the GODAE Ocean View
Intercomparison and Validation Task team have been comparing
analyses and 7 days forecasts for several global operational
systems (Figure 4) (Hernandez et al., 2015; Ryan et al., 2015).
Regional operational systems are now also involved, and this
framework is expected to be endorsed and adopted by the
Joint Technical Commission for Oceanography and Marine
Meteorology (JCOMM). At present, comparisons are based on
altimetry (sea surface height), Argo (temperature/salinity vertical
profiles), and drifting buoys (SST). Buoy trajectories will soon be
used to assess surface velocities.

Most of these metrics have traditionally used bias, root-mean-
square errors, and anomaly correlation between observed and
model values over basin scale, in other words, characterizing
large-scale discrepancies. With the drive toward much higher
horizontal resolution in the predictions systems, these traditional
metrics may be unable to demonstrate the improvement in
forecast skill (as described for numerical weather prediction by
Mass et al., 2002). While higher-resolution models (subjectively)
generate more realistic fields (Garcia Sotillo et al., 2015),
it is often the case that statistics based on direct point
match-up between interpolated model and observations do
not improve (Brassington, 2017) due to the existence of so-
called “double-penalty” effects occurring when using point-
to-point comparisons with features present in the model but
misplaced with respect to the observations. There is therefore
a need to develop more sophisticated neighborhood methods
and ad hoc metrics to deliver more accurate assessments of

forecast skill at the local level. This has been a very active field
of research in the atmospheric verification community, especially
for precipitation forecasts, with many new spatial methods
developed (Gilleland et al., 2009). Operational oceanography
with external metrics tends to focus more on specific phenomena
potentially over all oceans (e.g., focusing on mixed layer
assessment; Boettger et al., 2018), but emphasis can also be on
the forecast capability of an early warning system, such as river
flooding (Taylor et al., 2011), or it can be dedicated to a specific
region with the use of spatial-and object-based methods applied
to high-resolution ocean forecasts verification to make the most
of both sparse in situ ocean observations and remotely sensed
observations (such as high frequency radar, satellite sensors). As
model resolution increases, verification methods must therefore
diversify, with a need for observations of synoptic mesoscale to
submesoscale ocean features.

There is also an obvious interest in platform dedicated
assessment (e.g., comparing model and observation values for
a given drifter, for a given thermo-salinograph). The benefits
are twofold: (1) identifying possible biases or trends along time
for a given platform through comparison against several model
values; and (2) assessment of the model through a Lagrangian
perspective or in specific ship routes of interest. This could
also be done for vessels of opportunity such as CTDs and
ADCP observations along a seismic survey track (Figure 5;
Zedel et al., 2018), which is similar to GODAE Class 2 metrics.

Operational oceanography centers, following climate and
seasonal forecast approaches, are also designing ensemble
frameworks to better quantify forecast skill. There are notable
efforts to define meaningful skill metrics (e.g., contingency tables,
skill scores, ensemble predictions) in order to quantitatively
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FIGURE 4 | Example of class 4 metrics from Ryan et al. (2015). Forecast accuracy against temperature measurements taken by Argo. (A) RMSE/bias as a function
of forecast lead time. The boxes are the interquartile range and the 95th percentile. (B) RMSE/bias of 12 and 84 h forecasts as a function of depth, the vertical axis is
logarithmic. (C) Similar to (A) with anomaly correlation as the metric. (D) Similar to (B) but with anomaly correlation as the metric.

assess the quality and consistency of ocean products and to
synthesize different aspects of system performance together (e.g.,
Taylor and target diagrams, cost functions). Such metrics still
rely on observations that can provide ocean truth, and they
are required on both scientific and policy-making fronts. Since
a portion of the target audience encompasses management
agencies and neophyte end users without a mathematical
background (for example, those in the fishing community or
recreational boat pilots), the implementation of simple user-
based metrics that are easy to interpret remains a priority
(Zhang et al., 2010).

In summary, the ocean is under-sampled and only
occasionally observed at fine scales. However, for verification
purposes, operational oceanography needs continuity of
observing programs and enhancement toward higher frequency

sampling, higher resolution (such as high Freqency Radar
Figure 6), and more measurement of additional quantities
(biogeochemistry, ecosystems monitoring). This cannot be
achieved solely by new satellite missions, such as SWOT for
sea level, SKIM for surface currents, and SWIM for surface
waves/wind. It will require an organized effort and evaluation of
in situ programs.

OPERATIONAL OCEANOGRAPHY
SERVICES AND STAKEHOLDERS

A full description of the full range of operational oceanography
services, of the information delivery mechanisms, and of how
the stakeholders use these services is beyond the scope of this
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FIGURE 5 | Top panel: Comparison between U and V observed using
ship-based ADCP (blue) and predicted using the GIOPS prediction system
(red) Both data sets were filtered to remove high frequency in this plot.
Bottom panel: Progressive vector plot of displacements for ADCP (blue with
green labels), and model (red with black labels) over the 60 days of the data
set. Number labels indicate the number of days of drift.

paper. This section, however, describes some examples of how
the field is evolving, and the primary elements that are important
for operational oceanography. We cannot anticipate all of the
future uses that will be made of ocean forecasts systems, but it
likely that these end uses will evolve together with the evolution
(increased skill at longer lead times and a wider range of
simulated parameters) of the prediction systems themselves, as
well as with better accessibility tools and application program
interfaces (APIs). The development of APIs will allow third
parties to provide value-added services to various end user
communities. This is one of the aims of the Copernicus Data and
Information Access Service (DIAS4) initiative, where five cloud-
based services are setting up accessible operational ocean data
and prediction output repositories including processing tools. In
regional systems of the GOOS services, such as Web Map Service

4https://www.copernicus.eu/en/access-data/dias

(WMS), Web Feature Service (WFS), or Web Coverage Service
(WCS), are available to view the regional ocean observing system
output. Systems such as SECOORA, MONGOOS, NERACOOS
have methods to explore numerical model and observation
output. One interesting example is the PacIOOS voyager tool5,
which is based on Google Earth and provides access to various
observations and models. These viewing and analysis services
for the various ocean observing systems must continue to
grow and improve.

There is inherent end user trust in in situ observations
versus model predictions and satellite observations. This is a
particularly prevalent issue with regard to using model products
for marine environmental policy, e.g., the marine strategy
framework directive in the European context (Hyder et al., 2015).
Thus, all ocean prediction product delivery systems must include
(where feasible) continuous availability of ongoing comparisons
of predictions and satellite observations with in situ observations.
Many applications for operational oceanography exist in regional
waters near the coast, where most of the activity and interest
lies due to ports, fishing activity, recreational activity, as well
as protection of sensitive habitats (De Mey-Frémaux et al.,
2019, this issue). Coastal infrastructure requires storm forecasts
to better manage risk. Maritime industries require forecasts of
currents and ice for many of their operational decisions/activities,
including towing out of heavy production platforms, evacuation
of offshore facilities, as well as routine maintenance operations.
Longer-term forecasts are needed for strategic decisions, and
short-term high-resolution forecasts are used for underway
tactical decisions by large industry vessels. Reanalysis or historical
data are needed for design criteria for offshore structures.

In the shipping industry, navigation6 is “the harmonized
collection, integration, exchange, presentation and analysis of
marine information on board and ashore by electronic means to
enhance berth to berth navigation and related services for safety
and security at sea and protection of the marine environment.”
The IHO S100 Standards7, currently under development, will
allow time variant fields to be displayed on ship. For example,
S-104 will provide tidal information standards for surface
navigation, S-111 will provide standards for surface current
specification, and S-112 will provide standards for dynamic
water level data specification. The e-Navigation development via
vessel automatic identification system monitoring will provide
a mechanism for delivering ocean and ice prediction (as well
as meteorological) output electronically to the ship bridge
navigation systems.

Coast Guard search and rescue requires good knowledge of
currents and surface temperature to estimate search locations of
survivors, as well as to guide search decisions on survivability
related to ambient water temperature. Navies require ocean
predictions at their fingertips. They need the ability to compare
ocean condition predictions against their own observations
and apply that information to acoustic calculations on the fly.
They have an inherent need for best available ocean circulation

5http://www.pacioos.hawaii.edu/data/voyager/
6http://www.imo.org/en/OurWork/safety/navigation/pages/enavigation.aspx
7https://www.iho.int/iho_pubs/standard/S-100_Index.htm

Frontiers in Marine Science | www.frontiersin.org 12 September 2019 | Volume 6 | Article 450

https://www.copernicus.eu/en/access-data/dias
http://www.pacioos.hawaii.edu/data/voyager/
http://www.imo.org/en/OurWork/safety/navigation/pages/enavigation.aspx
https://www.iho.int/iho_pubs/standard/S-100_Index.htm
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00450 August 31, 2019 Time: 16:0 # 13

Davidson et al. Synergies in Operational Oceanography

FIGURE 6 | Surface velocity fields (A,B) and maps of eddy kinetic energy EKE (C,D) derived from hourly HFR (left) and CMEMS IBI model (right) estimations for
Spring (MAM) 2014. (E) Map of complex correlation between HFR and IBI. Isolines represent the phase (in degrees): positive (negative) values denote
counter-clockwise (clockwise) rotation of IBI vector respect HFR vectors. (F) Monthly evolution of spatially averaged class-1 metrics. Shaded values reveal the
standard deviation associated with each metric.
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descriptions, with a particular need for reliable water column
stratification for sound speed calculation.

The academic sector is also an important end user
and developer of operational modeling systems. Managing
operational configurations to deliver robust quality-controlled
forecast products using a modeling platform that is being
continually evolved by the research community requires a careful
dialogue between the competing interests of operational data
providers and the academic research community. Research
integration must be achieved by building synergies between
academic institutions, management agencies and state
government offices for a coordinated creation of tailored
products to meet the needs of applied end-user communities.
For example, in the United Kingdom, development of the Met
Office operational oceanography systems are coordinated with
the research endeavors at United Kingdom higher education
institutions under a Joint Marine Modeling Programme (JMMP),
which manages the forecast system development cycle whilst
providing important linkages that facilitate the delivery of high
impact discovery science. Similar efforts are underway in the US.

With increased focus on the impact of plastics in the ocean and
their prolific oceanic accumulation, determining where plastic
enters the ocean, is transported and aggregated (van Sebille
et al., 2012) is critical. While there is an obvious need to modify
activities that contribute to plastics in the ocean, one can envision
that ocean prediction system outputs combined with recent
advances in backtracking algorithms (Dagestad et al., 2018) will
allow us to trace observed plastic aggregation areas back to their
place of origin.

OUTLOOK AND RECOMMENDATIONS

Sustained ocean prediction systems positively impact a broad
range of ocean applications as well as governmental and
economic activities (Davidson et al., 2009; Bell et al., 2013;
Álvarez-Fanjul et al., 2018; Schiller et al., 2018; Reglero
et al., 2019). Prediction system reliability is intrinsically
linked to the sustained ocean observing systems that feed
it. These observing systems – from coastal to global, from
in situ to satellite-based – provide the ability to assess ocean
conditions and create reliable forecasts. This is accomplished
through assimilation of observations into models in order
to provide numerical assessments from which model-based
forecasts can be run. The observations are then used in data
assimilation, for verification of the numerical assessment
and forecast output as well as part of the prediction and
observational output from operational oceanographic systems
that permit downstream value-added products and end use. The
linkage between prediction and observing systems is mutually
beneficial. Operational prediction provides oceanographic
context to the observations themselves by generating a three-
dimensional time varying pictures of circulation around
the observation. Additionally, operational oceanography
can identify observing system gaps and provide guidance
on the optimal observing network (Oke and Sakov, 2012;
Fujii et al., 2019).

Large international organization activities related to
oceanography will have a strong influence on operational
oceanography. The UN proclaimed “Decade of Ocean Science
for Sustainable Development” (2021–2030) will help propel the
science behind ocean forecasting forward, as will a push from
the evolution of the WMO to move from weather prediction
to seamless environmental prediction (World Meteorological
Organization [WMO], 2018). Moving forward, operational
oceanography systems will be seamlessly coupled to the other
environmental prediction components of atmosphere, waves,
hydrology and ice. Following the suggestion by Bell et al. (2013)
for the United Kingdom, there is a need for an international
forum covering end-to-end operational oceanography to ensure
the whole community is informed of developments and to
initiate needed partnerships that will better exploit advances
made by the various components in operational oceanography
for societal and economic benefit.

Operational oceanography enhances information value of
all real-time and delayed mode contributing observations and
this will improve over time as each component is improved:
the observation system, the data management system, the
prediction system, the dissemination system, and stakeholder
use. Anticipated improvements for operational oceanography
components that will impact the next decade include:

Observations: The deep water Argo system will probe the
ocean depths to 6000 m, depths poorly sampled in the past. This
will provide added value for altimetry assimilation, as well as
better constraining the deeper ocean simulations. The Argo floats
will provide observations of biochemical variables, which will
complement satellite ocean color and further propel prediction
capabilities for biogeochemistry variables. The anticipated launch
of the SWOT altimeter in 2021 will provide two-dimensional
measurements of sea surface height with resolution suitable
for resolving circulation on continental shelves. Additionally,
the CFOSAT satellite (Hauser et al., 2016) launched October
28, 2018, will provide collocated surface wave and wind
measurements. If approved, the SKIM satellite (Ardhuin et al.,
2018) will further improve representation of air sea fluxes,
surface currents, the atmospheric boundary layer and upper
ocean turbulence. Autonomous observing platforms such as
gliders open up the possibility for developing a shelf seas analog
to the Argo open ocean profiling system. This will require
technology improvements to reduce both material cost and
human oversight of these planforms (e.g., artificial intelligence
based piloting systems).

Data management: Data management structures are expected
to evolve, with observations becoming more accessible via
discovery services as well as stored on purpose-built computing
infrastructure for fast access, retrieval, and visualization via a
variety of interfaces. Most regional ocean observing systems have
either one or several systems, such as THREDDS, ERRDAP,
LAS, and GEOSERVER, set up for data retrieval along with
GIS or Google Maps type viewers. The data feed for prediction
systems will need to be designed to best suit the aspects of the
data assimilation system (i.e., appropriate thinning and quality
control). Data management should also include within their
design, the collocation of prediction output and observation data.
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This will permit interface tools to allow end users to explore and
evaluate prediction output and observations together.

Prediction Systems: It is anticipated that research advances
in ocean prediction systems (data assimilation, models,
computational power, verification methods) working in tandem
with the evolution and advances of the observing system will
accelerate both basic and applied oceanographic research. This
will include:

1. Optimizing observing system design using data
assimilation tools.

2. Adaptive/event based observing.
3. Four-dimensional variational or hybrid data assimilation –

optimal use of available observations.
4. Model resolution (horizontal and vertical) – full

tidal/mesoscale resolving and partial submesoscale/internal
tide resolving ensemble forecasting.

Products and Delivery: Further integration is needed to
support seamless interfaces to data servers such as THREDDS
and ERDDAP. These servers will need to allow visual exploration
as well as analysis of both observations and model output
that is intuitive and seamless from an end user perspective.
The interfaces should also permit easy comparison between
different prediction system outputs and provide a smooth
interface experience for the end user without exposing the
user to the complexity of the data architecture and on-the-fly
calculations to meet end user defined plots or analysis. Also,
fully integrated software interfaces with fast dedicated data access
will improve user experience and discoverability. Having data
access tools that are both useful to specialists and non-specialists
enables greater scientific communication and understanding the
potential of ocean observing and prediction systems to provide
comprehensive views of ocean conditions.

To maximize societal benefit, collaboration and information
exchange between all contributing components of operational
oceanography are critical. With the advent of new technologies
(altimetry missions, gliders, biological Argo, etc.), a synergistic
use of multi-platform, multi-scale observing systems
encompassing both in situ (buoys, tide gauges, etc.) and
remote (HFR, satellite, etc.) sensors will provide further insight
into the comprehensive characterization of a highly dynamic
ocean circulation and the related complex interactions. Equally,
it will also contribute positively to a more exhaustive model
accuracy assessment with subsequent societal benefits. It is
therefore important to increase accessibility and understanding
of the ocean data assimilation process as well as of forecast
outputs. It is recommended for operational and delayed-time
ocean prediction systems to store and disseminate not only the
usual ocean model outputs, but also the analysis increments and
the observation feedback files (i.e., innovation and quality control
flags), to strengthen the link between the ocean forecast and the
observation communities and benefit from each other’s results.
This applies to accessibility and understanding of performance
of prediction systems against observations (validation metrics),
as well as multi-model inter-comparisons between diverse
prediction systems in overlapping regions, from global to coastal

scales, in order to evaluate the ability of nested coastal models to
outperform larger scale parent systems and quantify the added
value of downscaling approaches. Finally, improvements in
flexible discovery and accessibility tools and application interface
services will allow end users to develop new areas of application
and utility of ocean observing and predictions systems.

The ever-changing field of software engineering strongly
impacts operational oceanography products and outcomes.
Significant advances in high-performance computational
resources (e.g., multicore processor-based cluster architectures,
massive storage capabilities, optimized parallelization, and
efficient scalability strategies) have boosted the seamless
evolution of ocean modeling techniques and numerical efficiency,
giving rise to an inventory of operational ocean forecasting
systems with ever-increasing complexity. Furthermore, improved
data interfaces, discovery, analysis and visualization tools that
are interoperable and useable by scientists and non-scientists will
enhance communication, productivity, and collaboration.

Another recent development very likely to impact operational
oceanography centers is the increased use of cloud services
(AWS, Azure etc.) for data management, prediction and product
delivery for environmental data clients. As referred to in
section Operational Oceanography Services and Stakeholders
above, Copernicus DIAS has already established use of cloud
for data repositories and post-processing utilities. A “cloud-
forward” strategy is actively under consideration at a number
of operational meteorological and oceanography centers for
use of cloud (or virtual machine) computational resources and
data-hosting in conjunction with traditional HPC for enhanced
capacity. Cloud services will be actively used in the context of
future ocean observation systems as well. For example, the recent
US Department of Defense DARPA (Defense Advanced Research
Projects Agency) Ocean of Things initiative (Li et al., 2019) seeks
to enable persistent maritime situational awareness over large
ocean areas by deploying thousands of small, low-cost floats that
could form a distributed sensor network. The data will be stored
on the AWS GovCloud (Amazon) and managed by US Navy.

While the scope for operational oceanography is broad and
covers a large number of groups, there is no global international
network, consortium, or organization for coordinating end-
to-end operational oceanography – from ocean observations
to prediction to client delivery. However, within Europe,
the Copernicus Marine Environment Monitoring Service
(CMEMS) is a prime example of an international consortium
that coordinates, develops, and operates end-to-end operational
oceanographic systems. There is a need to collectively determine
how to federate global coordination of operational oceanography.
Platforms for these discussions include meetings of the IOC,
the WMO, as well as more specific groups such as GODAE
OceanView (soon to be OceanPredict), GOOS and its regional
components, and GEO Blue Planet. Additionally, special
events such as OceanObs’19 and Ocean Predict’19 will provide
excellent venues for collectively advancing toward a sustained
mechanism for international coordination of operational
oceanography. Similar to Bell et al.’s (2013) suggestion for a
national United Kingdom operational oceanography forum, an
international forum for coordination and information exchange
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for operational oceanography is needed to further advance the
ocean observing value chain.
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