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Future mining of polymetallic nodules in the Clarion Clipperton Zone (Northeastern
Pacific) is expected to affect all benthic ecosystems. The diversity, distribution, and
environmental functions of microorganisms inhabiting abyssal sediments are barely
understood. To understand consequences of deep-sea mining, experimental in vitro
systems needs to be established to test hypotheses on the environmental impact of
mining. For this, 40 bacterial strains, belonging to proteobacteria, actinobacteria and
firmicutes were isolated from deep-sea sediments and nodules sampled at depths
of ≥ 4000 m. Phenotypic characterization revealed a strong inter-species and moderate
intra-species variability. Determination of metal minimum inhibitory concentrations
indicated the presence of acute manganese-resistant bacteria such as Rhodococcus
erythropolis (228.9 mM), Loktanella cinnabarina (57.2 mM), and Dietzia maris (14.3 mM)
that might be suitable systems for testing the effects of release of microbes from nodules
and their interactions with sediment particles in plumes generated during mining.
Comparative genomic analysis indicated the presence of manganese efflux systems
relevant for future transcriptomics or proteomics approaches with environmental
samples and might serve in paving the way to develop model systems including
representative organisms which are currently not cultivable. Monitoring deep-sea mining
activity at abyssal depth is a challenge that has to be tackled. We proposed the use of
API strips as a fast on-board methodology for bacterial monitoring as an indicator for
sediment plume dispersions within the water column.

Keywords: deep-sea mining, CCZ, sediment, bacteria, heavy metal, API strips

INTRODUCTION

Deep-sea environments are considered the most remote, broad (95% of ocean surface) and least
understood ecosystems on Earth (Jørgensen and Boetius, 2007; Smith et al., 2008). Some deep-
sea areas, however, contain considerably high amounts of mineral resources, which have recently
received increasing attention from governments and private entities. Consequently, the Clarion
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FIGURE 1 | Study area and locations of sediment core sampling.

Clipperton Zone (CCZ; NE equatorial Pacific; Figure 1), with an
extent of 4.5 million km2, has been the focus for polymetallic
nodule exploration programs.

Polymetallic nodules are marine encrustations rich in precious
metals such as manganese (Mn), nickel (Ni), copper (Cu), and
cobalt (Co), as well as rare earth elements of both ecological and
economical relevance (Hein and Koschinsky, 2013; Fritz, 2016).
Lying on the surface of abyssal plains at around 4000 m depth,
their genesis is geologically slow and results from diagenetic
and hydrogenetic processes that take place over a million
years (Graham et al., 2004). Environmental conditions at the
CCZ seafloor are characterized by cold temperature (2◦C), clay
siliceous ooze sediment with an oxygen penetration depth of
around 2–3 m, a low sedimentation rate of 0.35 cm kyr−1, and
very low organic impact (Mewes et al., 2014).

Nodule harvesting is expected to not only directly impact the
mined surface, where the top sediment layer will be removed,
but also a much wider area, as a result of the tailing of mined
products (sediment plume and nodule debris) into the benthic
boundary layer (Oebius et al., 2001; Aleynik et al., 2017; Gillard
et al., 2019). This sediment plume, which is rich in manganese-
oxide, may lead to potentially high sorption of trace metals in
the water column (Koschinsky et al., 2003). To date, nothing is
known about the role and interactions of microbial communities
within the plume particles and the redeposited sediments that
may influence the oxidation state, mobility and flux of metals.
Heavy metals are essential elements for the maintenance of
cellular functions in microorganisms. However, under elevated
concentrations, those elements result in toxicity that is metal-
and organism-dependent (Lemire et al., 2013). As such, the
anticipated impact of mining activity is very difficult to estimate
but will likely affect the entire regional deep-sea ecosystem. The

extent to which this ecosystem will be affected is unknown and
unpredictable (Ramirez-Llodra et al., 2011).

Although microbial diversity and ecology in most abyssal
sediments have barely been investigated (Danovaro et al., 2014),
the potential risks that these fragile ecosystems may encounter
have forced the scientific community to increase efforts in
describing the prokaryotic diversity in the CCZ area over the last
few years (Parkes et al., 2014). Culture-independent approaches
and the use of next generation sequencing technologies have
revealed the high microbial diversity and complexity of bacterial
assemblages inhabiting deep-sea sediments (Wu et al., 2013;
Corinaldesi, 2015; Shulse et al., 2016; Lindh et al., 2017).

In accompanying the efforts to explore the deep-sea with
microbiological approaches and to broaden the understanding of
gene activity for heavy metal resistance, a cultivation-based study
was conducted herein.

It is hypothesized that isolation and characterization of
heavy-metal-resistant and -sensitive bacterial strains from abyssal
sediments of the CCZ may help to establish experimental
in vitro system to study the dispersal of microorganisms
during relocation of material in sediment plumes in dependence
of diverse biotic and abiotic environmental factors. Such an
in vitro system may complement omics-based microbial analysis,
as well as mineralogical and hydrographical analyses, which
would therefore shed light on ecosystem alterations caused
by mining activities. Our current research aims were to: (1)
isolate and characterize of cultivable deep-sea microorganisms,
(2) investigate heavy-metal-resistance and sensitivity of these
microorganisms, (3) obtain any first insights on potential genes
that confer manganese resistance in bacterial isolates.

MATERIALS AND METHODS

Study Area and Sampling
Abyssal sediments and polymetallic nodules were collected
during the RV SONNE cruise SO-240, within the German license
area for the exploration of polymetallic nodules in the CCZ
(Figure 1). Samples were obtained at two different sites using a
multicorer (MUC; samples 14 and 95; Supplementary Table S1
for details). The top water layer and 10 cm of sediment from one
multicore (14 MUC) as well as surface nodules (95 MUC) were
aseptically sampled, sliced in 1 cm intervals and stored at 4◦C in
the dark until further analysis in the laboratory.

Bacterial Extraction and Isolation
Sediments from every core layer were screened for fast growing
aerobic bacteria. Aliquots of roughly 300 µg of sediment were
resuspended in 1 mL of autoclaved North Sea water. Nodule
samples were carefully rinsed several times with the same North
Sea water prior to the extraction procedure. Bacterial cells
were separated from sediment particles or nodules by three 10-
min vortexing intervals (Vortex 2 Genie, Scientific Industries,
Bohemia, United States). Samples were centrifuged (Eppendorf
5418R; Eppendorf, Hamburg, Germany) at 750× g for 10 min at
4◦C (Dos Santos Furtado and Casper, 2000). After centrifugation,
the supernatant was used for bacterial isolation.
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Bacterial strain isolation was conducted using a serial dilution
(up to 10−5) plating on a marine broth (MB) agar medium
(Sonnenschein et al., 2011). Samples were incubated in the dark
at 18◦C for 7 days to expedite microbial growth. Colonies with
unique morphological features were re-streaked on the MB agar
medium. Isolates were maintained on agar plates with regular re-
streaking. A suspension of bacterial cells in 30% (v/v) glycerol was
prepared to store the bacterial strains for long term at−80◦C.

Taxonomic Characterization
The polymerase chain reaction (PCR) was conducted with a re-
suspended single bacterial colony as a template in 100 µL of
sterile water incubated at 95◦C for 10 min prior to reaction.
The corresponding 16S rRNA gene was amplified by PCR
using the universal primers (5′- AGA GTT TGA TCC TGG
CTC AG-3′ and 5′- TAC GGY TAC CTT GTT ACG ACT
T-3′; Alfaro-Espinoza and Ullrich, 2014). The PCR reaction
mix, with a final volume of 50 µL, consisted of 42.5 µL of
target cell suspension (10–100 ng of DNA), 0.5 µL of each
primer (50 pmol µL−1), 1 µL dNTP (2 µmol), 5 µL of
10X DreamTaq Green buffer, and 0.5 µL of DreamTaq DNA
polymerase (5 U µL−1). All reagents were purchased from
Thermo Fisher Scientific (MA, United States). The thermal
cycling gradient program was as follows: initial denaturation
(5 min at 94◦C), subsequent denaturation (32 cycles of 15 s
at 94◦C), annealing (30 s at 55◦C), extension (60 s at 72◦C),
and a final extension (72◦C for 3 min). A negative control
containing no DNA extract was conducted to account for
any contamination.

The amplification of the 16S rRNA gene was confirmed by
agarose [1% (w/v)] gel electrophoresis (120 V, 30 min) and
ethidium bromide staining (0.1%). PCR products were purified
using a GeneJet PCR Purification Kit (Thermo Fisher Scientific,
MA, United States). All 16S amplicons were sequenced by
Eurofins Genomics1. All nucleotides sequences were submitted
to the NCBI 16S Microbial Database using the Basic Local
Alignment Search Tool (BLAST)2 to determine whether they
aligned with any closely related organisms. Sequence similarity
was set to a threshold value of minimum 99% for a positive match.

Morphological, Biochemical, and
Enzymatic Characterization
Colony morphology, bacteria motility, and gram staining were
examined using a phase contrast microscope (Axiostar plus,
Zeiss). Biochemical characteristics and enzyme activity were
determined using the API 20NE and API ZYM kits (BioMérieux,
Marcy-l’Étoile, France). The protocol followed the manufacturer’s
instructions with the exception of the culture being suspended in
autoclaved North Sea water (MacDonell et al., 1982; Kim et al.,
2007). The incubation was done at 18◦C for 24 h.

Based on the corresponding phenotypical characteristics of
the selected bacterial strains, single tests or combinations of tests
providing a unique identification were performed in R Core
Team (2016), thus providing the most effective identification

1www.Eurofinsgenomics.eu
2http://www.ncbi.nlm.nih.gov/blast

path for each strain. Tests with results not in accordance with
previously reported phenotypes were not considered. Cell or
colony morphology was omitted from the analysis.

Minimum Inhibitory Concentration (MIC)
of Heavy Metals
The MIC of heavy metal ions for bacteria isolated from
deep-sea sediments or nodule surfaces was conducted in
triplicate with a twofold dilution assay in 96-well plates
(Stahl et al., 2015). The heavy metals tested were: cadmium
acetate [Cd(CH3CO2)2·2H2O], cobalt chloride (CoCl2·H2O),
cupric sulfate (CuSO4·5H2O), zinc sulfate (ZnSO4·7H2O)
(Sigma-Aldrich, City, Germany), manganese (II)-sulfate
(MnSO4·H2O) (Carl Roth, Karlsruhe, Germany) and nickel
chloride (NiCl2·6H2O) (AppliChem). The concentration of
the metal stock solutions (1M) were confirmed by a Cyros
Vision inductively coupled plasma optical emission spectrometry
(ICP-OES) (SPECTRO Analytical Instruments Inc., Kleve,
Germany). Cells were harvested in their exponential growth
phase (OD600 = 0.5–1) and adjusted to ∼2.85 × 106 cells mL−1

(OD600 = 0.001). The highest concentration of metal salt used
was 0.5 M. Cells were incubated at 18◦C for 96 h. The MIC was
defined as the lowest concentration of metal salt, which inhibited
visible bacterial growth.

Genomic Analysis of Manganese
Resistance Related Genes
To our knowledge, only a few studies have investigated the
differential gene expression mechanisms for Mn (II) efflux
systems in several bacterial species over the last decade (Table 1).
From the isolated bacterial strains, those showing the highest
resistance to Mn as determined by MIC were selected for
further analysis.

Based on the availability of genome sequences from the
literature, the search tool BlastP (protein-protein) was used to
test for the presence of highly similar protein sequences from
the tested bacterial species. Protein sequence homology was
determined based on the following criteria: minimum sequence
coverage of 90%, bit score > 50 and sequence identity > 25%
(Pearson, 2014). Protein functional inference was based on the
overall similarity, conserved active site domains and residues
using the InterPro (Finn et al., 2017) and UniProtKB (Wu
et al., 2006) databases. For every protein match, the length of
identical DNA sequences was determined using TBlastn (protein-
translated nucleotide).

RESULTS

Bacterial Extraction and Isolation
The overall abundance of cultivable bacteria throughout the
first 10 cm of sediment core 14 MUC delineates a multi-
modal distribution pattern (Figure 2). Three peaks of elevated
concentrations were observed at 2–3 cm (0.81 × 105 CFU
g−1), 4–5 cm (0.43 × 105 CFU g−1), and 8–9 cm (0.68 × 105

CFU g−1) depth.
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TABLE 1 | Known bacterial manganese efflux systems and their regulators.

Bacteria species Genes Accession number References

Cation diffusion facilitator (CDF) Streptococcus pneumoniae MntE ABJ55467.1 Rosch et al., 2009

Deinococcus radiodurans MntE AAF10804.1 Sun et al., 2010

Escherichia coli MntP NP_416335.4 Waters et al., 2011

Xanthomonas oryzae YebN AEL04135.1 Li et al., 2011

Bacillus subtilis MneP/MneS C0SP78.1; P46348.2 Huang et al., 2017

P-type ATPase Mycobacterium tuberculosis ctpC NP_217787.1 Padilla-Benavides et al., 2013

Transcriptional regulators Bacillus subtilis MntR P54512.2 Que and Helmann, 2000

Escherichia coli MntR NP_415338.1 Patzer and Hantke, 2001

Deinococcus radiodurans DR2539 WP_010889164.1 Chen et al., 2010

FIGURE 2 | Depth profile and concentration of bacterial isolation. (+) indicate positive isolation.

In total, 40 bacterial strains were isolated based on their
distinguishing morphological characteristics. The amount of
isolated strains per depth varied between one (10 cm depth) and
six (nodule surface) strains. Species location revealed different
trends of spatial distribution (Figure 2). The bottom boundary
layer (BBL) representing the water in contact with the sediment
core contained bacteria that were not present in the sediment
(e.g., Arthrobacter subterraneus, Marinobacter flavimaris).
Inside the sediment core, bacterial distribution occurred in
three patterns: (1) widely spread (e.g., Pseudoalteromonas

shioyasakiensis), (2) confined at certain depth (e.g., Dietzia maris,
Kocuria polaris), or (3) present at distinctive depth layers (e.g.,
Erythrobacter citreus, Halomonas meridiana).

Taxonomic Characterization
BLASTN analysis results (Supplementary Table S2) based on
partial 16S rRNA gene sequences indicated that the 40 bacterial
isolates belonged to three distinctive phylogenetical groups (83%
proteobacteria, 15% actinobacteria, and 3% firmicutes) and could
be classified into 13 species (listed in Table 2). Sequences with
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similarities of > 99% to sequences from taxonomically closely
related species were deposited in GenBank3 under the accession
numbers MK254646-MK254685, demonstrating that all bacterial
isolates from this study resembled species previously isolated
from the marine environment and the marine benthos; the sole
exception is M. flavimaris, which was previously only reported
for bulk seawater.

Phenotypic Characterization
Based on the isolation depth profile and 16S rDNA sequence
similarities, 16 bacterial strains were selected for further
phenotypic characterization. Most strains were capable of using
diverse substrates as sole carbon sources and synthesized a wide
spectrum of hydrolytic enzymes (Table 3). The following tests
were negative for all isolated bacterial strains: indole production,
glucose fermentation, arginine dihydrolase, α-galactosidase, and
α-fucosidase. After 24 h of incubation, E. citreus did not show
any visible growth for any of the tested sole carbon sources.
A similar result was observed for M. flavimaris, which could,
however, utilize malic acid as its only carbon source. In the
case of D. maris and H. meridiana, for which two strains each
were isolated, biochemical analyses indicated high phenotypic

3https://www.ncbi.nlm.nih.gov/genbank/

similarity. In clear contrast, the two isolates of P. shioyasakiensis
displayed substantial biochemical and enzymatic variability.

The applied identification path indicated that a combination
of two phenotypical parameters allowed for the identification of
11 of the 13 species; for example, Rhodococcus erythropolis was
distinguishable by its nitrate reduction and uptake of L-arabinose
as its carbon source (Supplementary Table S3).

Determination of Minimal Inhibitory
Concentrations (MIC) of Heavy Metals
The multi-metal resistance of the 16 bacterial strains of interest in
liquid medium was tested by determining the minimal inhibitory
concentrations (MIC) following a two-fold dilution technique
approach. High MIC values indicate high tolerance of the
bacterial isolate toward the metal and vice-versa. Metal tolerance
appeared to be heterogeneous; the results are listed in Table 4.

The overall level of metal toxicity increased in the order of
Mn2+ < Cu2+ < Ni2+ < Zn2+ < Co2+ < Cd2+, corresponding
to an average MIC of 20.6, 4.8, 4.3, 2.5, 1.1, and 0.8 mM,
respectively. As reported for the phenotypic characterization
above, inter-species variability was observed for D. maris,
H. meridiana, and P. shioyasakiensis. The highest metal tolerance
was found using manganese salt with D. maris (MIC of 14.3 mM),
Loktanella cinnabarina (MIC of 57.2 mM) and R. erythropolis
(MIC of 228.9 mM). K. polaris also exhibited higher metal

TABLE 2 | 16S rRNA Phylogenetic affiliations of isolated bacterial species.

Bacteria
species

Phylum Isolate Nr. Reported marine isolation References1

1 Arthrobacter
subterraneus

Actinobacteria 1 Sediment, deep water layer Chang et al., 2007; Ettoumi et al., 2016

2 Bacillus subtilis Firmicutes 1 Sediment, water column Ivanova et al., 1999; Miranda et al., 2008; Nisha
and Divakaran, 2014

3 Dietzia maris Actinobacteria 2 Sediment, hydrothermal field Inagaki et al., 2003; Pathom-aree et al., 2006;
Wang et al., 2014; Gao et al., 2015

4 Erythrobacter
citreus

Proteobacteria 6 Sediment, deep water layer Gao et al., 2015; Kai et al., 2017; Li et al., 2018

5 Halomonas
aquamarina

Proteobacteria 2 Sediment, water column, hypersaline
pond

Wang et al., 2004; Xu et al., 2005; Mobberley et al.,
2008; Ettoumi et al., 2010; Tang et al., 2011;
Focardi et al., 2012

6 Halomonas
axialensis

Proteobacteria 2 Sediment, hydrothermal vent Kaye et al., 2004; Chen and Shao, 2009; Ettoumi
et al., 2010; Hirayama et al., 2015

7 Halomonas
meridiana

Proteobacteria 8 Sediment, hydrothermal vent, surface
water, coral mucus

Takami et al., 1999; Maruyama et al., 2000; Teske
et al., 2000; Kaye et al., 2004; Ritchie, 2006;
Vraspir et al., 2011

8 Kocuria polaris Actinobacteria 2 Sediment, microbial mat Reddy et al., 2003; Undabarrena et al., 2016

9 Loktanella
cinnabarina

Proteobacteria 1 Sediment, surface water Tsubouchi et al., 2013; Ma et al., 2017

10 Marinobacter
flavimaris

Proteobacteria 1 Sea water Yoon et al., 2004; Gärtner et al., 2011; Yuan et al.,
2015; Cruz-López and Maske, 2016

11 Pseudoalteromonas
shioyasakiensis

Proteobacteria 8 Sediment, sponge, worm, biofilm Matsuyama et al., 2014; Melnikova et al., 2017;
Balqadi et al., 2018; Bibi et al., 2018

12 Pseudomonas
stutzeri

Proteobacteria 5 Sediment, seamount, surface water Sudek et al., 2009; Bentzon-tilia et al., 2015;
Catania et al., 2018; Zheng et al., 2018

13 Rhodococcus
erythropolis

Actinobacteria 1 Sediment Langdahl et al., 1996; Heald et al., 2001; Arias
et al., 2017; Labonté et al., 2017

1The references column are the citations of research papers, in which the given organism has been described in the marine ecosystem.
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tolerance to nickel salt (12.1 mM) as compared to the other tested
bacterial strains.

Genomic Analysis of Manganese
Resistance Related Genes
As the deep-sea environment in focus is characterized
by manganese nodules, the majority of isolated bacterial
strains showed an elevated tolerance to Mn. Consequently,
previously reported amino acid sequences of Mn efflux

systems, P-type ATPase and Mn resistance-associated
transcriptional regulators from relevant marine bacterial
species were compared by sequence alignment (data
not shown) and their functional conserved domains
(CD) identified (Table 5). Protein similarity and domain
architecture resulted in a functional classification of two
cation diffusion facilitator family proteins (FieF and
MntP), one P-type ATPase (ZntA) and one transcriptional
regulator (MntR).

TABLE 3 | Phenotypic characterization of type strains isolated from deep sea environment.

API Characteristics 1 2 3a 3b 4 5 6 7a 7b 8 9 10 11a 11b 12 13

Morphology RC R RC RC R R R R R C R R R R R RC

Pigmentation PY W O O BY C W W W LP W W W W PY LO

Motility − + − − − + + + + − − + + + + −

Gram + + + + − − − − + − − − − − +

20NE

Nitrite reduction − − − − − − +
7

− +
6

− − − − + + +

Urease − − − − − − − −
6

−
6

− − − − − − +

Hydrolysis of Esculin + + − − − − − − − + + − + + + +

Hydrolysis of Gelatin + − − − − − − − − +
10

+
11

− + + + −

D-glucose + + + + − + + + + + + − + + + +

L-arabinose + −
2

+
3

+
3

− −
6

+ +
7

+
9

+
10

+ − + + + −

D-mannose + − + + − − +
7

+
7

− + − − − + − −

D-mannitol + + + + − − +
7

+ + +
10

+ − + + + +

N-acetyl-glucosamine − − + + − +
6

+ +
6

− + −
11

− −
13

+ − +

D-maltose + + + + − + + + + + + − − + + +

Potassium gluconate + + + + − + + + + + + − − + + +

Capric acid − + − − − + − − − − + − − − + +

Adipic acid − + + + − + + + + + + − − + + +

Malic acid + + + + − + + + + + + + + + + +

Trisodium citrate − + + − − + − − − + + − − + + +

Phenylacetic acid − − − − − − − − − − − − − − − +

ZYM

Alkaline phosphatase +
1

− + + + + + − − + − + + + + +

Esterase − + + + + + + − − + −
11

+ + + + +

Esterase lipase −
1

+ + + + + + − − + −
11

+ + + + +

Lipase − − − − − + − − − − − + − + + +

Leucine-arylamidase + + + + + + + + + + − + + + + +

Valine arylamidase + + + − + + + + + + + − + + + +

Cystine arylamidase − − − + + − − − − − + − − − − −

Trypsin − − − − − + + + − − + − − − − −

α-chymotripsin − − − − − − − − − + − +
13

− − −

Acid phosphatase − − + + + + + − − + − − + + + +

ß-Galactosidase −
1

− − − − − − − − − + − − − − −

ß-Glucuronidase − − − − − − − − − − + − − − − −

α-Glucosidase + − + + − + + + + + + − +
13

− +

ß-Glucosidase − − − − − − − − − − + − − − − +

N-acetyl-ß-glucosaminidase − − − − − − + − − − + + + −
13

− −

α-Mannosidase − − − − − − − − − − + − − − −

Morphology: R, Rod; C, Coccoid. Pigmentation: PY, pale yellow; W, white; O, orange; LO, light orange; BY, bright yellow; C, cream; LP, light pink. (+) positive; (−)
negative. Results that are not in accordance with previous description: (1) Chang et al., 2007; (2) Miranda et al., 2008; (3) Koerner et al., 2009;(6) Guzmán et al.,
2010; (7) Kaye et al., 2004; (9); (10) Reddy et al., 2003; (11) Tsubouchi et al., 2013; Kim et al., 2016; (13) Matsuyama et al., 2014. 1. Arthrobacter subterraneus
(SO240BG01); 2. Bacillus subtilis (SO240BG32); 3a. Dietzia maris (SO240BG03); 3b. Dietzia maris (SO240BG02); 4. Erythrobacter citreus (SO240BG08); 5. Halomonas
aquamarina (SO240BG09); 6. Halomonas axialensis (SO240BG35); 7a. Halomonas meridiana (SO240BG14); 7b. Halomonas meridiana (SO240BG12); 8. Kocuria
polaris (SO240BG17); 9. Loktanella cinnabarina (SO240BG19); 10. Marinobacter flavimaris (SO240BG20); 11a. Pseudoalteromonas shioyasakiensis (SO240BG28);
11b. Pseudoalteromonas shioyasakiensis (SO240BG21); 12. Pseudomonas stutzeri (SO240BG39); 13. Rhodococcus erythropolis (SO240BG40).
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TABLE 4 | Minimal inhibitory concentration of metal salt determined in liquid culture.

Metal salt (mM)

Species Culture collection Cu2+ Cd2+ Co2+ Zn2+ Ni2+ Mn2+

Arthrobacter subterraneus SO240BG01 5.7 0.3 1.3 0.6 3.0 1.8

Bacillus subtilis SO240BG32 5.7 2.4 1.3 4.5 3.0 3.6

Dietzia maris SO240BG03 2.8 0.6 1.3 2.2 3.0 14.3

Dietzia maris SO240BG02 5.7 0.6 1.3 2.2 3.0 0.1

Erythrobacter citreus SO240BG08 5.7 0.3 0.6 0.6 3.0 0.1

Halomonas axialensis SO240BG35 5.7 1.2 1.3 4.5 3.0 7.2

Halomonas aquamarina SO240BG09 5.7 1.2 1.3 2.2 3.0 7.2

Halomonas meridiana SO240BG14 2.8 0.6 1.2 2.2 6.0 3.6

Halomonas meridiana SO240BG12 2.8 0.6 0.6 2.2 3.0 0.4

Kocuria polaris SO240BG17 2.8 1.2 2.6 2.2 12.1 1.8

Loktanella cinnabarina SO240BG19 2.8 0.6 1.3 2.2 6.0 57.2

Marinobacter flavimaris SO240BG20 5.7 0.3 0.6 1.1 3.0 0.9

Pseudoalteromonas shioyasakiensis SO240BG28 5.7 0.3 0.6 1.1 6.0 0.4

Pseudoalteromonas shioyasakiensis SO240BG21 5.7 0.3 0.3 4.5 3.0 0.4

Pseudomonas stutzeri SO240BG39 5.7 1.2 0.3 4.5 3.0 1.8

Rhodococcus erythropolis SO240BG40 5.7 1.2 1.3 2.2 6.0 228.9

Shaded: inter-species metal tolerance variabilities; Bold: highest metal resistance concentration.

TABLE 5 | Conserved domain identification of reported manganese efflux system and regulator.

Related To CD Reported genes Accession Description

Cation diffusion facilitator FieF MntE, MneP, MneS COG0053 Divalent metal cation transporter

MntP MntP, YebN COG1971 Putative Mn2+ efflux pump

P-type ATPase ZntA CtcP COG2217 Cation transport ATPase

Transcriptional regulator MntR MntR COG1321 Mn-dependent transcriptional regulator

TABLE 6 | Putative gene copies number involved in resistance to Mn2+.

Copies of genes

Related To CD D. maris L. cinnabarina R. erythropolis

Cation diffusion facilitator (CDF) FieF 1 3 5

MntP 0 0 0

P-type ATPase ZntA 1 3 4

Transcriptional regulator MntR 1 1 1

The genomic analysis of D. maris, L. cinnabarina, and
R. erythropolis, which exhibited the highest Mn2+ resistance,
was conducted using Blast, InterPro, and UniProtKB to give
first hints on possible mechanisms of their metal tolerance. The
published genomes of D. maris (LVFF00000000), L. cinnabarina
(BATB00000000), and R. erythropolis (MDCH00000000) were
retrieved from the Genbank database. The numbers of putative
gene copies involved in Mn tolerance are presented in Table 6.
Details of sequence identification are provided in Supplementary
Table S4. Surprisingly, none of the investigated genomes
possessed any copies of the putative Mn2+ efflux pump MntP.
In contrast, the divalent metal transporter FieF was found in
one or more copies of the genomes of D. maris, L. cinnabarina,
and R. erythropolis. A similar situation was observed for the

P-type ATPase, ZntA. Finally, only one copy of the transcriptional
regulator MntR was found per genome investigated.

DISCUSSION

The removal of surface sediment layers and subsequent
dispersion of sediment plumes during a deep-sea mining
operation is expected to disturb the benthic ecosystem to an
unknown extent. The main aim of this study was to provide a
pilot study for the development of an in vitro system containing
metal-resistant and metal-sensitive bacterial organisms derived
from deep-sea sediments. In the future, those organisms will
allow a better assessment of heavy metal resistance, bacterial
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behavior and bacterial dispersion during deep-sea mining in
order to optimize comprehensive environmental monitoring in
preparation for and during mining activities.

It must be admitted that in vitro cultivation of sub-seafloor
microbial community representatives only reveals a very small
fraction (less than 0.1%) of the total bacterial diversity (Hondt
et al., 2004). However, our study is one of the first (Wang et al.,
2018) in which cultivated deep-sea sediment bacteria from the
CCZ were characterized in the laboratory in combination with
assessment of their metals resistance and related gene repertoire.
Comparable studies have been done in other deep-sea ecosystems
such as hydrothermal vent or abyssal plain from different ocean
in the world (Farias et al., 2015; Zhang et al., 2015).

Consequently, future studies on the development of a
respective model system will complement ecosystem-wide
‘omics’ studies (metagenomics and metatranscriptomics) and
prokaryotic taxonomic diversity studies to ultimately provide
a better understanding of the role of microbes and their
interactions in the abyssal plain of the CCZ ecosystems during
disruptive anthropogenic processes.

Under aerobic and nutrient-rich conditions, the composition
of our cultivatable samples was dominated by proteobacteria
over actinobacteria and much less firmicutes. The presence of
representatives of the genera Halomonas (35%), Pseudomonas,
(13%), and Pseudoalteromonas (20%) in our samples is in
agreement with previously reported predominant isolate groups
from other deep-sea sediment locations (Xu et al., 2005;
Kobayashi et al., 2008; da Silva et al., 2013; Parkes et al., 2014).
This result is not surprising, as those genera are among the most
cultivatable ones from the marine environment (Giovannoni
and Rappé, 2000). Even if those genera were certainly not the
major microbial players in benthic microbial communities, their
detection and simple “on-board” monitoring could help to better
understand the dispersion and microbial dissemination processes
that occur during deep-sea mining activities.

The vertical distribution of species revealed a marked
difference between the surface water (e.g., M. flavimaris,
A. subterraneus) and the sediment microbial communities.
Another interesting bacterium is R. erythropolis, which was
isolated from the nodule’s surface. A similar relation was
previously reported in prokaryotic diversity studies conducted in
the Clarion Clipperton Zone (Shulse et al., 2016; Lindh et al.,
2017), where there were distinct microbial populations within
the sediments, nodules and ambient water. The species richness
and biomass of marine sediments are primarily related to organic
degradation rates (electron donor diversity) and trace metal
elements like Mn, Fe, and Co, which act as micronutrients (Gillan
et al., 2012; Walsh et al., 2016). Unfortunately, as of yet, no
geochemical record has been retrieved from the sediment cores
investigated here.

Heterotrophic bacteria are dominant players in the
remineralization of organic material and carbon cycling
in deep-sea environments (Lochte, 1992). The availability,
composition and distribution of organic substrates in the
sediment are directly related to the bacterial production and
diversity of hydrolytic enzymes (Boetius, 1995; Hoppe et al.,
2002). The phenotypic characterization of the 16 herein isolated

bacterial strains revealed a strong inter-species and moderate
intra-species variability. Surprisingly, our data for the two
P. shioyasakiensis isolates displayed numerous inconsistencies in
comparison to each other and the literature data (Matsuyama
et al., 2014). Either this observation may indicate that both
strains evolved independently over time, which is unlikely, or
that the 16S rRNA molecular marker (99.93% similarity) was not
sufficiently sensitive to differentiate two closely related species.

All isolated bacterial strains were able to express at least three
hydrolytic and proteolytic enzymes (e.g., H. meridiana), with
a maximum of 10 such enzymes in L. cinnabarina. The most
commonly detected enzyme activities were leucine-arylamidase
(94%), valine-arylamidase (88%), alkaline phosphatase (75%),
esterase (75%), esterase-lipase (75%), α-glucosidase (69%), and
acid phosphatase (63%). The revealed ratios for the occurrence of
such enzymes was characteristic of a typical activity spectrum for
marine sediment bacteria (Boetius, 1995; Turley, 2000; Arnosti,
2014; Li et al., 2017; Liu et al., 2018). The vertical distribution
did not indicate any specific trends in enzymes utilization. This
observation could be explained by the lack of information from
the uncultivated bacteria, yet might also reveal a rich diversity
within the micro-environment, in which species are adapted to
certain ecological niches.

The results of the API strip analysis conducted here provide
only very limited information on the enzymatic activity spectra
and are not reflective for their intensities under deep-sea
conditions, such as low temperatures and high pressure. For
instance, exposure to higher hydrostatic pressure (>100 bar)
might limit microbial growth, disrupt protein homeostasis, and
conformational change in ribosomes structure (Gayán et al.,
2017). Reaching environmental conditions for experimental
in vitro study is crucial but rarely feasible in the case of deep-
sea conditions (e.g., the hydrostatic pressure of min 400 bar).
However, our results are relevant for the establishment of an
in vitro system and therefore enhance the general knowledge of
degradation processes for organic matter in the deep sea.

The use of fast-growing organisms combined with API
strip assays is an inexpensive and reliable tool, which can
easily be implemented on research vessels at sea for impact
assessment studies during deep-sea mining activities. Partial
enrichment media, designed based on the results of this study
(Supplementary Table S3) could be used to select for potential
indicator organisms related to either sediment (i.e., D. maris,
P. shioyasakiensis), nodules (i.e., R. erythropolis) or water
environments (i.e., M. flavimaris), with the aim of monitoring
the plume propagation over distance and time. Such on-board
studies could be easily further combined with metal tolerance
or sensitivity assessments using MIC determination, as shown in
our current study.

Multi-metal tolerance of isolated bacteria was increased in the
order of Mn2+ < Cu2+ < Ni2+ < Zn2+ < Co2+ < Cd2+. All
strains delineate a similar trend in their metal tolerance with
the exception of the strongest tolerance level from K. polaris
(Ni2+: 12.1 mM), D. maris (Mn2+: 14.3 mM), L. cinnabarina
(Mn2+: 57,2 mM), and R. erythropolis (Mn2+: 228.9 mM). The
intra-species variabilities observed for D. maris and H. meridiana
might suggest evolution and adaptation of those strains to cope
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with higher metal concentrations that are related directly to
their micro-environment. It is important to note that the general
response to a combined effect of cold temperature and higher
hydrostatic pressure on heavy metal resistance may vary between
organism but also from the metal tested (Brown et al., 2017).

As the main metal constituent of polymetallic nodules
(Hein and Koschinsky, 2013), Mn2+ was selected to reveal
the potential resistance pathway using a simple genomic
analysis of the most tolerant bacterial strains: D. maris,
L. cinnabarina, and R. erythropolis. The results here suggest
that all strains possess at least one gene copy with high
sequence similarity to previously described cation diffusion
facilitator (FieF), P-type ATPase, ZntA, and the transcriptional
regulator, MntR. Such gene copies might be indicative
of additional functions or denote a redundancy, which
would indicate a need of these efflux systems in the
corresponding environment. Interestingly, R. erythropolis, which
was isolated on the nodule’s surface, exhibits the highest
resistance to manganese salt and additionally has a remarkable
sequence redundancy of homologous Mn2+ efflux systems.
Furthermore, higher Mn resistance did not lead to other
higher metal resistances, which might imply the specificity of
those efflux systems.

CONCLUSION

This study has suggested a microbial cultivation-based
approach for the broadening of our knowledge of deep-sea
microorganisms. In total, 13 fast-growing bacterial species were
identified, from which one to three potential organisms could
be selected in future studies. Intra-species variabilities were
not only found in phenotypic profiles but also in heavy metal
tolerance although the taxonomic marker 16s rRNA sequences
were almost identical. We propose the use of API strips and
partial-enrichment media that can easily be implemented on-
board for a rapid and inexpensive monitoring of deep-sea mining
plume dispersion using microbial dissemination analyses. In this
context, a heavy-metal resistance analysis provides a new scope
for future research on Mn2+ resistance pathways and their role
in microbial dispersion from anthropogenic impacts on deep-
sea environments. Our genomic analysis indicated the presence

of a potential efflux system(s), which could be subject to future
transcriptomics or proteomics investigations.
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