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Global and local stressors are causing the worldwide loss of coral cover and structural
complexity at an unprecedented pace on reefs. In consequence, the habitat of coral
reef fish has suffered a profound degradation affecting the abundance, biodiversity
and species composition of this taxonomic group. Thus, understanding the link
between coral reef fish assemblages and their habitats is paramount to predict
their responses to increasing human threats. Herein, we implemented Structure from
Motion (SfM) techniques and digital mosaics to characterize the habitat of reef fish in
terms of structural complexity and cover of benthic organisms, and we examined the
relationships between these metrics and the variation in fish assemblages among sites
using a multivariate approach. We found that attribute of fish assemblage varied across
reef sites in Los Roques, depending on the highly specific features of the benthic habitat.
Results indicate that 69% of the variation in species-specific abundances of fish (i.e., reef
fish assemblage structure) was explained by cover of massive coral and turf algae, the
number and sizes of holes, and the site. Furthermore, when fish biomass per species
was utilized as a response variable, 64% of the variation in assemblage structures was
explained by a model that included: cover of crustose coralline algae (CCA), variation
and the maximum height of reef structures along the transect, the number of holes
and the site. All these variables together also explained >60% of variation of total
abundance, biomass and species richness. When data were sorted by trophic groups,
CCA cover explained 70% of the variation in forager biomass, whereas the number of
holes explained up to 60% of variation in carnivore biomass. These results suggest
that each trophic group relates differently to the benthic habitat. We conclude that
variation in fish assemblages among sites can be explained by features of the benthic
habitat, but more importantly the absence of specific attributes may impact fish trophic
groups differently.
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INTRODUCTION

The role of habitat complexity in shaping ecological communities
has been a major topic of research for decades and continues
to be prominent. It is hypothesized that structurally complex
habitats may provide more niches and diverse ways of exploiting
environmental resources thus increasing local species diversity
(Huston and DeAngelis, 1994; Willis et al., 2005). However,
whilst there is copious evidence supporting this hypothesis in
both terrestrial and marine ecosystems (Tews et al., 2004),
the relative importance of different attributes of complexity in
determining species diversity and small-scale heterogeneity in
biodiversity and species composition remains poorly understood
(St. Pierre and Kovalenko, 2014).

In marine ecosystems, there are multiple examples illustrating
the key role structural complexity plays in determining the
structure of ecological communities (Beck, 2000; Angel and
Ojeda, 2001; Laegdsgaard and Johnson, 2001). This relationship
is particularly strong for coral reefs, where the habitat is provided
by sessile organisms such as scleractinian corals, which have a
variety of shapes that provide a highly complex physical structure
(Laforsch et al.,, 2008). In fact, a high diversity of fishes has
been associated with the highly heterogeneous nature of these
habitats at multiple spatial scales (Sale, 1977; Connell, 1978; Sale
and Douglas, 1984). Furthermore, literature provides plenty of
examples showing positive relationships between live coral cover,
structural complexity, and attributes of fish assemblages (Risk,
1972; Luckhurst and Luckhurst, 1978; Birkeland and Neudecker,
1981; Bell and Galzin, 1984; Alvarez-Filip et al., 2011; Coker
et al., 2012). The study of these relationships seems to be more
important currently because coral reefs are losing coral cover and
structural complexity worldwide as a consequence of multiple
human-made stressors (i.e., human induced climate change,
overfishing, pollution), and this would probably have negative
effects on reef fish assemblages (Hughes et al., 2003; Jones et al.,
2004; Munday et al., 2008; Pratchett et al., 2008; Alvarez-Filip
et al., 2009; Jackson et al., 2014).

Over the past 40 years, the relationship between reef fishes
and coral substrate has been studied extensively (Risk, 1972;
Luckhurst and Luckhurst, 1978; Bell and Galzin, 1984; Chong-
Seng et al, 2012; Coker et al., 2012; Komyakova et al,
2013). Studies focusing on reef fish-substrate relationships
have provided valuable information derived from “in situ”
estimations, using quadrats or line transects to determine
benthic cover and chain link or qualitative estimations to
determine structural complexity (i.e., rugosity) (Risk, 1972;
Luckhurst and Luckhurst, 1978). However, these methods require
investing a considerable amount of time in the field and, most
importantly, reduce the structural complexity to a single variable
(i.e., rugosity), underestimating its many dimensions (Agudo-
Adriani et al., 2016). In the last decade, the development of
technological advances have brought more affordable underwater
photography and video equipment, allowing the development of
new techniques that complement data acquisition in the field with
data that can be analyzed in the laboratory in a more detailed
fashion (Lirman et al., 2007; Reid et al., 2010; Burns J. et al,,
2015; Ferrari et al., 2016). For instance, photomosaics can be

used to determine benthic community structure from digital
images (Lirman et al., 2007), and more recently, it is possible to
generate three-dimensional reconstructions of the substrate and
its elements using “Structure from Motion (SfM)” (Westoby et al.,
2012; Burns J. et al., 2015; Lavy et al,, 2015; Ferrari et al., 2016).
While these methods have well-identified limitations (Ferrari
et al,, 2016), they could offer a better approximation of the
structural complexity of coral reefs in comparison to traditional
techniques (e.g., chain and link method). For example, laboratory
analysis of three-dimensional models supports estimation of
multiple proxies of structural complexity, such as total surface,
height of different structures in the reef, or even counting and
measuring holes and crevices. In this paper, we have combined
photomosaics to measure benthic cover and SfM to capture
the multivariate nature of habitat complexity among reefs to
explain the differences in fish assemblages. We hypothesized
that fish assemblage would differ depending on structural
complexity, whereby more complex reefs would support more
biomass, abundance and diversity of fish, and also a different
composition of species. To test this prediction, first, we created
a series of photomosaics and 3D reconstructions of the benthic
habitat along 50 m transects. Afterward, we derived multiple
features describing the habitat for use in distance-based linear
models designed to explain variation in fish assemblages,
as described by total and species-specific abundance (fish
assemblage structure) species richness, total and species-specific
biomass and abundance and biomass of different trophic groups.

MATERIALS AND METHODS

Study Area

The study was conducted at Archipelago Los Roques National
Park (ALRNP); a marine protected area (MPA) located 170 km
north off the central coast of Venezuela. Fieldwork was conducted
at three sites: Dos Mosquises Sur (DMS), Cayo de Agua
(CYA) and El Faro (FAR). Sites DMS and CAY are located
at the west of the southern reef barrier, whereas FAR is at
the eastern end of this barrier. Coral reefs across these sites
are quite different in terms of their geomorphology, benthic
communities, and structural complexity. Dos Mosquises is a
fringing reef with high topographic heterogeneity provided
by massive corals such as Orbicella faveolata, O. franksi, and
Colpophyllia natans (>2 m height and/or width, Bastidas et al.,
2012). Cayo de Agua is a flattened patch reef with scattered coral
colonies (e.g., Diploria labyrinthiformis, Pseudodiploria strigosa,
and Colpophyllia natans) and abundant octocorals. The site at
FAR is a barrier reef with extensive areas of dead Acropora
palmata stands covered by milleporids, zoanthids, and crustose
coralline algae (CCA) (Croquer et al., 2016).

Data Collection in the Field

At each site, four 50 m long transects were laid on the substrate
parallel to the coast at depths ranging from 6 to 8 m to avoid
confounding effects from depth. Transects were separated by 5 m.
Along each transect, a first diver characterized fish assemblages,
and then a second diver took a video of the benthos covering an
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area of 50 x 2 m (100 m?). Videos were acquired at 30 frames per
second from a height of 1.5-2.0 m above the reef contour with a
standard digital camera (1440 x 1080 pixels resolution).

Description of Fish Assemblages

Underwater visual censuses were conducted to characterize fish
assemblages at each site over the same sampling units (50 m
transects). For this, a single observer swam along each transect
counting and identifying fish to species level, and assigning each
one to one of six size categories based on total length: (1)1-5 cm,
(2) 6-10 cm, (3) 11-20 cm, (4) 21-30 cm, (5) 31-40 cm, and (6)
over 40 cm. Each species abundance was converted to biomass
using the allometric relationships outlined in www.fishbase.org.
We also grouped each fish into one of six trophic categories:
planktivores, foragers, small herbivores, small carnivores, and
piscivores, according to descriptions found in www.fishbase.org.

Construction of 2D Mosaics

The first step to produce digital mosaics was obtaining
overlapping frames from every video recorded along each
transect (Figure 1). For this, the videos were split into fragments
at a rate of 1.0-1.5 frames per second using fimpeg v2.7 software
(Bellard and Niedermayer, 2012) to produce multiple JPEG-
format images with the highest quality setting (¢ = 1.0). The
next step entailed using Hugin 2016 (D’Angelo, 2010) to find
8-40 matching points in consecutive frames that overlapped at
least 35%. The identification of these points is necessary so the
software can match consecutives frames. The final step consisted
of stitching and blending the frames prior to optimization of
translational parameters to correct potential video distortions
using the default settings of the software (Figure 1). For each
mosaic, we used photometric corrections of the JPEG output file
to retrieve more accurate images that allowed a more reliable
identification of benthic organisms. Furthermore, all images were
calibrated using the total length of each transect. Complete
mosaics (50-m transects) required too much computational time
and were difficult to analyze using Coral Point Count with
Excel extensions (CPCe; Kohler and Gill, 2006). Thus, for the
analysis we produced several smaller mosaics for each transect.
As swimming speed was not constant during acquisition of the
video, the number of smaller mosaics varied between six and ten.

Description of Benthic Communities

A total of 200 points per mosaic were surveyed to identify
major taxa (i.e., corals, octocorals, milleporids, sponge, zoanthids
turf algae, and macroalgae) and abiotic substrates (i.e., dead
coral, rubble, sand, and pavement). We used 200 points
after constructing species accumulation curves using different
quantities of random points. For this, we used CPCe software
(Kohler and Gill, 2006). Only scleractinians corals and octocorals
were identified down to species and genus level, respectively.

Construction of 3D Models of the
Benthic Habitat

To create 3D models, we complemented existing tools such
as Agisoft Photoscan (Agisoft LLC., St. Petersburg, Russia)

and MeshLab with newly developed algorithms. Briefly, the
reconstruction of the reef surface began with the extraction
of enough frames from the input video to build reliable 3D
models that preserved real structural features. To avoid poor
overlap of images, distortion and other problems that potentially
degraded the quality of the 3D model, we developed a tool (open
source and freely available at') that optimizes the process of
frame selection by automatically selecting images with the least
blurring, distortion and that overlap at least 65%. These frames
were then uploaded into Agisoft Photoscan to follow standard
procedures for 3D surface reconstruction (Figure 1). Every 3D
model was imported into MeshLab and scaled to S.I. units, by
using the transect length as reference (Figure 1).

Description of Habitat Complexity

We determined two sets of proxies aiming to describe habitat
complexity at each site: (1) number and size of holes; and (2)
metrics of structural complexity (i.e., a structural complexity
index, maximum height of reef structure, average height of reef
structure and variation the height of reef structure along the
50-m transects). The former set was derived from 2D mosaics,
whereas the second set of variables were estimated by the 3D
models. Thus, the metrics of complexity included an index of
structural complexity, as well as maximum, average, variance and
the kurtosis of heights for each structural element found within
each transect. The index of surface complexity was calculated
as the ratio between the actual 3D surface and the theoretical
2D surface of each transect (i.e., 50 x 3 m = 150 m?2) using
MeshLab. Heights were calculated as the perpendicular distances
to the average plane recorded from each transect. This new plane
was estimated using the plane fitting feature of the Point Cloud
Library®, with RANSAC so the software could reject outliers.

Statistical Analysis

Data were analyzed following four steps: (1) visualization of
spatial patterns of fish assemblages and the benthic substrate
across sites, as we assume that similarities between these
suggested an ecologically significant relationship. Patterns were
identified with non- metric multidimensional scaling based on
the Bray-Curtis index for benthic cover and fish assemblage
and on Euclidian distance for proxies of structural complexity.
Before analysis, benthic cover and fish biomass were square
root transformed and structural complexity proxies were
normalized (Clarke and Gorley, 2006). (2) We formally tested
the null hypothesis (Ho) of no differences among: (a) structural
complexity, (b) benthic community, and (c) fish assemblage,
across sites. For this, we conducted a one-way permutation
analysis of variance (PERMANOVA; Anderson, 2005) based on
Bray-Curtis similarity index for the biological matrixes and
Euclidean distance for the structural complexity matrix using site
as a fixed factor. (3) Then we determined which combination
of environmental variables better explained the pattern of
variability in fish assemblage implementing the BIOENV routine,
which matched the habitat-descriptor rectangular matrix (N

Thttps://www.github.com/mecatronicaUSB/uwimageproc

2www.pointclouds.org
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Video based 2D mosaics

Video based 3D transect models

50 m transects

Uncalibrated nadir monocular video
Resolution: 1440 x 1080 pixels @ 30 fps

Frame extraction with ffmpeg
Fixed sampling rate: 1.0 to 1.5 fps
Output: ~250 JPEG files

Frame extraction with videostrip
Adaptive sampling rate
Output: ~600 JPEG files

Control points extraction with cpfind
Matching points: 8 - 40
Overlap: ~35%

Sparse 3D point cloud with Photoscan
Matching points: 20 - 400
Overlap: > 65%

Traslational parameters optimization,
mosaic stitch and blend with Hugin

Dense 3D point cloud (>1 MM points) &
3D mesh reconstruction with Photoscan

FIGURE 1 | Process to construct benthic mosaics and three-dimensional models.

transects x P variables) with the triangular matrix of Bray-
Curtis similarities of fish assemblage structure. For this, we
used data on both benthic assemblage and habitat complexity
to identify correlations with: (a) total biomass, (b) species
richness, (c) species density, and (d) structure of fish assemblages
characterized by biomass and density of each species across
sites. (4) A determination of the amount of variation explained
by the variables suggested by BIOENV (i.e., all biological and
structural complexity variables measured from each transect;
Table 1) was done by building sequential linear models based
on distance (DistLM). Along with environmental variables, site
was included in the model as a categorical explanatory variable.
We considered the best models those that explained the largest
amount of variation using fewer variables. Before constructing
linear models, we removed highly correlated variables (p > 0.8)
to avoid redundancy and model overfitting. Finally, we also
constructed models that explained the biomass of the four trophic
groups, planktivores, foragers, small carnivores, and piscivores.
All analyses were performed with Primer + PERMANOVA v6
(Anderson, 2005).

RESULTS

Benthic and Fish Assemblage

Description and Patterns
Across sites, 1714 fishes belonging to 35 species and 10 families
were observed. On average, the biomass of large parrotfishes such

TABLE 1 | Results of PERMANOVAs examining differences among benthic
communities, proxies of structural complexity and fish assemblage.

Source df SS MS Pseudo-F P(perm) Ccv
A. Benthic community

Lo 2 13715 6857.5 11.50 0.001 61.83
Res 9 5367 596.3 38.17
Total 11 19082

B. Structural complexity

Lo 2 53.779 26.9 10.42 0.002 60.55
Res 9 23.221 2.6 39.45
Total 11 77

C. Fish assemblage

Lo 2 13465 6732.4 4.44 0.001 48.13
Res 9 13657 1517.4 51.86
Total 1 27121

as Sparisoma viride and Scarus vetula was 1.5-3-fold higher at
FAR compared to DMS and 3-10-fold when compared to CAY
(Figure 2). These species along with Thallassoma bifasciatum,
Chromis cyanea, Stegastes partitus, Clepticus parrae, Caranx
ruber, Lutjanus cyanopterus, Kyphosus sectatrix, and Acanthurus
coeruleus accounted for 75% of the abundance expressed as
density (ind/100 m?) and biomass (g/100 m?) (Figures 2A,B).
The reefs studied in Los Roques showed differences between
them in both fish and benthic assemblages, as well as structural
complexity. These patterns were visualized in the ordination plot
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A T. bifasciatum C. cyanea S. partitus B S. vetula S. viride S. aurofrenatum
5000 4
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—~ 5000 4
g “—
g & 40004
= =
— -
La ab 30004
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Site Site
FIGURE 2 | Abundance (number of individuals per 100 m?; A) and biomass (gr. per 100 m?; B) of the species composing 85% of the total abundances and biomass
of fish. The planktonic species C. multilineata was not included for better visualization of the figure because of a single, large school (>600 individuals) was observed
in Dos Mosquises. This species alone represented a 42% of total abundance of fish.

and we tested if these differences were statistically significant. For
instance, benthic assemblages differed significantly (F = 11.49
df =2, p = 0.001) across reefs (Table 1A and Figures 3, 4).
However, pair-wise comparisons showed no statistical differences
in benthic communities (t = 1.8, df = 6, p = 0.155) between
FAR and DMS (Figure 3); whereas statistical differences were
found between CAY-DMS (t = 3.38, df = 6, p < 0.05) and
CAY-FAR (t = 4.25, df = 6, p < 0.05). Likewise, attributes of
habitat complexity varied significantly across sites (F = 10.22,
df =2, p = 0.01, Table 1B and Figure 3) similarly to benthic
cover, pairwise comparisons indicated no statistical differences in
structural complexity (¢t = 1.44, df = 6, p = 0.13) between FAR and
DMS (Figure 2). We found similar patterns in two-dimensional
ordination of data from benthic communities, habitat complexity
and fish assemblages (Figure 4). Fish assemblage structure was
statistically different across reefs (F = 4.16, df = 2, p = 0.001,
Table 1C). In this case, pairwise comparisons showed statistically

significant differences for every combination of sites (i.e., DMS-
FAR, DMS-CAY, and CAY-FAR). Thus, our results suggest that
benthic community structure, attributes of structural complexity
and fish assemblages co-varied among sites.

Benthic Community and Structural
Complexity as Predictors of Fish

Assemblages

Our results from the BIOENV routine confirmed that attributes
of fish assemblage, such as total fish biomass, abundance, and
species richness were moderately correlated with coral cover and
habitat complexity. Multivariate linear models based on distance
(DistLM) explained 69%, 73% and 88% of the variation in total
fish abundance, species richness, and biomass recorded across
sites, respectively (Table 2). The results also showed that 69% (p-
value = 0.04) of differences in species abundance (fish assemblage
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FIGURE 3 | Average percent cover for benthic habitat (A) and proxies of structural complexity (B) at each site. Error bars represent standard deviations.

structure) among sites was explained by the percentage of cover of
massive coral and turf algae, and the number and average size of
holes. Furthermore, 64% (p-value = 0.04) of variability in terms of
species-specific biomass was explained by CCA cover, variation in
height of reef structure, site, the maximum height of reef structure
and the number of holes (Table 2). On its own, the factor site
alone only explained about 27-28% of the variance in species
density and biomass and only added about 14% of explained
variation to the model (Table 2).

When looking at which variables were highly related to
biomass of trophic groups, we observed that the variability
in total biomass of forager fish (Families: Scaridae and
Acanthuridae) was explained by only three variables: (1) cover
of CCA, (2) the index of surface complexity, and (3) site,
which together accounted for 74% of variation of the data (p-
value = 0.01) (Table 3). In the case of small herbivores (Family
Pomacentridae), 68% of the variation in biomass was explained
(p-value = 0.53) by the number of holes and site, even though
this correlation was not significant (Table 3). As for the density

of planktivores, 70% (p-value = 0.03) was explained only by
CCA cover and the number of holes. Furthermore, 78% (p-
value = 0.014) of the variation in biomass of carnivores (Families:
Serranidae, Lutjanidae, and Haemulidae) was explained by
the average and the standard deviation in the size of holes.
Lastly, 69% variability in biomass of piscivores (e.g., Sphyraena
barracuda and some species of the family Carangidae) was
explained by cover of turf algae (p-value = 0.62). However, this
last model was not significant. In the case of small herbivores
(Family Pomacentridae), 68% of the variation in biomass was
explained (p-value = 0.0.0017) by the number of holes and
site (Table 3).

DISCUSSION

We provided evidence that fish assemblages in Los Roques
National Park vary significantly with specific features of the
benthic habitat. We were able to explain more than 60% of
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FIGURE 4 | Non-metric Multidimensional Scaling (MDS) of benthic cover (A), proxies of structural complexity (B) and biomass of fish assemblages (C). Similarity
matrix for benthic and fish assemblage were built using Bray—-Curtis index, while Euclidean distances were used for complexity proxies. Note that benthic and fish
data were square root transformed and complexity proxies were normalized.

the variability in total fish density, biomass, species richness
and biomass of different species and trophic groups with
only a few variables describing features of the benthic habitat.
Benthic cover, live coral cover, turf algae, and CCA were
good predictors of variation in fish assemblages. Additionally,
several proxies of structural complexity (number and size of
holes, the height of reef structures, and complexity index) also
explained variation in fish assemblages between sites. Whilst

live cover of massive scleractinian corals had an indisputable
role in determining differences in benthic communities across
sites and changes in fish assemblages in recent decades, this
variable alone was not sufficient to explain the variability
of fish assemblages at the scale of reefs as reported in
other studies (Tolimieri, 1995; Sponaugle and Cowen, 1996;
Friedlander et al., 2003; Wismer et al., 2009). Additionally, we
found a high percentage of the differences in fish attributes were
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TABLE 2 | Variables selected to construct linear models based on distances that
best explained variation in abundances, biomass, richness and species-specific
biomass of fish.

Variable Variance P-value Total variance P-level

explained explained by model
model

Fish assemblage structure (Abundance)

Massive coral cover 0.27 0.0004 0.69 0.04

Algal turf cover 0.2 0.0147

Number of holes 0.28 0.0012

Average size of holes 0.24 0.0041

Site 0.27 0.009

Fish assemblage structure (Biomass)

CCA cover 0.28 0.0002 0.64 0.04

Height variability 0.28 0.0002

Site 0.28 0.0006

Maximum height 0.26 0.0011

Number of holes 0.26 0.0017

Total abundance

Massive coral cover 0.45 0.02 0.69 0.03

Turf algae cover 0.66 0.0021

Total richness

CCA cover 0.49 0.013 0.73 0.02

Turf algae cover 0.47 0.012

Total biomass

CCA cover 0.7 0.0009 0.88 0.004

Number of holes 0.74 0.0019

explained by the factor site. This result further suggests that
factors not necessarily related to the attributes of the benthic
habitat measured in this study (e.g., larvae supply, patterns of
recruitment, wave exposure, and other oceanographic processes)
also may drive differences in fish assemblage (Tolimieri,
1995; Sponaugle and Cowen, 1996; Friedlander et al., 2003;
Wismer et al., 2009).

In most ecological assemblages, foundational species enhance
ecological facilitation by providing habitat for other species
and increasing niche availability, and in their absence, overall
diversity often declines (Bruno and Bertness, 2000; Bruno et al.,
2003; Bulleri et al., 2016). For example, effects of predation
on diversity may be mitigated in more complex habitats
since crevices provide refuge for smaller organisms that would
otherwise be highly vulnerable to predation (Coull and Wells,
1983; Hereu et al., 2005; Komyakova et al., 2013). Likewise, the
strength of competitive interactions leading to exclusion can be
reduced in more complex habitats to allow species coexistence
(Dayton, 1972; Stachowicz, 2001; Angelini et al,, 2011). For
coral reefs, multiple studies have affirmed that physical structure
provided by scleractinian corals (Angelini et al., 2011; Burns
JHR. et al, 2015) offers shelter and refuge from predators
(Talbot et al., 1978; Roberts and Ormond, 1987; Caley and
St. John, 1996; Friedlander and Parrish, 1998; Holbrook and
Schmitt, 2004) as well as food resources for a myriad of fish
species (Bouchon-Navaro and Bouchon, 1989; Stella et al., 2010,
2011; Graham and Nash, 2012). Many studies showed positive
relationships between certain attributes of fish assemblages (i.e.,

abundances, richness or biomass) and live coral cover, structural
complexity, or both (Risk, 1972; Luckhurst and Luckhurst,
1978; Birkeland and Neudecker, 1981; Bell and Galzin, 1984;
Coker et al., 2012) while other studies showed a relationship
between loss of coral cover and related structural complexity
and fish abundances and diversity (Sano et al, 1984, 1987;
Wilson et al., 2008). For example, structural complexity provided
by massive and branching corals affected habitat selection by
increasing the availability of suitable patches for territorial
species of fish (Grol et al., 2011). Furthermore, holes and
crevices may provide refuge for small fish and invertebrates that
serve as food for piscivores and carnivores fish, respectively
(Graham and Nash, 2012; Darling et al., 2017). Similarly, more
complex habitat, as reflected by variables like total height,
can provide vertical surfaces and large overhangs which could
be used as refuge for larger foragers (Families Acanthuridae
and Scaridae) too big to fit into small holes and crevices
(Ménard et al., 2012).

The relationship observed between forager abundance and
CCA can be a consequence of parrotfish and surgeonfish
consuming turf algae and increasing space available for other
benthic organisms like CCA (McManus et al., 2000; Ceccarelli
et al., 2005; Hughes et al., 2007; Lokrantz et al., 2008; Mumby,
2009). Additionally, foragers were an important part of total
fish biomass and are amongst the most biodiverse fish group on
Caribbean reefs, which could explain the relationship between
total fish biomass and species richness with CCA cover.

Our results indicate that fish biomass and species richness
may increase with live coral cover and structural complexity. We
found that sites such as DMS and FAR supported 4-6 times more
fish biomass and 1.5-fold higher species richness compared to
CAY, where the habitat was flatter and less structurally complex
and the fish assemblage comprised mostly small demersal species
like Stegastes partitus and Thallassoma bifasciatum. These species
are considered omnivorous and generalist, often associated with
degraded sites with low complexity and where competition with
other species of damselfish is limited (Dominici-Arosemena
and Wolff, 2006; Elise et al., 2017). Our results also indicated
that only a few massive coral species (e.g., Orbicella faveolata,
O. annularis, and Colpophyllia natans) contributed to live coral
cover while increasing habitat structural complexity. Thus,
our results support findings of recent studies showing that
habitat complexity is not a simple function of live coral
cover, but rather it varies at different scales depending on
the species composition of the coral assemblage (Richardson
et al., 2017b). However, the abundance of several small fish
(e.g., territorial herbivores in the family Pomacentridae) seems
to be related to live coral cover suggesting that coral cover
could be playing an important role during recruitment and
habitat selection in some species (Bell and Galzin, 1984;
Gutiérrez, 1998).

The importance of habitat complexity in determining changes
in biomass among sites, rather than a simple proportion of
live-dead coral cover, was further illustrated by the features
of the benthic coral habitat observed at FAR. At this site,
we recorded the highest number of fish species (ca 12-15)
and biomass (an average of 11.87 kg/mz), and the habitat
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TABLE 3 | Variables selected to construct linear models based on distances that best explained variation in biomass of fish with different trophic roles.

Variables Variance explained P-level Total variance explained by the model P-level model
Foragers (Families Acanthuridae and Scaridae)

CCA cover 0.72 0.004 0.74 0.01
Complexity index 0.46 0.0158

Site 0.66 0.008

Territorial herbivores (Family Pomacentridae)

Number of holes 0.66 0.0026 0.68 0.53
Site 0.48 0.0172

Planktivores (Families Labridae, Pomacentridae)

CCA cover 0.47 0.019 0.7 0.03
Number of holes 0.65 0.004

Carnivores (feed mostly on invertebrates, families Serranidae, Haemulidae and Lutjanidae)

Average size of holes 0.6 0.003 0.78 0.01
Variability in the size of holes (SD) 0.77 0.0004

Piscivores (Sphiraena barracuda, Ocyurus chrysurus, Aulostomus maculatus)

Turf cover 0.69 0.0019 0.7 0.62
Number of holes 0.34 0.0383

consisted mainly of large, upright fragments of dead Acropora
palmata, which added complexity to the substrate because
these fragments mingled to form crevices, overhangs, and high
topographic relief. In addition, the importance of variation of
heights of structures on the reef in explaining the variation of
fish assemblages suggested that the physical structure provided
by dead but structurally complex corals still represents a
suitable habitat for fish. Although there are other studies
indicating that live coral cover is highly correlated to structural
complexity (Darling et al, 2017), a dense cover of CCA
might have maintained structural complexity by stabilizing
coral skeletons and preventing bioerosion or flattening from
physical abrasive forces (Sheppard et al, 2009). At FAR,
A. palmata fragments were covered by CCA with no macroalgae
and turf, which might have been due to a combination
of herbivory from parrotfish (e.g., Scarus vetula, Sparisoma
viride, and S. aurofrenatum), and long-spine urchins (Diadema
antillarum), as well as low inputs of nutrients expected for
oceanic coral reef systems like Los Roques (Birkeland, 2015;
Bozec et al., 2015).

At DMS, live coral cover was reduced from 50 to 30%
during a massive bleaching event that impacted Los Roques
in the summer of 2010 (Bastidas et al., 2012). During this
event, large Orbicella colonies suffered a massive die-off, leading
to a rapid loss of coral tissues (Garzon-Ferreira et al., 2002;
Villamizar et al., 2003; Créquer et al, 2010; Bastidas et al.,
2012). Nevertheless, 8 years later, the dead Orbicella colonies
continue to contribute to a highly structurally complex habitat.
Thus, our study suggested that loss of live coral cover might
have different impacts on structural complexity depending on
the identity of the coral species that are lost and if their
physical structure remains intact after death (Sano et al., 1984,
1987; Richardson et al., 2017a). Striking changes in the fish
community would be expected in cases of rapid decline of
live coral cover leading to reef flattening (Sano et al., 1984;
Alvarez-Filip et al, 2015; Newman et al, 2015), whereas

minor impacts would be observed in cases where loss of
live coral cover did not result in an immediate reduction
of habitat complexity. It is also necessary to consider that
the impacts of loss of live coral cover on fish biomass and
richness are not linear and may be modulated by various
processes like reduction in refuge availability. This may reduce
recruitment of certain species, some of which might be
highly specialist and dependent of certain coral species (Jones
et al., 2004; Alvarez-Filip et al.,, 2015). These interactions have
serious implications for selecting variables for inclusion in reef
monitoring programs, for constructing models to predict fish
abundances and species richness, as well as for management
decisions regarding fisheries and fish populations that are based
on these monitoring programs.

Recent studies have pinpointed Los Roques as a potential
refuge for corals and fish because the MPA possesses higher
coral cover than typical in the region and populations of
important reef builders that provide highly heterogeneous reefs
(Villamizar et al., 2003; Jackson et al., 2014; Elise et al., 2017).
Severe bleaching events leading to rapid loss of coral cover have
impacted several coral populations in Los Roques (Villamizar
etal., 2008; Bastidas et al., 2012), and Los Roques also suffered the
loss of most of the reef building Acropora palmata populations
in past years (Croquer et al., 2016). Nevertheless, coral reefs
in this MPA still support fish abundance that is above the
Caribbean average (Elise et al., 2017). This finding highlights
the ecological importance of this MPA at the regional scale for
there is increasing evidence indicating that Caribbean reefs are
losing most of their structural complexity (Alvarez-Filip et al.,
2009) and concomitantly fish communities have changed rapidly
(Alvarez-Filip et al., 2009, 2015).

In conclusion, this paper illustrates the complexity of fish-
habitat interactions on coral reefs. Furthermore, it highlights the
importance of preserving not only live coral cover as an essential
variable (Miloslavich et al., 2018), but also the physical structure
provided by corals to maintain ecosystem function.
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