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Marine heatwaves (MHWs), or prolonged periods of anomalously warm sea water
temperature, have been increasing in duration and intensity globally for decades.
However, there are many coastal, oceanic, polar, and sub-surface regions where our
ability to detect MHWs is uncertain due to limited high quality data. Here, we investigate
the effect that short time series length, missing data, or linear long-term temperature
trends may have on the detection of MHWs. We show that MHWs detected in time
series as short as 10 years did not have durations or intensities appreciably different
from events detected in a standard 30 year long time series. We also show that the
output of our MHW algorithm for time series missing less than 25% data did not differ
appreciably from a complete time series, and that the level of allowable missing data
could cautiously be increased to 50% when gaps were filled by linear interpolation.
Finally, linear long-term trends of 0.10◦C/decade or greater added to a time series
caused larger changes (increases) to the count and duration of detected MHWs than
shortening a time series to 10 years or missing more than 25% of the data. The long-
term trend in a time series has the largest effect on the detection of MHWs and has
the largest range in added uncertainty in the results. Time series length has less of an
effect on MHW detection than missing data, but adds a larger range of uncertainty to
the results. We provide suggestions for best practices to improve the accuracy of MHW
detection with sub-optimal time series and show how the accuracy of these corrections
may change regionally.

Keywords: marine heatwaves, sea surface temperature, sub-optimal data, time series length, missing data,
long-term trend

INTRODUCTION

The idea of locally warm seawater disrupting species distributions or ecosystem functioning is
not a novel concept. We have known for decades that transient warm water occurrences in the
ocean could result in major impacts on marine ecosystems (e.g., Baumgartner, 1992; Salinger et al.,
2016). The study of the effects of anomalously warm seawater temperatures began in earnest in the
early 1980s when research into the ENSO phenomenon intensified (e.g., Philander, 1983). After
the 1980s, researchers began noticing that warm water events were becoming more frequent and
with large ecosystem impacts (e.g., Dayton et al., 1992), but it was not until 2018 that this was
demonstrated with global observations (Oliver et al., 2018).

In order to quantify the increased occurrence and severity of these events it was necessary to
develop a methodology that would be inter-comparable for any location on the globe. This was
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accomplished in 2016 after the International Working Group
on Marine Heatwaves (MHWs)1 initiated a series of workshops
to address this issue. This definition for anomalously warm
seawater events, known as MHWs, has seen wide-spread and
rapid adoption due to ease of use and global applicability
(Hobday et al., 2016). One limitation with this definition that
has not yet been addressed is the assumption that a researcher
has access to the highest quality data available when detecting
MHWs. In the context of MHW detection, a “high quality” time
series is spatio/temporally consistent, quality controlled, and at
least 30 years in length (Hobday et al., 2016, Table 3). While not
stated explicitly in Hobday et al. (2016), a “high quality” time
series should also not have any missing days of data. To avoid
contention on the use of the word “quality,” time series that meet
the aforementioned standards are referred to here as “optimal,”
whereas those that do not meet one or more of the standards
are referred to as “sub-optimal.” Another unresolved issue with
the Hobday et al. (2016) algorithm, which does not fall within
the requirements for optimal data, is how much of an effect the
long-term (secular) trend in a time series may have on detection
of MHWs compared to that same time series when the trend
has been removed.

Most remotely sensed data, and more recently output from
ocean models and reanalyses, consist of over 30 years of data
and utilize in situ collected data or statistical techniques to
fill gaps in their time series. This means that these “complete”
data are considered optimal for MHW detection. A summary
of remotely sensed products currently available, as well as their
strengths and weaknesses, is provided by Harrison et al. (2019,
Table 12.3). Even though remotely sensed data products are
considered optimal, they still have other issues (e.g., land bleed,
incorrect data flagging, spatial and temporal infilling) and so it
may be necessary that for coastal MHW applications, researchers
utilize sub-optimal data, such as sporadically collected in situ time
series (Smit et al., 2013; Hobday et al., 2016).

This paper seeks to understand the limitations the use of sub-
optimal data impose on the accurate detection of MHWs. Of
primary interest are three key challenges:

1. The use of time series shorter than 30 years.
2. The use of temporally inconsistent (missing

data) time series.
3. The use of time series in areas with large (steep) long-term

sea surface temperature (SST) trends.

We use a combination of reference time series from specific
locations and a global dataset to address these issues. The effects
of the three sub-optimal data challenges on the detection of
MHWs are quantified in order to provide researchers with
the level of confidence they may express in their results.
Where possible, best practices for the correction of these
issues are detailed.

Defining Marine Heatwaves
The MHW definition used here is “a prolonged discrete
anomalously warm water event that can be described by

1http://www.marineheatwaves.org/

its duration, intensity, rate of evolution, and spatial extent.”
(Hobday et al., 2016). This qualitative definition is quantified
with an algorithm that calculates a suite of metrics. These metrics
may then be used to characterize MHWs and allow comparison
with ecological observations. The calculation of these metrics first
requires determining the mean and 90th percentile temperature
for each calendar day-of-year (“doy”) in a time series. The mean
“doy” temperatures, which also represent the seasonal signal in
the time series, provide the expected baseline temperature whose
daily exceedance is used to calculate the local intensity of MHWs.
The 90th percentile “doy” temperatures serve as the threshold
that must be exceeded for five or more consecutive days for the
anomalously warm temperatures to be classified as a MHW and
for the calculation of the additional MHW metrics.

In this paper we focus on the three metrics that succinctly
summarize a MHW, from the set described in Table 2 of Hobday
et al. (2016). The first metric, duration, is defined as the period
of time that the temperature remains at or above the 90th
percentile threshold without dipping below it for more than
two consecutive days. The duration of an event may be used as
a measurement of the chronic stress that a MHW may inflict
upon a target species or ecosystem (e.g., Oliver et al., 2017;
Smale et al., 2019). The second metric, maximum intensity, is the
highest temperature anomaly during the event and is calculated
by subtracting the climatological mean “doy” temperature from
the recorded temperature on that day. This metric may be
used as a measurement of acute stress (e.g., Oliver et al., 2017;
Smale et al., 2019). A third metric, cumulative intensity, is used
to determine the “largest” MHW in a time series (see section
“Materials and Methods”). This metric is the integral of the
temperature anomalies of a MHW, and so has units of ◦C-
days, and represents the sum of temperature anomalies over
the duration of the MHW. Cumulative intensity is comparable
to the degree heating day metrics used in coral reef studies
(Fordyce et al., 2019).

We used the R implementation of the Hobday et al. (2016)
MHW definition (Schlegel and Smit, 2018), which is also
available in python2, and MATLAB (Zhao and Marin, 2019).
We compared the R and python default outputs, assessed how
changing the arguments affected the results, and compared the
other functionality provided between the two languages. While
some style differences exist as a result of the functionality of
the languages, the climatology outputs are identical to within
<0.001◦C per “doy.” An independent analysis of the Python
and MATLAB results also confirmed that they were functionally
identical (pers. com. Zijie Zhao; MATLAB distribution author).

What Are Optimal Data for Detecting
Marine Heatwaves?
When working with extreme values in a time series, such as
MHWs, it is important that the quality of the data are high
(Hobday et al., 2016). Hobday et al. (2016) stated that high quality
data, referred to here as “optimal,” used for the detection of
MHWs should meet the following criteria:

2https://github.com/ecjoliver/marineHeatWaves
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1. A time series length of at least 30 years.
2. Quality controlled.
3. Spatially and temporally consistent.
4. Be of the highest spatial and temporal resolution

possible/available.
5. In situ data should be used to compliment remotely sensed

data where possible.

Although the authors did not specifically state that time series
must not contain large proportions of missing data, it can be
inferred from the aforementioned requirements and the nature
of the proposed algorithm. Another issue affecting the accurate
detection of MHWs not discussed in Hobday et al. (2016) is the
presence of long-term trends in a time series. Oliver et al. (2018)
have shown how dominant the climate change signal can be in
the detection of MHWs and we seek to quantify this effect here.

A time series with a sub-optimal length may impact the
detection of MHWs by negatively affecting the creation of the
daily climatology relative to which MHWs are detected in two
primary ways. The first is that with fewer years of data, the
presence of an anomalously warm or cold year will have a larger
effect on the climatology than with a sample size of 30 years.
The second cause is that because the world is generally warming
(Pachauri et al., 2014), the use of a shorter time series will almost
certainly introduce a warm bias into the results. This means,
counterintuitively, that the MHWs detected in a shorter time
series will appear to be cooler than the same MHWs detected in
a longer time series. This is because the average temperature in a
time series consisting of recent data will likely be warmer, which
will raise the 90th percentile relative to the observed temperatures
and the reported MHW metrics will appear to be less/lower than
would be obtained with a longer time series.

The climatology derived from a time series serves two main
roles (WMO, 2017); (1) it serves as a “benchmark” relative
to which past and future measurements can be compared,
and against which anomalies can be calculated, (2) it reflects
the typical conditions likely to be experienced at a particular
place at a particular time. The WMO Guide to Climatological
Practices (WMO, 2011) stipulate that daily climatologies (which
they call “climate normals”) must be based on the most recent
30-year period that ends on a complete decade (currently
1981–2010). The suggested length of a time series for MHW
detection was based on this WMO guideline (Hobday et al.,
2016), and a fixed reference period (e.g., 1983–2012) proposed
(Hobday et al., 2018).

Some remotely sensed products suffer from “gappiness” that
result in missing data. This may be due to cloud cover, the
presence of sea ice, unsuitable sea states, etc., which become more
prevalent at smaller scales, particularly nearer the coast. Some
products interpolate to fill missing data gaps, but this results in
smoothed SST fields that may mask small-scale spatial variations
in surface temperatures. Remotely sensed products may also fill
gaps by blending with data from other products, which may
introduce other biases. It has been demonstrated that coastal SST
pixels from remotely sensed products may have biases in excess of
5◦C from in situ collected data (Smit et al., 2013), however; other
research that has shown similarity between these different data

types (Smale and Wernberg, 2009; Stobart et al., 2016). These data
are also prone to large gaps and so issues with regards to accurate
MHW detection are also uncertain.

MATERIALS AND METHODS

To quantify the effects that time series length, missing data, and
long-term trends have on MHW detection we compare the count,
duration (days), and maximum intensity (◦C) of MHWs from
time series as they become increasingly sub-optimal. To ensure
approximately equal sample sizes across all tests, only the results
for MHWs in the final 10 years of data (2009–2018) are used for
each test and are hereafter referred to as the “average MHWs.”
The single largest MHW in each time series, as determined by
cumulative intensity, is drawn from the same 10 year sample and
is referred to hereafter as the “focal MHW.”

The amount of uncertainty that the sub-optimal tests (see
sub-sections below) introduce into the results is calculated by
measuring the percent of change in the results from the control
(optimal) time series as the data become more sub-optimal. No
significance test is used here, rather the increasing uncertainty
range in the results is shown so as to provide a benchmark
against which one may decide how much uncertainty is too
much depending on the given application. Linear models are
used to quantify the increasing rates of uncertainty that these
sub-optimal tests introduce. These rates are analyzed at a global
scale to investigate spatial patterns before being discussed in more
depth in the Best Practices section.

We use the remotely sensed NOAA OISST dataset (Reynolds
et al., 2007; Banzon et al., 2016) in this study. This daily
remotely sensed global SST product has a 1/4 degree spatial
resolution with 1982 the first full year of sampling. These data
are interpolated and where possible verified against a database
of in situ collected temperatures so that the final product does
not have any spatial or temporal gaps. The NOAA OISST dataset
was used during the creation of the MHW algorithm in Hobday
et al. (2016) and is used here for consistency. A simple linear
model is fit to the time series at each location (pixel) and
the residuals are taken as the de-trended anomaly values on
which the MHW algorithm is run. This must be performed
to control for the effects of time series length and long-term
trends separately. Once de-trended, each anomaly time series
(hereafter referred to as “time series”) is treated to the suite of
sub-optimal controls (see following sub-sections) and the results
are extracted.

The percent change in the average and focal MHW results
from sub-optimal data is highlighted with the three reference
OISST time series from Hobday et al. (2016). These time series
are taken from the coast of Western Australia (WA; Figure 1A),
the Northwest Atlantic Ocean (NWA; Figure 1B), and the
Mediterranean Sea (Med; Figure 1C). These time series are used
here for ease of reproducibility and because they each contain
a MHW that has been the focus of multiple publications (e.g.,
Garrabou et al., 2009; Wernberg et al., 2012; Mills et al., 2013).
The effect of the sub-optimal tests on these three time series
are overlaid on the effect of the same sub-optimal tests on 1000
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FIGURE 1 | The focal marine heatwaves (MHWs) shown in red for the three reference time series (A) Western Australia (WA), (B) Northwest Atlantic (NWA), and
(C) Mediterranean (Med). Other MHWs shown in salmon. Each panel is centered around the peak date of the focal MHW, which is highlighted by a dark green
vertical segment. The beginning and end of each MHW are demarcated with light green vertical segments. The seasonal mean climatology for each time series is
shown as a light blue line, while the threshold climatology is shown with a dark blue line. The observed temperatures are shown as a black line. Note that only the
WA focal MHW is the same as the event in the literature, the focal MHWs shown here for the NWA and Med time series are larger than the MHWs from the literature
so are shown here in their stead.

randomly selected pixels from the global OISST dataset. The
following three sub-sections describe how the three sub-optimal
time series tests are implemented. While not a specific focus
in this study, the effects that the sub-optimal tests have on the
seasonal mean and threshold climatologies have been included in
the Supplementary Figure S1.

Controlling for Time Series Length
There are currently 37 complete years of data available in the
NOAA OISST dataset (1982–2018). In order to determine the
effect that time series length has on the output we systematically
shorten each time series 1 year at a time from 37 years down

to 10 years (2009–2018), before running the MHW detection
algorithm. The MHW results for each 1 year step for each of the
time series are then compared against the output from the 30 year
(1989–2018) version of the same time series as the control.

In order to ensure equitable sample sizes we only compare
the MHW metrics for events detected within the last 10 years
of each test as this is the period of time during which all of the
different tests overlap. This is also why we limited the shortening
of the time series lengths to 10 years, so that we would still have a
reasonable sample size for all of the other tests.

Because the lengths of the time series were being varied, and
were usually less than 30 years in length, it was also necessary that
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the climatology periods vary likewise. To maintain consistency
across the results we use the full range of years within each
shortened time series to determine the climatology. For example,
if the time series had been shortened from 37 to 32 years (1987–
2018), the 32 year period was used to create the climatology. If
the shortened time series was 15 years long (2004–2018), this
base period was used. The control time series were those with
a 30 year length ending in the most recent full year of data
available (1989–2018). Note that due to necessity this differs from
the suggested climatology period of 1983–2012 that would more
closely match the WMO standard (Hobday et al., 2018). The
effect of shifting the 30 year climatology base is shown in the
Supplementary Figure S2.

The a priori fix proposed to address the issue of short
time series length is to use a different climatology estimation
technique. The option currently available within the MHW
detection algorithm is to expand the window half width used
when smoothing the climatology. Other techniques, such as
harmonic regression/Fourier analysis, would have a similar effect
but are not used here in favor of the (Hobday et al., 2016) method.
It is beyond the scope of this paper to compare every possible
climatology calculation technique.

Controlling for Missing Data
In order to determine the effect of random missing data on the
MHW results, each time series has 0–50% of its data removed in
1% steps before running the MHW algorithm. The control time
series are the complete versions.

The a priori fix for missing data in the time series is to
linearly interpolate over any gaps. There are many methods
of interpolating (imputing) gaps in time series, such as spline
interpolation, but we choose linear interpolation here due to its
speed, simplicity, and it imposes fewer assumptions on the data.
It is beyond the scope of this paper to account for every possible
method of interpolation.

Controlling for Long-Term Trend
To quantify the effect of a long-term (secular) trend on the
MHW results we add linear trends of 0.00–0.30◦C/decade in
0.01◦C/decade steps to each time series. The control time series
are those with no added trend (e.g., 0.00◦C/decade).

There is no proposed a priori method to correct for the added
linear trend in these data as this would be simply not to add a
trend. Rather it is proposed that the relationship between the
slope of the added trend and the effect it has on the results be
documented to determine if a predictable relationship may be
used for any post hoc corrections.

RESULTS

Time Series Length
Shortening the length of a time series from 30 to 10 years had an
unpredictable effect on the count of average MHWs (Figure 2A).
At 10 years in length, 90% of the 1000 time series (pixels) tested
had between 32% fewer to 85% more MHWs than the 30 year
control. The overall increase or decrease in the count of average

MHWs was close to linear, meaning that one may be able to
say what the change in the count of MHWs may be as a time
series is shortened, but it does not allow us to say if this change
is positive or negative. The change in the sum of days of the
durations of the average MHWs from a 10 year time series
ranged from 41% fewer to 84% more than the 30 year control
(Figure 2B). This change is slightly more linear than for the count
of MHWs, but again, the values may increase or decrease. The
mean of the maximum intensities of the average MHWs also
either increase or decrease, with 10 year time series having mean
maximum intensities anywhere from 16% less to 7% more than
the 30 year control.

Increasing the climatology period to more than 30 years
had almost as rapid an effect on creating dissimilar results as
using fewer years of data. This result stresses the importance
of adhering to the WMO standard as closely as possible
to ensure the comparability of results (Hobday et al.,
2018). It also demonstrates the arbitrariness of the 30 year
climatological base period.

Shortening time series length tended to decrease both the
duration and maximum intensity of the focal MHW from each
time series (Figures 3B,C), while the count of MHWs within
the duration of the focal MHW increased (Figure 3A). This is
because shortening a time series may increase the seasonal and
threshold climatologies, so the shorter a time series becomes,
the lower the maximum intensity and shorter the duration of
the MHWs may become. MHWs with many spikes (Figure 1A),
rather than a smooth hump (Figure 1C), will be particularly
affected by this change in the climatology as it will more rapidly
break the focal MHW into smaller events (Figure 3A).

There are clear global patterns in the changes in MHW
results as time series are shortened from 30 to 10 years
(Figure 4). The median change in the count of average MHWs
due to changes in time series length is only 0.24%/year, but
much of the western Pacific and northern Atlantic oceans
show large rates of increasing MHW counts as time series
are shortened (Figure 4A). The rates of change in the eastern
Pacific, southern Atlantic, and the Indian Ocean show a mix
of both increasing and decreasing counts of MHWs as time
series become shorter. The patterns of change in the sum
of MHW days closely resemble the change in the count of
MHWs (Figure 4B). The median change in the maximum
intensity of average MHWs throughout most of the oceans
is −0.21%/year (Figure 4C). This means that, on average, a
MHW detected in a 10 year time series will have a maximum
intensity about 4.2% cooler than a MHW detected in a
30 year time series (0.21%/year times 20 year difference). This
small difference shows the robustness of the MHW detection
algorithm. There are areas where decreasing a time series
increases the maximum intensities of the MHWs detected. These
areas are roughly the same regions where the shortening of
a time series causes a decrease in the count of MHW days
detected. It is important to note that the long-term trends in
these data were removed beforehand so the patterns observed in
Figure 4 are due to the properties of the time series themselves
and not the climate change signal that would otherwise be
dominant in the results.
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FIGURE 2 | The effects of sub-optimal data on the average MHWs detected in 1000 randomly selected time series (pixels) from the OISST dataset. The columns
show the results for each of the three sub-optimal tests: time series length (10–37 years, A–C), missing data (0–50%, D–F), and added long-term trends
(0.00–0.30◦C/decade, G–I). The rows show the results from the MHW detection output: the percent change in the count of MHWs (A,D,G), the percent change in
the sum of the MHW days (B,E,H), and the percent change in the mean of the maximum intensities of the MHWs (C,F,I). The light gray vertical bars show the 5th
and 95th quantiles of the values at each step along the x-axis. The dark gray boxplots within the light gray bars show the 25th, 50th, and 75th quantiles of the values
at each step. The dashed black line highlights 0 on the y-axis, which denotes where there has been no change from the control time series. The colored lines show
the effect of the sub-optimal tests on the three reference time series shown in Figure 1. Note that the x-axes differ between columns, and the y-axes differ between
rows.

The global patterns of the effect of shortened time series on
the focal MHWs are similar to the average MHWs. Much of
the ocean that shows a decrease in the count of MHWs as a
time series is shortened (Figure 4A) also show an increase in the
count of MHWs during the duration of the focal MHW at 10%
more MHWs per year the time series is shortened (Figure 4D).
This may seem contradictory, but this increase in the count
of MHWs during the focal MHW in a time series is due to
it being broken into smaller events. When this occurs on the
smaller MHWs they may be broken up enough to no longer be
counted, and therefore the count of average MHWs decreases.
The decrease in the durations of the focal MHWs are greater than
the decreases for the average MHWs and the spatial homogeneity
of this pattern is more broken up (Figures 4B,E). The regions that
show increasing durations in the focal MHW are spatially smaller
than the average MHWs and the rates of increase are roughly one
quarter of those for the average MHWs (Figures 4B,E). Finally,
the rates of increase or decrease in maximum intensities were
similar in scale between the average and focal MHWs, but differed
in their spatial patterns. Whereas the average MHWs show clear

warming trends in the northeast and south Pacific (Figure 4C),
these features are much reduced for the focal MHWs (Figure 4F).
The strong cooling signal in the average MHWs north of Europe
is replaced by a spatially broad warming trend in the focal MHWs
in the area. The minor warming trend in the average MHWs
around the Kuroshio Current is replaced by a spatially larger and
more intense warming trend in the focal MHWs.

Missing Data
The effects of increasing missing data on MHW detection were
more linear than the effects of time series length, with the
exception of MHW count, which was the least linear effect of all
tests (Figure 2). Up to 25% missing data, the count of average
MHWs in a times series decreases by 45% or increases by 38%
(Figure 2D). Past this point the count of MHWs falls at a roughly
linear rate until there are 33–86% fewer MHWs when 50% data
are missing. The effect of missing data on the sum of the average
MHW days was linear at a rate of roughly 2% fewer MHW days
in a time series for every 1% of missing data (Figure 2E). The
effect of missing data on the maximum intensities of the average
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FIGURE 3 | The effects of sub-optimal data on the focal MHWs detected in 1000 randomly selected time series (pixels) from the OISST dataset. The columns and
rows of this figure are laid out the same as Figure 2. The top row of panels, “Count (% n)” (A,D,G), shows the difference in the count of MHWs during the duration of
the focal event from the control time series. A value of –100% means that no events were detected, and a value of 0% means that no additional MHWs were
detected in addition to the focal MHW. Theoretically this value should remain at 0%, when it increases that means that the focal MHW is being broken up into
multiple smaller events. The bottom two rows of panels show percentage changes in the duration (B,E,H) and maximum intensity (C,F,I) of the focal MHW. A value
of –100% means that no MHW was detected. The 0 line on the y-axis is highlighted with a dashed black line and the effect of the sub-optimal tests on the three
reference time series are shown in color.

MHWs was also linear, but very noisy. The maximum intensities
of average MHWs detected in time series missing 50% of their
data could decrease by 33% or increase by 3%.

The effect of random missing data on the focal MHW in
each time series was dramatic. As missing data in a time series
increased, it becomes increasingly likely that the focal MHW is
broken into multiple smaller events. It is not uncommon for
this to begin with as little as 1% missing data, and increases in
severity up to 25–30% (Figure 3D). From this point the number
of separate events the MHW is broken into decreases as the
smaller events are completely missed due to the loss of data.
The duration of the focal MHW was almost always negatively
impacted by missing data (Figure 3E). The decrease in duration
follows a linear trend of a reduction ranging from 1 to 3% per 1%
of missing data. At 26% missing data at least 5% of the time series
had their focal MHW removed entirely from the time series, as
seen by a reduction in maximum intensity of 100% (Figure 3F).
At 41% missing data at least 25% of the time series had their
focal MHW removed.

The effect of missing data on a MHW depends largely on
their shape, which is the area above the threshold climatology

and below the observed anomaly. The WA event has a very
pronounced peak (Figure 1A), so when more data are missing
it becomes increasingly likely that this peak is not recorded.
The maximum intensity measured in the control time series
is 6.5◦C, but because very few days of this MHW were so
intense, increases in missing data become more likely to remove
these large values and the maximum intensity of the WA
event begins to decrease more rapidly than either the NWA
or Mediterranean MHWs. The global patterns in missing data
are unremarkable and generally consistent across the oceans
(Supplementary Figure S3).

Long-Term Trend
The effect of a long-term trend on MHW detection was the most
linear of the three tests and resulted in the largest changes in
the results. An added linear trend can lead to a reduction in the
count of average MHWs in a time series, but generally it causes a
linear increase at roughly 3% additional average MHWs detected
for every 0.01◦C/decade added (Figure 2G). The effect that these
additional MHWs had on the sum of average MHW days was
an increase, ranging from 1.7 to 11.5% for every 0.01◦C/decade
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FIGURE 4 | Global map showing changes in MHW detection as the time series at each pixel is shortened from 30 to 10 years. The left column shows the effect of
time series length on the average MHWs detected, while the right column shows the effect on the focal MHW. Panels (A,D) show the change in the count of MHWs
as the time series are shortened, (B,E) show the change in the duration (days) of the detected MHW(s), and (C,F) show the change in the maximum intensity (◦C).
The labels on the color bars at the bottom of each panel show what the global values are at the 5th, 25th, 50th, 75th, and 95th quantiles. Any values smaller/larger
than the 5th/95th quantile were rounded to prevent the very long tails of the distribution from interfering with the visualization of the results.

added (Figure 2H). This means that the average MHWs detected
in a time series with a long-term trend of 0.30◦C/decade could be
48–347% longer than in the same time series with no long-term
trend. The effect of linear trends on the maximum intensity of the
average MHWs, though generally linear, could be either positive
or negative at a rate of−0.1–0.6% per 0.01◦C/decade added.

The focal MHW in each time series was never broken into
multiple events due to the added long-term trend (Figure 3G),
however, the duration of the focal MHWs were affected
differently. The Mediterranean MHW showed practically no
increase in duration due to an added long-term trend, the
WA MHW saw a large jump at 0.03◦C/decade, and the NWA
MHW had a dramatic jump at an added trend of 0.09◦C/decade,
followed by a few other increases at larger added trends
(Figure 3H). Likewise, all of the other 1000 time series included
in Figure 3 tend to jump up in dramatic steps, as seen by the
very large range in the 90 and 50% confidence intervals (CI).
These jumps in duration occur as the temperature anomalies
increase more rapidly than the threshold and neighboring MHWs

in a time series connect into one event. The effect that the long-
term trend had on the maximum intensity of focal MHWs was
also linear and at an added trend of 0.30◦C/decade the 90% CI
was from 8 to 35% of the control value (Figure 3I). The global
patterns in added long-term trends generally show that MHW
metrics increase (Supplementary Figure S4).

BEST PRACTICES

Given the effect of time series length, missing data, and long-
term trends on the detection of MHWs, we can quantify the
uncertainty in the results when using sub-optimal data. In Table 1
the increasing rates of uncertainty per step in the sub-optimal
tests for average MHWs is shown, while Table 2 shows the
uncertainty for the focal MHWs. For example, a time series that
is 20 years in length (10 years shorter than optimal), will result
in a median difference in the duration of average MHWs that
is 3% lower, and the 90% CI will be ±27% around that median
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difference. These rates of uncertainty at the 90% CI are large,
but knowing where in the world a time series comes from it is
possible to make a more accurate inference. For example, the
change in the duration of average MHWs in the North Sea as the
time series are shortened is very consistently positive and near
the high end of the global distribution (Figure 4B). This means
that one can be more confident that the upper range of the 90%
CI is an appropriate choice when estimating the possible change
in results if they had been calculated with an optimal time series
(30 years). One final point of consideration in the application
of this information for judging uncertainty is to consider how
linear the response of the results to the sub-optimal tests is. The
values in parentheses in Tables 1, 2 show the R2 (coefficient of
determination) for each linear model that was used to determine
the change in uncertainty as time series become more sub-
optimal. More examples, as well as a step-by-step walk through
for how to use the numbers in these tables, are provided in each
sub-section below. The a priori and post hoc fixes proposed in
the methods are also covered in more detail in the following
sub-sections. It must be stressed here that the methods proposed
below for working with sub-optimal data do not address the
issues that remotely sensed data have near coastlines.

Correcting for Time Series Length
The a priori fix proposed for shorter time series, creating a
smoother seasonal signal by expanding the window half-width
of the moving average, was not a reliable option and this should
be left as the standard 5 day period. Increasing the window
half-width to as much as 30 days has very little effect on
the 50% (interquartile) and 90% CI ranges for the count of
average MHWs, the effect on individual time series is inconsistent
(Figure 5, top row). The effect of this change to the detection
algorithm on the duration of average MHWs was negligible at
all window half-widths tested (Figure 5, middle row). The effect
of wider window half-widths on the maximum intensity of the
average MHWs appeared to help keep the results comparable
(Figure 5, bottom row), but upon closer inspection this was
found to be misleading. The effect of widening the window
half-widths was similar for the results of the focal MHWs
(Supplementary Figure S5). The widening of the window half-
widths affects MHW detection by flattening the shape of the
sinusoidal seasonal climatology. The overall mean value does not
change, but the peaks and troughs are pulled closer to the mean
while the slopes between them become more gradual. Because the
mean of the seasonal signal does not change, the total anomalous
observations remain similar, but where along the seasonal signal
those anomalies are detected may shift dramatically. This is
particularly noticeable for MHWs that occur at the peak of
summer because the seasonal and threshold climatologies are
lowered the most here, making these events appear more intense.

Although an a priori fix for time series length is not effective,
the known rates of uncertainty can be used to provide the
post hoc uncertainty to detected MHWs. Using the focal MHW
uncertainty rates as an example, the first six rows of Table 2 show
the rate of uncertainty introduced into results for a focal MHW
for each year less or more than 30 years. The “Range” column
in Tables 1, 2 indicate which direction from the 30 year control

the slope in uncertainty is moving. The focal MHW detected in a
10 year time series will have a median (50th quantile) difference
in maximum intensity of−3% from that same MHW in a 30 year
time series (Table 2, row 5, column “q50,” value = −0.15%/year
shorter than 30). This may be estimated by taking the value found
in the corresponding cell of the table and multiplying it by the
number of years that the time series is shorter (or longer) than
the 30 year optimal length. It is unlikely that results will match
the median difference. It is more likely that the detected MHW
will fall somewhere within the 50% CI (Tables 1, 2, column “q25”
to “q75”), or the 90% CI (Tables 1, 2, column “q05” to “q95”)
range. To determine these ranges in uncertainty, an approach is
to use the slope found in the respective columns and multiply
each slope by the number of years that the time series is shorter
or longer than the 30 year control. This provides the full range of
uncertainty within the 50% CI or 90% CI as well as the median
change. For example, the 50% CI in the change in the maximum
intensity of a focal MHW in a 10 year time series is found by
multiplying the 25th and 75th quantiles of change. Using the
10 year time series example described above, this means that
the overall range of uncertainty around the median change is:
0.38% × 20 (difference in years) = 7.6%, the change in the 25th
quantile is −0.36% × 20 = −7.2%, and the change in the 75th
percentile is 0.02% × 20 = 0.4%. The final estimate of the 50 CI
around the median change in maximum intensity is therefore:
−7.2, −3.8, and 0.4%. This means that in a 10 year time series
one can assume that the focal MHW detected has a 50% chance of
having a maximum intensity that is somewhere between−7.2 and
0.4% of the same MHW estimated using a 30 year times series.

Correcting for Missing Data
Linear interpolation was proposed as an a priori fix to address the
issue of missing data and was effective. This fix could allow the
use of time series missing more than 50% of their data (Figure 6),
assuming that there is not so much missing data that the period
of time during a MHW is completely missing. The rates of
uncertainty that missing data introduce into detected MHWs
may be found in rows 7–10 of Tables 1, 2, but we will focus on
the use of the rates of uncertainty for interpolated data here as
this is an effective fix. Note that rows 7 and 8 of Tables 1, 2 show
rates of change in the count of MHWs for missing data between
different ranges of missing data. This is because the change in the
count of MHWs due to missing data is not linear. If one cuts the
data at roughly 25% this provides the highest R2 values for the
two slopes (most linear fit).

As an example for the use of linear interpolation over missing
data in a time series we show how to calculate the 90% CI around
the average MHW duration in a time series missing 30% data.
The median rate of change in average MHW duration per 1%
missing data after linear interpolation is 0.3% (Table 1, row
12, column “q50”), the rate of change for the 5th quantile is
0.09% (Table 1, row 12, column “q05”), and for the 95th quantile
it is 0.85% (Table 1, row 12, column “q95”). At 30% linearly
interpolated data one may assume a 90% CI around the average
MHW duration to be 2.7% – 9.0% – 25.5%. In other words, there
is a 90% chance that the average duration of the MHWs detected
in a time series with 30% interpolated data are between 2.7 and
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TABLE 1 | The degree of uncertainty introduced into the average marine heatwave (MHW) results as time series become increasingly sub-optimal.

Test Variable Range q05 q25 q50 q75 q95

Length Count 30–10 −1.00% (0.76) −0.39% (0.65) 0.32% (0.65) 1.39% (0.94) 3.77% (0.93)

Length Count 30–37 −2.89% (0.80) −1.29% (0.87) −0.35% (0.22) 0.52% (0.31) 1.97% (0.64)

Length Duration 30–10 −1.62% (0.95) −0.96% (0.89) −0.29% (0.44) 0.86% (0.87) 3.80% (0.93)

Length Duration 30–37 −2.86% (0.86) −1.24% (0.83) −0.33% (0.28) 0.52% (0.43) 1.67% (0.68)

Length Max. intensity 30–10 −0.72% (0.98) −0.42% (0.99) −0.23% (0.97) −0.06% (0.40) 0.21% (0.67)

Length Max. intensity 30–37 −0.45% (0.55) −0.11% (0.33) 0.10% (0.81) 0.36% (0.95) 0.83% (0.86)

Missing Count 0.00–0.25 −1.45% (0.97) −0.92% (0.95) −0.44% (0.59) 0.24% (0.15) 1.53% (0.74)

Missing Count 0.26–0.50 −1.67% (0.99) −1.95% (1.00) −2.16% (1.00) −2.48% (1.00) −3.10% (0.99)

Missing Duration 0.00–0.50 −1.80% (0.97) −1.81% (0.99) −1.80% (0.99) −1.76% (1.00) −1.65% (0.99)

Missing Max. intensity 0.00–0.50 −0.60% (0.99) −0.42% (0.98) −0.31% (0.96) −0.19% (0.89) 0.01% (0.00)

Interp Count 0.00–0.50 −0.17% (0.85) 0.00% (1.00) 0.17% (0.90) 0.35% (0.98) 0.70% (0.98)

Interp Duration 0.00–0.50 0.09% (0.83) 0.19% (0.97) 0.30% (0.99) 0.44% (0.99) 0.85% (0.99)

Interp Max. intensity 0.00–0.50 −0.22% (0.99) −0.16% (1.00) −0.12% (0.99) −0.07% (0.91) −0.02% (0.21)

Trend Count 0.00–0.30 0.71% (0.95) 1.74% (1.00) 2.69% (1.00) 3.97% (1.00) 7.44% (0.99)

Trend Duration 0.00–0.30 1.66% (1.00) 2.87% (1.00) 3.97% (1.00) 5.66% (1.00) 11.47% (1.00)

Trend Max. intensity 0.00–0.30 −0.12% (0.40) 0.14% (0.79) 0.29% (0.97) 0.42% (0.99) 0.61% (0.99)

Starting from the left, the “Test” column shows which of the three sub-optimal tests the results are for. The rows labeled “Interp” are for the interpolation fix for the missing
data tests. The “Variable” column shows the different MHW results that were focussed on in the sub-optimal tests. The “Range” column shows the range of values
over which the various uncertainty rates were measured. Note that there are two entries for each variable in the length test. This is done to show the difference in the
uncertainty that increasing OR decreasing a time series past the 30 year standard affects the results. Also note that there are two rows for the effect of missing data on
the count of MHWs, this is because the response is made more linear, and therefore a better predictor, if broken in half from 0–25% and 26–50%. The final five columns
show the rate of uncertainty as a percentage difference caused by each test on each variable at the five different quantiles used in the boxplot figures: “q05” = the 5th
quantile, “q25” = the 25th quantile, “q50” = the 50th quantile, “q75” = the 75th quantile, and “q95” = the 95th quantile. The R2 value (coefficient of determination) of the
slope in each cell is given in parentheses.

TABLE 2 | The degree of uncertainty introduced into the focal marine heatwave (MHW) results as time series become increasingly sub-optimal.

Test Variable Range q05 q25 q50 q75 q95

Length Count 30–10 0.00% (1.00) 0.00% (1.00) 0.00% (1.00) 3.51% (0.33) 9.59% (0.78)

Length Count 30–37 −8.93% (0.67) 0.00% (1.00) 0.00% (1.00) 0.00% (1.00) 0.00% (1.00)

Length Duration 30–10 −2.16% (0.95) −1.12% (0.94) −0.34% (0.66) 0.00% (1.00) 1.05% (0.71)

Length Duration 30–37 −2.58% (0.87) 0.00% (1.00) 0.00% (1.00) 0.00% (1.00) 2.06% (0.82)

Length Max. intensity 30–10 −0.65% (0.98) −0.36% (0.98) −0.15% (0.97) 0.02% (0.23) 0.29% (0.91)

length Max. intensity 30–37 −0.40% (0.82) −0.13% (0.66) 0.04% (0.42) 0.19% (0.89) 0.44% (0.84)

Missing Count 0.00–0.25 0.00% (1.00) 0.00% (1.00) 5.23% (0.67) 8.75% (0.78) 19.12% (0.86)

Missing Count 0.26–0.50 −0.85% (0.07) −5.47% (0.70) −5.64% (0.72) −8.41% (0.81) −12.12% (0.85)

Missing Duration 0.00–0.50 −1.80% (0.81) −2.17% (0.97) −2.07% (0.99) −1.95% (0.99) −1.59% (0.93)

Missing Max. intensity 0.00–0.50 2.66% (0.86) 2.17% (0.74) 0.70% (0.74) 0.20% (0.54) 0.01% (0.10)

Interp Count 0.00–0.50 0.00% (1.00) 0.00% (1.00) 0.00% (1.00) 0.00% (1.00) 0.00% (1.00)

Interp Duration 0.00–0.50 −0.12% (0.91) 0.00% (1.00) 0.02% (0.32) 0.20% (0.88) 1.26% (0.97)

Interp Max. intensity 0.00–0.50 −0.31% (0.98) −0.09% (0.81) −0.01% (0.77) 0.00% (0.02) 0.01% (0.98)

Trend Count 0.00–0.30 0.00% (1.00) 0.00% (1.00) 0.00% (1.00) 0.00% (1.00) 0.00% (1.00)

Trend Duration 0.00–0.30 0.00% (1.00) 0.35% (0.92) 1.07% (0.98) 2.70% (1.00) 5.66% (0.98)

Trend Max. intensity 0.00–0.30 0.27% (1.00) 0.44% (1.00) 0.59% (1.00) 0.79% (1.00) 1.19% (1.00)

All elements of this table are the same as Table 1 and are used the same in the calculation of uncertainties introduced into MHW results from sub-optimal data.

25.5% that of the MHWs detected in the same time series without
any missing data.

Correcting for Long-Term Trend
There was no a priori fix proposed for the correction of an added
linear trend. Rather, by knowing the trend in a time series a priori
we have been able to model the effect that it has on detected
MHWs. The effect that long-term trends have on the results are
much greater than for time series length or missing data, and

the effects are more linear, therefore; we can be more confident
in the uncertainty we assign to the detected MHWs. However,
the ranges of uncertainty introduced by long-term trends are
also much greater than for the other two tests. To illustrate how
long-term trends affect the count of average MHWs we use a
time series with a known linear trend of 0.25◦C/decade. The
median rate at which a long-term trend in a time series affects
the count of average MHWs is 2.69% per 0.01◦C/decade (Table 1,
row 14, column “q50”), the 5th quantile is 0.71% (Table 1, row

Frontiers in Marine Science | www.frontiersin.org 10 November 2019 | Volume 6 | Article 737

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00737 November 26, 2019 Time: 18:16 # 11

Schlegel et al. Detecting Marine Heatwaves

FIGURE 5 | The effect of changing the window half-widths used for seasonal and threshold climatology creation on average MHW detection. The left column (A–C)
is reproduced from Figures 2A–C and included here for ease of comparison to the effects of the three different window half-widths tested: 10 (D–F), 20 (G–I), and
30 (J–L) days. The default window half-width of 5 days is used in the left column. All other elements are the same as Figures 2, 3.

14, column “q05”), and the 95th quantile is 7.44% (Table 1,
row 14, column “q95”), therefore; the count of average MHWs
detected in a time series with a long-term trend of 0.25◦C/decade
is likely (90% CI) 17.75% – 67.25% – 186%. This is a very large
effect that supports the argument for using a 10 year long or
50% interpolated data time series. There are long-term trends
present in most time series being used and these effects on the
MHWs therein are almost certainly greater than using short
time series with missing data. If one is comfortable detecting
MHWs in a time series before detrending it, one should be
comfortable with the use of time series shorter than 30 years or
missing some data.

DISCUSSION

This investigation into the effects of sub-optimal data on MHW
detection revealed that there are no clear statistical thresholds at
which the outputs of the MHW algorithm diverge from optimal
data. The ranges of uncertainty that sub-optimal data introduce
into MHW results could be determined and users may now
decide their acceptable level of uncertainty. It must be noted that
having used only SST data for these investigations the results may
not accurately represent the properties of sub-surface MHWs,

which may last longer and be more intense than those at the
surface (Schaeffer and Roughan, 2017; Darmaraki et al., 2019).

The MHW results from time series with 10 years of data are
not appreciably different from the MHWs detected with 30 years
of data. The rates at which the count, duration, and maximum
intensity of MHW change from year-to-year within a single time
series may vary wildly, but a global sampling showed that the
increasing range in the uncertainty of the results one may expect
are roughly linear. The rates of uncertainty in Table 1 may
therefore be applied post hoc to MHWs detected in shorter time
series to provide the uncertainly range within which the results
are comparable to those from an optimal time series.

An unexpected result was that increasing the base period used
for climatology creation to longer than 30 years reduced the
probability that the outputs would be comparable by as much
as shortening the base period did. This means that the common
(often unspoken) assumption that using 30 years of data is the
same as using >30 years of data for a base period is incorrect.
In other words, a 30 year time series is often thought of as the
minimum length needed to constrain the climatology but we have
shown here that using a climatology period greater than 30 years
may create outputs as different as using fewer than 30 years.
This is due to the decadal and multi-decadal variability in an
environmental time series. In time series with less decadal to
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FIGURE 6 | The effect of linear interpolation on the MHW results from time series with missing data. The left column (A–C) and centre-right column (G–I) are
reproduced from Figures 2D–F and Figures 3D–F respectively. They are included here for convenience of comparison against the columns that show the results of
linearly interpolating missing data before detecting average MHWs (D–F) and focal MHWs (J–L). Note that the y-axes of the left two columns are not the same as
the right two columns. A value of –100% along the y-axis means no MHWs were detected. All other elements are the same as Figures 2, 3, and 5.

multi-decadal variability there will be no appreciable difference
between results calculated with a 30 year base period versus the
30+ years. In a time series with large decadal to multi-decadal
variability, a base period of 30 years is not long enough to remove
this variability. It is therefore important to stress the adherence to
the WMO standards for climatology periods as closely as possible
to ensure results are comparable to other studies (Hobday et al.,
2018). Increased smoothing of the climatologies derived from
shortened time series was not an effective fix so it is recommend
that the default climatology method in Hobday et al. (2016) also
be followed to maximize comparability between studies.

The MHW algorithm proved to be resilient to missing
data. Time series missing up to 25% of their data resulted
in a count of MHWs comparable to using a 10 year time
series and the rate of increase in uncertainty can be modeled
with some accuracy. Time series missing more than 25% were
affected too much and too unpredictably for the results to
be reliable, while focal MHWs were sometimes not detected
with 26% or more missing data. Fortunately, the effect that
missing data has on the duration of average MHWs in a time
series is predictable and can be corrected (Table 1). A simple
correction for missing data in a time series is to linearly

interpolate over the gaps – for more than 50% missing data,
the results will have less uncertainty in them than using a
10 year time series. This advice assumes that missing data is
distributed through the time series, if the period of time during
a MHW is missing large sections of data, interpolation will
not be effective.

The long-term temperature trends in times series have the
largest potential effect on the MHWs detected. These effects
are the most predictable of the three issues examined but also
introduce the largest ranges of uncertainty. The increase in
duration from added long-term trends led to temperatures in the
time series usually increasing “faster” than the 90th percentile
threshold. So as the slope of the added trend increases, the length
of a given MHW increases. MHWs with a slow onset/decline (e.g.,
the NWA event) will increase in duration more rapidly, while
those with a more rapid onset/decline (e.g., the Mediterranean
event) will not appreciably change in duration with a larger
long-term trend. A series of MHWs separated by short periods
of time may merge into a single larger event (e.g., the WA
event). This reduces the overall count of the MHWs detected
in a time series while increasing the mean duration of the
events detected.
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CONCLUSION

The acceptable sub-optimal data limits, their proposed
corrections, and the amount of uncertainty they introduce into
the results are as follows:

(1) Time series length:

• A length of 10 years produces acceptable MHW metrics that
may be used with some caution.
• Smoothing the climatology before detecting MHWs does

not improve the results and should not be done.
• The largest uncertainty that shorter time series introduce

into average or focal MHWs is duration:

• Average MHW duration changes by −1.62–
3.8%/year shorter than 30 (90% CI).
• Focal MHW duration changes by −2.16–1.05%/year

shorter than 30 (90% CI).

(2) Missing data:

• The effect of missing data up to 25% on MHW results is
comparable to the effect of a 10 year time series.
• Focal MHWs may begin to disappear from time series

missing 26% or more data.
• Linear interpolation is an excellent fix for missing data up

to 50%, assuming that the time period of interest is not
completely missing.
• The largest uncertainty that linearly interpolated missing

data introduce into MHW results is duration:

• Average MHW duration changes by 0.09–0.85%
per% interpolated (90% CI).
• Focal MHW duration changes by−0.12–1.26% per%

interpolated (90% CI).

(3) Long-term trends.

• Long-term trends had the greatest effect on MHWs of
the three sub-optimal tests and had the greatest range of
uncertainty around those effects.
• Long-term trends in excess of those tested in this paper

occur naturally and are rarely controlled for so no limit
is proposed here.
• The duration of MHWs is what is affected most by a long

term trend in the data:

• Average MHW duration changes by 1.66–11.47% per
0.01◦C/decade (90% CI).
• Focal MHW duration changes by 0.00–5.66% per

0.01◦C/decade (90% CI).

Researchers need not avoid using sub-optimal time series,
such as might be the best available for coastal research or sub-
surface analyses. Time series length may have an unpredictable
effect on MHW results, but this may be corrected, and time series
lengths as short as 10 years are still useful for MHW research.
Missing data has a larger effect on MHW detection, but linear
interpolation can compensate for up to 50% missing data. Lastly,
the effect of long-term trends on MHW detection are the largest
and most linear but also have the largest uncertainties. The MHW
detection algorithm is robust and researchers may be confident in
the inter-comparability of results when using time series within a
generous range of sub-optimal data challenges.

DATA AVAILABILITY STATEMENT

The code and datasets generated for this study may be found
at https://github.com/robwschlegel/MHWdetection. A detailed
outline of the code used in this methodology may be found at
https://robwschlegel.github.io/MHWdetection/.

AUTHOR CONTRIBUTIONS

RS prepared the majority of the text, figures, synthesized the
comments, and uploaded the manuscript. AS prepared a large
portion of an early version of the text and a number of initial
figures. AH, EO, and AS provided several rounds of comments
on the manuscript as it was developed.

FUNDING

This research was supported by the Ocean Frontier Institute
through an award from the Canada First Research Excellence
Fund. Funding was also provided through the National Sciences
and Engineering Research Council of Canada Discovery Grant
RGPIN-2018-05255.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of the
reviewers in the development of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2019.00737/full#supplementary-material

REFERENCES
Banzon, V., Smith, T. M., Chin, T. M., Liu, C., and Hankins, W. (2016). A

long-term record of blended satellite and in situ sea-surface temperature for
climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data
8, 165–176. doi: 10.5194/essd-8-165-2016

Baumgartner, T. R. (1992). Reconstruction of the history of the pacific sardine and
northern anchovy populations over the past two millenia from sediments of the
Santa Barbara basin, California. CalCOFI Rep. 33, 24–40.

Darmaraki, S., Somot, S., Sevault, F., and Nabat, P. (2019). Past variability of
Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 46, 9813–9823. doi:
10.1029/2019GL082933

Frontiers in Marine Science | www.frontiersin.org 13 November 2019 | Volume 6 | Article 737

https://github.com/robwschlegel/MHWdetection
https://robwschlegel.github.io/MHWdetection/
https://www.frontiersin.org/articles/10.3389/fmars.2019.00737/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2019.00737/full#supplementary-material
https://doi.org/10.5194/essd-8-165-2016
https://doi.org/10.1029/2019GL082933
https://doi.org/10.1029/2019GL082933
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00737 November 26, 2019 Time: 18:16 # 14

Schlegel et al. Detecting Marine Heatwaves

Dayton, P. K., Tegner, M. J., Parnell, P. E., and Edwards, P. B. (1992). Temporal and
spatial patterns of disturbance and recovery in a kelp forest community. Ecol.
Monogr. 62, 421–445. doi: 10.2307/2937118

Fordyce, A. J., Ainsworth, T. D., Heron, S. F., and Leggat, W. (2019). Marine
heatwave hotspots in coral reef environments: physical drivers, ecophysiological
outcomes and impact upon structural complexity. Front. Mar. Sci. 6:498.
doi: 10.3389/fmars.2019.00498

Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonné, P., Cigliano, M.,
et al. (2009). Mass mortality in Northwestern Mediterranean rocky benthic
communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103.
doi: 10.1111/j.1365-2486.2008.01823.x

Harrison, B., Jupp, D., Lewis, M., Forster, B., Mueller, N., Smith, C., et al.
(2019). Earth Observation: Data, Processing and Applications. Melbourne, VIC:
Australia and New Zealand CRC for Spatial Information.

Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver,
E. C. J., et al. (2016). A hierarchical approach to defining marine heatwaves.
Progr. Oceanogr. 141, 227–238. doi: 10.1016/j.pocean.2015.12.014

Hobday, A. J., Oliver, E. C. J., Gupta, A. S., Benthuysen, J. A., Burrows, M. T.,
Donat, M. G., et al. (2018). Categorizing and naming marine heatwaves.
Oceanography 31, 162–173. doi: 10.5670/oceanog.2018.5205

Mills, K., Pershing, A., Brown, C., Chen, Y., Chiang, F. S., Holland, D., et al.
(2013). Fisheries management in a changing climate: lessons from the 2012
ocean heat wave in the Northwest Atlantic. Oceanography 26, 191–195.
doi: 10.5670/oceanog.2013.27

Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander,
L. V., et al. (2018). Longer and more frequent marine heatwaves over the past
century. Nat. commun. 9:1324. doi: 10.1038/s41467-018-03732-9

Oliver, E. C. J., Lago, V., Holbrook, N. J., Ling, S. D., Mundy, C. N., and Hobday,
A. J. (2017). Eastern Tasmania Marine Heatwave Atlas, Institute for Marine
and Antarctic Studies. Hobart, TAS: University of Tasmania, doi: 10.4226/77/
587e97d9b2bf9

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., et al.
(2014). Synthesis Report. Contribution of Working Groups i, ii and iii to the Fifth
Assessment Report of The Intergovernmental Panel on Climate Change. Climate
Change 2014. (Geneva: Intergovernmental Panel on Climate Change)

Philander, S. G. H. (1983). El nino southern oscillation phenomena. Nature
302:295. doi: 10.1038/302295a0

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S.,
and Schlax, M. G. (2007). Daily high-resolution-blended analyses for
sea surface temperature. J. Clim. 20, 5473–5496. doi: 10.1175/2007JCLI
1824.1

Salinger, J., Hobday, A., Matear, R., O’Kane, T., Risbey, J., Dunstan, P., et al.
(2016). “Chapter one - decadal-scale forecasting of climate drivers for marine
applications,” in Advances in Marine Biology, ed. B. E. Curry (Cambridge, MA:
Academic Press), 1–68. doi: 10.1016/bs.amb.2016.04.002

Schaeffer, A., and Roughan, M. (2017). Sub-surface intensification of marine
heatwaves off southeastern Australia: the role of stratification and local winds.
Geophy. Res. Lett. 44, 5025–5033. doi: 10.1002/2017GL073714

Schlegel, R. W., and Smit, A. J. (2018). heatwaveR: a central algorithm for the
detection of heatwaves and cold-spells. J. Open Sour. Softw. 3:821. doi: 10.21105/
joss.00821

Smale, D. A., and Wernberg, T. (2009). Satellite-derived SST data as a proxy for
water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 387,
27–37. doi: 10.3354/meps08132

Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub,
S. C., et al. (2019). Marine heatwaves threaten global biodiversity and the
provision of ecosystem services. Nat. Clim. Change 9, 306–312. doi: 10.1038/
s41558-019-0412-1

Smit, A. J., Roberts, M., Anderson, R. J., Dufois, F., Dudley, S. F. J., Bornman,
T. G., et al. (2013). A coastal seawater temperature dataset for biogeographical
studies: large biases between in situ and remotely-sensed data sets around
the coast of South Africa. PLoS One 8:e81944. doi: 10.1371/journal.pone.008
1944

Stobart, B., Mayfield, S., Mundy, C., Hobday, A., and Hartog, J. (2016). Comparison
of in situ and satellite sea surface-temperature data from south Australia and
Tasmania: how reliable are satellite data as a proxy for coastal temperatures
in temperate southern Australia? Mar. Freshw. Res. 67, 612–625. doi: 10.1071/
MF14340

Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., de Bettignies,
T., et al. (2012). An extreme climatic event alters marine ecosystem structure
in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. doi: 10.1038/
nclimate1627

WMO, (2011). Guide to Climatological Practices. Geneva: World Meteorological
Organization.

WMO, (2017). WMO Guidelines on the Calculation of Climate Normals. Geneva:
World Meteorological Organization.

Zhao, Z., and Marin, M. (2019). A MATLAB toolbox to detect and
analyze marine heatwaves. J. Open Source Softw. 4:1124. doi: 10.21105/joss.
01124

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Schlegel, Oliver, Hobday and Smit. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 14 November 2019 | Volume 6 | Article 737

https://doi.org/10.2307/2937118
https://doi.org/10.3389/fmars.2019.00498
https://doi.org/10.1111/j.1365-2486.2008.01823.x
https://doi.org/10.1016/j.pocean.2015.12.014
https://doi.org/10.5670/oceanog.2018.5205
https://doi.org/10.5670/oceanog.2013.27
https://doi.org/10.1038/s41467-018-03732-9
https://doi.org/10.4226/77/587e97d9b2bf9
https://doi.org/10.4226/77/587e97d9b2bf9
https://doi.org/10.1038/302295a0
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1016/bs.amb.2016.04.002
https://doi.org/10.1002/2017GL073714
https://doi.org/10.21105/joss.00821
https://doi.org/10.21105/joss.00821
https://doi.org/10.3354/meps08132
https://doi.org/10.1038/s41558-019-0412-1
https://doi.org/10.1038/s41558-019-0412-1
https://doi.org/10.1371/journal.pone.0081944
https://doi.org/10.1371/journal.pone.0081944
https://doi.org/10.1071/MF14340
https://doi.org/10.1071/MF14340
https://doi.org/10.1038/nclimate1627
https://doi.org/10.1038/nclimate1627
https://doi.org/10.21105/joss.01124
https://doi.org/10.21105/joss.01124
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

	Detecting Marine Heatwaves With Sub-Optimal Data
	Introduction
	Defining Marine Heatwaves
	What Are Optimal Data for Detecting Marine Heatwaves?

	Materials and Methods
	Controlling for Time Series Length
	Controlling for Missing Data
	Controlling for Long-Term Trend

	Results
	Time Series Length
	Missing Data
	Long-Term Trend

	Best Practices
	Correcting for Time Series Length
	Correcting for Missing Data
	Correcting for Long-Term Trend

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


