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Characterizations of gelatinous zooplankton communities are necessary for an improved
understanding of the ecological and temporal dynamics of such communities and their
composing taxa. Yet, studies on gelatinous zooplankton communities are scarce in the
Red Sea, which is characterized by extreme temperature, high salinity and oligotrophic
conditions. Here, we analyzed the occurrence of gelatinous zooplankton taxa in a time-
series of epipelagic samples taken from September 2016 to May 2018 in the central
Red Sea to deliver the first complete characterization of gelatinous zooplankton in
the Red Sea. General seasonal dynamics were found over the year, where higher
gelatinous zooplankton abundances were relate to mostly with lower temperatures,
lower salinity and to a lesser extent, with chlorophyll a, cross-shelf and along-shelf
Ekman transport. Tunicates and siphonophores presented seasonal patterns, whereby
total biovolume values were 103 – 105 higher in winter – early spring than in summer, and
numbers > 100 higher in the bloom event of 2017/2018 than in 2016/2017. Ulmaridae
(Aurelia sp.) peaked after the main bloom event of siphonophores and tunicates, and
dominated total biovolume when present. Porpitidae was consistently present and
showed no clear seasonality. Our results suggest that there is a noticeable seasonal
trend in gelatinous zooplankton, marked by high occurrences in winter-early spring,
very low occurrences over summer, and mostly dominated by Salpidae and Dyphidae.
Porpitidae was a dominating group with non-seasonal occurrence, and Ulmaridae was
also dominating but with very short and few occurrences. In addition, low abundance
and biovolume (max. 8 ind m−3 and max. 103 – 106 mm3 m−3) suggest that oligotrophic
conditions may be limiting the productivity of gelatinous zooplankton communities in the
Red Sea.

Keywords: jellyfish communities, cnidarians, siphonophores, tunicates, scyphozoans, hydrozoans, seasonality,
oligotrophy

INTRODUCTION

Gelatinous zooplankton communities include a diverse range of pelagic cnidarians, ctenophores,
and tunicates (Haddock, 2004; Lucas et al., 2014). Populations of these gelatinous taxa are known
to bloom, but often oscillate over seasonal and interannual time-scales (Boero et al., 2008; Purcell,
2011). Despite decades of observations on these gelatinous zooplankton populations, only recently
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has the fundamental role of these communities in pelagic food
webs been highlighted (Madin and Harbison, 1977; Hoeksema
and Waheed, 2012; Diaz Briz et al., 2017; Hays et al., 2018;
Macali et al., 2018). Their importance in the pelagic food
web is likely to vary according to their bloom dynamics and
seasonal variability in occurrence and community structure
(Boero et al., 2008; Fuentes et al., 2018).

Characterizations of gelatinous zooplankton communities
are especially scarce in the Red Sea. Reports of gelatinous
zooplankton are available from the 1960’s (e.g., Ponomareva,
1966; Halim, 1969), but most observations are focused on
offshore waters in the Southern and Northern Red Sea (e.g.,
Godeaux, 1986; Aberle et al., 2010). Research on Red Sea
gelatinous zooplankton communities has been included within
broad studies of zooplanktonic communities (e.g., Cornils
et al., 2007; Aberle et al., 2010; Zakaria, 2015; Abu El-
Regal et al., 2018) or focused on conspicuous gelatinous
species and single blooming events (El-Serehy and Al-Rasheid,
2011; Cruz-Rivera and Abu El-Regal, 2016). These studies are
often limited to single time scales (e.g., daily or monthly
differences) and thus may be limited in their capacity to
resolve seasonal dynamics (Godeaux, 1987; Abu El-Regal
et al., 2018). Collectively, these studies documented gelatinous
zooplankton in the Red Sea as including at least 26 species of
Siphonophora, 29 species of Hydrozoa, 2 Scyphozoa species,
and 24 species of Tunicata (Godeaux, 1987; Dowidar, 2003a,b;
Zakaria, 2015). However, any argument supporting differences
in abundance between studies is presumably limited due
to insufficient understanding of temporal dynamics in these
gelatinous zooplankton communities (Kheireddine et al., 2017;
Karati et al., 2019).

The Red Sea is oligotrophic, has limited external water inputs,
consistently high temperatures throughout the year (Chaidez
et al., 2017), and presents variations in temperature, nutrients
and salinity across latitude and time (Raitsos et al., 2013).
Northern regions of the Red Sea tend to present lower nutrient
concentrations, higher salinities and temperatures, and low
phytoplankton productivity, particularly in the summer period
(Raitsos et al., 2013; Chaidez et al., 2017; Kheireddine et al.,
2017). The Southern Red Sea is dominated by monsoon-driven,
nutrient-rich Indian Ocean water inputs from the Gulf of
Aden, which positively correlate with phytoplankton occurrence
(Sofianos and Johns, 2007; Raitsos et al., 2015; Kürten et al.,
2016). In the Southern Red Sea, phytoplankton productivity
values were found to be two to three- fold higher than in the
Northern Red Sea (0.41 vs. 0.16 g m−2 d−1; Ismael, 2015).
Whereas, in the North Red Sea average annual productivity
values were found to be 1.5 – 3 times higher than in the Central
Red Sea (0.25–0.50 vs. 0.17 g m−2 d−1; Yentsch and Wood,
1961; Koblentz-Mishke et al., 1970; Dowidar, 1983; Ismael, 2015).
Even so, mesoscale processes (e.g., cyclonic and anticyclonic
eddies) and proximity to coral reefs have been shown to add
variability to plankton dynamics within the Red Sea (Echelman
and Fishelson, 1990; Pearman et al., 2014; Kürten et al., 2016;
Amer, 2019).

Here, we developed a 21-month time series of epipelagic
gelatinous zooplankton communities in the coastal Red Sea

in parallel to a time series of environmental variability
(Prabowo and Agusti, 2019). We conducted the first Red Sea
characterization of occurrence and community structure of
gelatinous planktonic communities over seasonal time scales. We
subsequently explored, within the limitations of the data set, how
environmental parameters may affect the seasonal dynamics of
Red Sea gelatinous zooplankton communities.

MATERIALS AND METHODS

Sample Design and Collection
Sampling was conducted approximately every 2 weeks between
September 2016 and May 2018 as part of a larger time series
sampling scheme (e.g., Martin et al., 2019; Prabowo and Agusti,
2019). Samples were collected at around midday (10–12 a.m.)
to standardize the time of day for sampling across time points
and to specifically target the daytime community. The sampling
station was located in a shallow pelagic area (i.e., <50 m depth)
of the Central Red Sea (22.31N, 39.0E: Supplementary Figure
S1 in Supplementary Materials), which was <10 Km offshore
and ∼3 Km from inshore coral reefs systems (Prabowo and
Agusti, 2019). A conductivity-temperature-depth (CTD) probe
(Ocean Seven 310; Idronaut) was deployed during sampling
to measure sea surface temperature and salinity (Prabowo and
Agusti, 2019). Surface seawater was sampled (i.e., 300 ml at 1 m
depth), filtered with Wathmann GF/F filters and chlorophyll
a (chl a) was extracted in 90% acetone for 24 h. Chl a
concentration was obtained using fluorometric determination
(Trilogy; Turner Design) as described in Prabowo and Agusti
(2019). Cross- and along-shelf Ekman transport was calculated
using methods in Resgalla et al. (2001) and wind data for Thuwal
retrospectively retrieved from www.wunderground.com at the
time of sampling.

A modified epipelagic neuston net (60 × 20 cm, 200 µm
mesh; design details in aquaticbiotechnology.com/en/plankton-
nets/manta-net; Martin et al., 2019) was trawled for 30 min
at 2–3 knots. Mesh size and duration of the trawl were
set to capture the small fraction of gelatinous zooplankton
(e.g., small Salpidae and Dyphidae individuals), account for
the small densities of gelatinous zooplankton individuals, and
to collect samples for other studies (Martin et al., 2019).
During each haul, the net was towed alongside a small boat
(<10 m length), as opposed to deployment from the back
of the boat, to prevent turbulence that could have induced
sinking of planktonic organisms and resulted in underestimated
abundances. One third of the net was kept above the water’s
surface to avoid excessive resistance. A Flowmeter (General
Oceanics 2030R) was used to measure flow velocity at the
beginning and end of each tow. After each tow, the net was
washed carefully with seawater to retrieve the neuston samples.
The entire samples were transferred into 0.5 L plastic bottles
and kept at low temperatures until samples were returned
to the laboratory and fixed in 95% ethanol. Samples were
inspected under a dissecting microscope (LEICA IC80 HD) to
quantify and identify gelatinous zooplankton. Morphological
characteristics of specimens were examined to identify taxa
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to the lowest taxonomic level up to family level; following
taxon-specific ID diagnoses (see Supplementary Table S1 in
Supplementary Materials). Each specimen was rehydrated in
filtered sea water until no differences in biovolume were found
over time (see Supplementary Figures S2, S3 in Supplementary
Materials). Organisms were photographed and pictures were
used to measure individual dimensions using Image J1, and later
to calculate biovolume following the equations for planktonic
organisms from Hillebrand et al. (1999). Abundance and
biovolume data were standardized to sampling effort (i.e., m3

sampled) and corrected by a factor based on the effect of
wind mixing on the vertical distribution of buoyant bodies
(cf. Kukulka et al., 2012).

1https://imagej.nih.gov/

Statistical Analyses
Gelatinous zooplankton community biovolume data, and
environmental data were used for statistical analyses.
Biovolume data were log (x + 1) transformed and the
potential influence of environmental drivers were assessed
using multivariate redundancy analyses (RDA, Oksanen
et al., 2018). Univariate relationships between gelatinous
zooplankton taxa and hypothetical environmental drivers
were further assessed using non-parametric Spearman’s rank
correlation test (R Core Team, 2018). These correlations were
also tested for 1 and 2 lags, thereby assessing the relationship
between abundance and environmental properties recorded
2 and 4 weeks prior to sampling. All community variables
used in correlation tests were examined for autocorrelation
using autocorrelation and partial autocorrelation plots, and

FIGURE 1 | Temporal variation in (a) biovolume of gelatinous zooplankton and% biovolume, (b) biovolume of gelatinous zooplankton and temperature, (c–f)
abundance of the most important taxa, (g–j) biovolume of the most important taxa. Lines connecting points represent the real variation, while loess interpolation is
presented to aid interpretation. Temporal interpolation was performed with loess (span = 0.45). Monsoon seasonality is shown accordingly to Patzert (1974) and
Murray and Johns (1997). Temperate seasonality is shown for comparison.
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stationarity was tested using the augmented Dickey–Fuller test
(sensu Qiu, 2015).

RESULTS

Gelatinous zooplankton followed a seasonal pattern, with
consistently higher biovolume during winter/spring and
lower abundances during summer (Figure 1). Higher values
of biovolume (i.e., 100 106 mm3 m−3) were found from
December/January to April/May and lower biovolume values
were 103- 105 times lower (i.e., 0.1 – 10 mm3 m−3) from July
to October. However, this pattern was not consistent among
all gelatinous taxa since Porpitidae occurrence presented rapid
oscillations (i.e., up to 14.63 mm3 m−3) independent of season.
Other hydrozoans, Ulmaridae and other rarer taxa were observed
sporadically throughout the year.

Seasonal fluctuations in community biovolume were one
to two orders of magnitude larger in 2017/2018 (i.e., from
0.1 to >100 mm3 m−3) than those observed in 2016/2017
(i.e., from 1-10 to <100 mm3 m−3). This difference was also
found for Tunicata, which presented 5 to >100 times lower
values in abundance and biovolume during the blooming event
in 2016/2017 than in 2017/2018. Taxa within Siphonophora
also presented these interannual differences but the blooming
event in 2016/2017 was only 3–25 times lower than that
in 2017/2018. Observations of Porpitidae did not reveal a
difference between years, and tended to be present throughout
2016/2017 and 2017/2018. Larger taxa of hydrozoans and
Ulmaridae (Scyphozoa, i.e., Aurelia sp.) presented low
abundances. Maximum abundances of these taxa typically
occurred around April and dominated > 80% biovolume
when present (i.e., Larger hydrozoans: 831 – 4555 mm3 m−3;

FIGURE 2 | Redundancy Analysis (RDA) triplot showing the differences
between the biovolume of the gelatinous zooplankton communities sampled,
the directionality and relative strength of the relationship between
environmental drivers, taxa occurrence, and the differences between sampling
events for the RDA axes 1 and 2. Arrow scaling is proportional to eigenvalues.

Ulmaridae: 13871-1250975 mm3 m−3) except in one instance
(i.e., larger hydrozoans in January 2018).

Environmental parameters had a significant but limited
capacity (RDA; F = 2.53; P = 0.002; Figure 2) to explain
variability in community structure (i.e.,% variance explained by
the constrained variance: 28.97%). Temperature (RDA1: −0.43;
RDA2:−0.70) and salinity (RDA1:−0.50; RDA2:−0.55) were the
factors that explained a high proportion of the variance in both
axes. Chl a (RDA1: 0.50; RDA2: −0.09) and cross-shelf Ekman
transport (RDA1: −0.45; RDA2: 0.05) only explained variance
above 0.4 in one of the axes, while along-shelf Ekman transport
(RDA1: −0.27; RDA2: 0.29) explained a low portion of variance
of biovolume in both axes (λRDA1 = 12.73; λRDA2 = 3.56). The
variance in Tunicata, Siphonophora, hydrozoans and Ulmaridae
were better explained by environmental drivers (RDA1: 2.04,
1.84, 0.58, 0.53; RDA2: −0.15, 0.42, −0.33, 0.06) than Porpitidae
(RDA1: 0.20; RDA2:−0.70) and other less abundant taxa.

Closer inspection revealed some generally weak but significant
relationships between gelatinous abundance and environmental
variables. These relationships were better explained by response
lags of 1 (i.e., temperature and salinity) and 2 (i.e., chlorophyll
a) in Tunicata (Figure 3). Temperature and salinity were
the drivers presenting the highest number of significant
correlations with composing gelatinous taxa. Tunicates
and siphonophores were negatively correlated with both
temperatures and salinity. Tunicates disappeared from the
epipelagic layer when temperatures and salinity were high,
and siphonophores decreased down to less than a third of
their average biovolume when temperature and salinity were
high. Tunicates also presented a positive correlation with chl a
concentration, being absent or present at biovolumes 1/4th of
those presented at higher chl a concentration when chl a levels
were low. Porpitidae did not present any significant relationship
with environmental drivers. Cross-shelf and along-shelf Ekman
transport did not reveal any significant relationship with any
taxon. Larger hydrozoans, Ulmaridae and other rare taxa were
too sparse to present any clear pattern with the measured
environmental drivers.

DISCUSSION

This study represents the first complete characterization of
gelatinous zooplankton in the central Red Sea and describes
community temporal patterns characterized by the seasonality
of tunicates, siphonophores, and other larger medusae (i.e.,
Hydrozoa and Ulmaridae). The correspondence of these seasonal
patterns with temperature, salinity and chl a fluctuations align
with classic seasonal bottom-up succession dynamics (Figure 4A;
Lewis and Boers, 1991; Hoover et al., 2006; Kenitz et al., 2017).
Spring phytoplankton blooms specifically are often triggered by
favorable conditions, including warmer temperatures, increased
light levels, and the presence of nutrients (Al-Najjar et al.,
2007). Such conditions often lead to the proliferation of
small, fast-growing gelatinous taxa (i.e., siphonophores and
tunicates), followed by larger taxa (i.e., Ulmaridae). This seasonal
pattern, however, was inconsistent among gelatinous taxa,
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FIGURE 3 | Correlation plots between environmental drivers over time (first row) and taxa occurrence over time (first column; biovolume). Spearman’s rank test
results are shown where test resulted significant. Temporal interpolation was performed with loess (span = 0.45) and 95% confidence intervals.

where, Porpitidae did not display clear seasonal dynamics.
When combined, these data suggest that high temperature and
oligotrophic conditions limit gelatinous zooplankton abundance
in the Red Sea in summer. This may indicate a bottom–up
control mechanism, in which gelatinous zooplankton occurrence
depends on the occurrence of prey organisms (Cornils et al., 2007;
Karati et al., 2019), and oligotrophic conditions limits gelatinous
zooplankton abundance and biovolume to <8 ind m−3 and
<103 – 106 mm3 m−3, respectively.

Seasonal successional dynamics reflected a previously
observed time-lagged correlated response of zooplanktonic
organisms to environmental fluctuations but tended to be less
clear at higher trophic levels. In this study, tunicates tended to
correlate with temperature and salinity observed in the preceding

sampling event (i.e., 14 days before), and chlorophyll a observed
two sampling events earlier, which suggests a closer coupling to
temperature and salinity, and a slower response to phytoplankton
availability (Frederiksen et al., 2006). In contrast, siphonophores
showed no lagged correlation with environmental variables,
which were generally weak. The weak relationship between
siphonophore abundance and environmental properties is
consistent with previous reports in the Red Sea for Chaetognatha
(Cornils et al., 2007; Karati et al., 2019), and may result from their
trophic dependence on copepods and other small heterotrophic
organisms. The abundance of siphonophores may have also been
affected by the input of allochthonous organic matter with dust
deposition events (Jish Prakash et al., 2015; Rushdi et al., 2019),
which can stimulate the growth of small zooplanktonic prey
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FIGURE 4 | A summary of (A) seasonal blooming dynamics of main groups gelatinous zooplankton taxa (i.e., tunicates, siphonophores, Ulmaridae) and relative
dynamics of temperature (◦C) and chlorophyll a (µg L−1) found during the study period, and (B) rapid short-term fluctuations showed by Porpitidae and relative
dynamics of temperature (◦C) over the study period. Maximums are taken from maximum observations from the data, centered at the day at which the maximums
where found, and limits represent the first time point at which individuals were observed and stopped being observed.

(Schmidt et al., 2016; Herrera et al., 2017). However, the presence
of dust or smaller planktonic organisms such as Synechococcus,
Prochlorococcus, Eukariots and Bacteria, did not show any
relationship in our multivariate or univariate exploratory
analysis. Even though not captured in our study, these trophic
dependences could have contributed to the uncoupling of
this zooplanktonic component to environmental factors (e.g.,
temperature, salinity; Boero et al., 2008; Al-Aidaroos et al.,
2016; Karati et al., 2019). Lastly, the occurrence of larger taxa
(i.e., particularly Ulmaridae) appears difficult to explain with
local factors, and may be dependent on processes occurring at
larger spatial and temporal scales (Bastian et al., 2011; Canepa
et al., 2013). Seasonal occurrences of Ulmaridae in coastal areas
have been reported in the Black Sea, where Aurelia sp. spatial
distribution changed from spring to summer; increasing up to
four times their abundance in southern coastal areas during
summer but being present throughout the year in other areas
(Mutlu, 2001). In relation to these dynamics, Ulmaridae (i.e.,
Aurelia sp.) occur more consistently throughout the year in the
Northern Red Sea (El-Serehy and Al-Rasheid, 2011).

Weak to absent seasonal dynamics were found for Porpitidae,
which depicted more stable numbers throughout the year and
between years, but with markedly rapid fluctuations (Figure 4B).
Taxa within the family Porpitidae contain symbiotic cells
(Bouillon and Boero, 2000; Chowdhury et al., 2016), which can
provide a food source (e.g., Pitt et al., 2005; Leal et al., 2017) and
thus may make them less responsive to seasonal prey availability.
Consequently, Porpitidae occurrence patterns in this study were
better described by rapid fluctuations and the lack of a seasonal
pattern, which corresponds to previous findings of occurrence
dynamics of the symbiotic Cassiopea sp. in the Northern Red
Sea (Niggl and Wild, 2010) as well as Cassiopea sp. elsewhere
(Fitt and Costley, 1998). Porpitidae seasonal occurrence has
not been studied before, but closely related species have been
observed to be affected by temperature and display very patchy
distributions (Evans, 1986; Parker et al., 2005; Gili et al., 2010). In
this study, extreme temperatures over summer, water currents,
or other environmental (i.e., wind; Kirkendale and Calder,

2003) and biotic drivers (e.g., trophic relationships; Arai, 2005)
may have affected the occurrence of Porpitidae, but were not
reflected in our data.

In this study, the seasonal dynamics of the gelatinous
community appear to be driven mostly by temperature, reflecting
the seasonality described in the Northern Red Sea (Raitsos et al.,
2013), but interannual differences reveal uncoupled dynamics
between chlorophyll a and temperature that could be related to
variable nutrient inputs. Nutrient-driven seasonal dynamics may
be aligned with the seasonality described for the Southern Red Sea
(Raitsos et al., 2015), or result from mesoscale oceanic processes
and proximity to reefs at the sampling site (Pearman et al.,
2014; Kürten et al., 2016; Amer, 2019). Other observed seasonal
patterns, showing higher zooplanktonic diversity in summer
(Casas et al., 2017), were not observed in our gelatinous plankton
community. Observations of individual taxa in the Northern
Red Sea indicate important diversity of gelatinous zooplankton
below the family level during winter and report other families of
siphonophores that were not identified in this study (Godeaux,
1987; Mańko et al., 2017). In addition, our study reports the
presence of a Porpitidae sp. in the Red Sea for the first time, which
is consistent with other reports of Porpitidae spp. occurring in
other regions close to coral reefs (Chowdhury et al., 2016) such as
coral atolls in the Arabian Sea (Nagabhushanam and Rao, 1972),
and in the eastern Mediterranean (Cinar et al., 2014).

Our sampling was limited to the uppermost epipelagic
layer and therefore precluded the characterization of taxa
occupying deeper layers, which may explain differences between
our results and other observations or studies in the Red
Sea (e.g., Godeaux, 1987; Dowidar, 2003a,b; Zakaria, 2015).
Horizontal trawling focused on the surface layers, as opposed
to vertical or oblique trawling, dictated the underestimation of
number of taxa and the description of a gelatinous zooplankton
community specific to the particular conditions occurring at
the surface (i.e., high temperature, high irradiance, higher
influence of wind). Capturing more taxa and targeting other
gelatinous zooplankton communities across various depths in
more than one geographical point, would have allowed for a
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TABLE 1 | Summary of studies on gelatinous zooplankton communities comparing maximum abundance (ind. m−3) of the all taxa sampled, and the maximum abundance found for each of the groups
considered in this study.

Location Depth (m) Sampled
Volume (m3)

Direction
of haul

Mesh Size
(µm)

Month All taxa Tunicata Siphonophora Ctenophora Scyphozoa Hydrozoa

Coastal central Red Sea1 0–1 220–332 Horizontal 200 All year 7.56 5.79 1.74 0.05 0.67 0.21

Mediterranean

Baelaric Sea (W
Mediterranean)2

0–100 – Oblique 333 All year 125 84 41

Bay of Villefranche-sur-Mer3 75 14.72 Vertical 330 All year 441–1833 441–1833

Bay of Villefranche-sur-Mer4 75 10 Vertical 330 All year >350 >350

Coastal Gulf of Trieste5 0–20 19.70‡ Vertical 200 All year 460–510 450–500 200 50–60

South East Adriatic Sea6 0–75 76.55 Vertical 200 All year 140–160 50–60 0.12 90–100

North Tunisian coast7 0–5 1000 Vertical 200 All year 42.1 30.8 10.1 18.1
∗Marmara Sea, Turkey8 0–1 – Horizontal 157 July–

September
0.485 0.242 0.242

Tropical and Subtropical
Regions
∗Bay of Bengal, South East
India9

– – – 200 Winter and
Summer

151000 71000 1000 17000 62000

Brazilian estuaries10 – – – – – 65–428† 60–333 5–95

Southern Brazilian Bight11 0–40
(0–100)

31.43 (78.53) Vertical 200 October 23 (87)

Temperate Regions

South Chile: North Humbolt
Current System12

0–250 17–598 Oblique 300 November 31.95 9.66 12.71 9.58

Mid-Atlantic Ridge: ROV video
survey13

0–2335 1501–5393 Vertical – July 0.31 0 0.06 0.14 0.11

Southern California Bight: ROV
video survey14

0–130 41.4–66.9∗∗ Tow-yo 700∗∗∗ October 1551.93 78.46 115.23 92.86 1265.38

North West Spanish coast,
West Galicia15

0–100 113.09 Vertical 202 September–
October

188 8 144 35

Abra Harbour, Bay of Biscay,
North Spain16

0–30 0.94 Vertical 250 All year 5590 5000 1000 1000 500

Upwelling zone off
central-southern Chile17

0–80 – Oblique 200 Agust–
December

455.9 397.70 4.30 53.90

(Continued)
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better understanding of ecological dynamics and the ability to
capture likely more diverse gelatinous zooplankton communities.
However, we were able to track the dynamics of a specific
community over time, which allowed us to disentangle the
complexity that may have been more difficult to track across
depths. Given the short timeframe of the study, the larger
variability found across multiple depths could have hindered the
ability to capture variability over time.

Comparisons with studies in other temperate and tropical
latitudes are in consonance with the effects of oligotrophic
conditions observed in the Red Sea (Lucas et al., 2014; Raitsos
et al., 2015; Almahasheer et al., 2016), as confirmed in this study
(Table 1). The oligotrophic conditions are exacerbated during
the summer time (Prabowo and Agusti, 2019) where gelatinous
zooplankton showed the annual minima. Indeed, Lucas et al.
(2014) reported that oligotrophic conditions in the Red Sea
limit the growth and presence of gelatinous zooplankton. In
our study, seasonal peaks (i.e., 8 individuals m−3 and from
103 mm3 m−3 -when Ulmaridae was not present- to 106 mm3

m−3 -when Ulmaridae was present) were several times lower
than abundance reported in other tropical, subtropical, temperate
and polar regions, indicating a likely effect of the oligotrophic
nature of the Red Sea. Seasonal succession dynamics described
in other tropical and temperate regions may not be as defined
and blooms can last longer (Racault et al., 2012). Non-seasonal
dynamics are rarely reported in the literature, and it is still not
clear from our data whether summer temperatures, seasonal
winds or biotic interactions drive the abundance of Porpitidae,
and other, less abundant taxa. Our data, however, also shows a
large difference in the peak abundance among the 2 years studied.
In other studies, interannual variations in gelatinous abundance
are commonly explained by broad disparate drivers such as mild
winter temperatures, global-scale climate fluctuations (i.e., NAO,
El Niño) and changes in ocean eddies and currents (e.g., Ortega
and Martínez, 2007; Rigual-Hernández et al., 2010; Sommer and
Lewandowska, 2011; Racault et al., 2012; Kozak et al., 2014).
The abundance and composition of gelatinous zooplankton in
the central Red Sea may also depend on climate fluctuations
and seasonal events such as of Monsoon winds and incoming
currents from the Gulf of Aden, which have been previously
linked to plankton blooming events in the southern Red Sea
(i.e., in years of strong Monsoon winds; Raitsos et al., 2015;
Kürten et al., 2016). However, gelatinous plankton has been
shown to exhibit 18–20 years oscillations, thereby requiring very
long (>40 years) datasets to resolve these dynamics (Condon
et al., 2013). Interannual differences in temperature may also
affect seasonality, and the temporal variability in the strength of
small-scale drivers, such as those derived from the proximity to
coral reefs and water currents must be also considered (Raitsos
et al., 2013; Pearman et al., 2014, 2017; Kheireddine et al., 2017).

This study shows the importance of Salpidae, Dyphidae,
Porpitidae and larger taxa (e.g., Ulmaridae) as key groups
shaping the seasonal dynamics of gelatinous zooplankton
communities in the surface layers of the coastal central
Red Sea. We have examined the ecological dynamics that
may allow expanding the knowledge from global biological
patterns described in Lucas et al. (2014) to local ecological

Frontiers in Marine Science | www.frontiersin.org 8 November 2019 | Volume 6 | Article 726

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00726 November 27, 2019 Time: 17:28 # 9

Sola et al. Central Red Sea Gelatinous Zooplankton

dynamics. We have characterized the effects of temperature
and associated planktonic blooms on temporal dynamics of
gelatinous zooplankton in an oligotrophic area with no previous
detailed temporal characterizations of gelatinous zooplankton
communities. We also describe local putative non-seasonal
dynamics for Porpitidae in these communities. Further research
should include other gelatinous zooplankton communities
covering a range of depths, other relevant taxonomic groups (i.e.,
Appendicularians, Chaetognatha), consider additional ecological
drivers (i.e., presence of copepodites) and account for larger
timeframes to better understand the temporal dynamics of
gelatinous zooplankton communities in the Red Sea.
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