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The Alaska Climate Integrated Modeling (ACLIM) project represents a comprehensive,
multi-year, interdisciplinary effort to characterize and project climate-driven changes
to the eastern Bering Sea (EBS) ecosystem, from physics to fishing communities.
Results from the ACLIM project are being used to understand how different regional
fisheries management approaches can help promote adaptation to climate-driven
changes to sustain fish and shellfish populations and to inform managers and
fishery dependent communities of the risks associated with different future climate
scenarios. The project relies on iterative communications and outreaches with
managers and fishery-dependent communities that have informed the selection of
fishing scenarios. This iterative approach ensures that the research team focuses on
policy relevant scenarios that explore realistic adaptation options for managers and
communities. Within each iterative cycle, the interdisciplinary research team continues
to improve: methods for downscaling climate models, climate-enhanced biological
models, socio-economic modeling, and management strategy evaluation (MSE) within
a common analytical framework. The evolving nature of the ACLIM framework ensures
improved understanding of system responses and feedbacks are considered within
the projections and that the fishing scenarios continue to reflect the management
objectives of the regional fisheries management bodies. The multi-model approach
used for projection of biological responses, facilitates the quantification of the relative
contributions of climate forcing scenario, fishing scenario, parameter, and structural
uncertainty with and between models. Ensemble means and variance within and
between models inform risk assessments under different future scenarios. The first
phase of projections of climate conditions to the end of the 21st century is complete,
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including projections of catch for core species under baseline (status quo) fishing
conditions and two alternative fishing scenarios are discussed. The ACLIM modeling
framework serves as a guide for multidisciplinary integrated climate impact and
adaptation decision making in other large marine ecosystems.

Keywords: climate change, fishery management strategy, Bering Sea, walleye pollock, Pacific cod, climate

projections

INTRODUCTION

Significant increases in sea surface temperature (SST) over the
next century are projected for most ocean systems (IPCC, 2014,
2018). Global warming is expected to have strong impacts
on ocean temperature and ocean productivity in high latitude
systems (Arrigo and Van Dijken, 2015; Smith et al, 2019).
However, the effect of warming climate conditions on marine
ecosystems and species are expected to be system- and species-
dependent, and the footprint of environmental change may
exhibit considerable variation across space and time (Poloczanska
et al, 2013; Cheung et al., 2016; Spencer et al., 2019). High
latitude marine ecosystems such as the Bering Sea are expected
to experience large deviations from historical ocean conditions
(Hermann et al., 2019; Spencer et al., 2019). Indeed, increased
ocean temperature has already impacted the Bering Sea marine
ecosystem through shifts in trophic demand and overwinter
survival (Heintz et al., 2013), species interactions (Spencer et al.,
2016), shifting spatial distributions (Barbeaux and Hollowed,
2018; Stevenson and Lauth, 2019; Thorson, 2019), and overall
system productivity (IPCC, 2014; Hermann et al., 2019). Bering
Sea ecosystems are also threatened by the effects of ocean
acidification on valuable crab stocks and important pelagic prey
species (Comeau et al., 2010; Long et al., in press).

In anticipation of these changes, the US National Marine
Fisheries Service (NMES) established a Climate Science Strategy
(NCSS) that called for scientists from each management region
to conduct research to understand, prepare for, and respond
to, climate impacts on the distribution and abundance of
managed species and the ecosystems in which they reside
(Buser et al., 2016). In response to this national call to action,
an interdisciplinary team of researchers was formed in 2015
to develop the Alaska Climate Integrated Modeling (ACLIM)
projec'. The goals of ACLIM were to:

o Identify key risks to eastern Bering Sea (EBS) fisheries, and
the region’s marine social-ecological system associated with
various future levels of climate-driven change.

e Evaluate climate-resilient adaptation pathways and identify
and avoid maladaptive approaches (sensu Wise et al., 2014).

e Identify sources of uncertainty in risk and projected
changes in order to inform future research and monitoring
to improve projections and advice.

We addressed these goals by: (1) applying a multi-model
approach (sensu Kaplan et al., 2019; Lotze et al., 2019) to project

Uhttps://www.fisheries.noaa.gov/alaska/ecosystems/alaska- climate- integrated-
modeling- project

the distribution and abundance of commercially important fish
and fisheries in the EBS under various climate change and
fishing scenarios (Figure 1); (2) evaluating the economic and
biological performance of the fishing scenarios for consideration
by the North Pacific Fishery Management Council (NPFMC),
the federal fisheries management body for the region (sensu
Holsman et al, 2019); and (3) decomposing uncertainty in
future climate projections according to structural, scenario, and
parameter uncertainty sources (Cheung et al., 2016; Payne et al.,
2016; Reum et al., in press).

This paper describes the ACLIM research framework, its
approach to quantifying uncertainty and multi-model inference,
and the program’s approach to interfacing science with regional
fishery management councils. This paper is designed to
provide an overview of the research framework. For in-depth
details of each modeling approach, the reader is directed to
relevant publications.

HISTORY

The ACLIM Team selected the EBS as a case study for
the development and implementation of a regional climate
impact, assessment, and management planning enterprise. The
EBS supports abundant fish and shellfish resources that are
of considerable economic and social value to the region, the
United States, and the world. For example, the estimated 2017
first-wholesale value for commercial harvest of all species (crab,
groundfish, clams, scallops, salmon, halibut) in the United States
shelf and slope regions of the EBS was $2.68 billion (Fissel
et al,, 2019). In addition, the major physical and biogeochemical
processes governing ecosystem production have been studied for
at least 40 years, providing opportunities for formulation and
parameterization of the responses of marine species to changes in
atmospheric, oceanographic, and biogeochemical drivers (Sigler
et al., 2016b; Stabeno et al., 2016). An Ecosystem Approach to
Fisheries Management (EAFM, Dolan et al., 2015) is used in the
region (Stram and Evans, 2009) and managers and stakeholders
are actively seeking improved climate- and ecosystem-based
information for decision making.

Key features of the EBS include: seasonal ice cover,
distinct biophysical domains driven by surface forcing and
tidal mixing, ice associated algal and phytoplankton blooms,
and fall phytoplankton blooms (Hunt et al, 2011; Stabeno
et al, 2012, 2017; Wang et al,, 2012; Baker and Hollowed,
2014; Cheng et al, 2015; Hermann et al.,, 2019). The role of
temperature and sea ice on the seasonal availability of high energy
content planktonic prey (large zooplankton) has been shown
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FIGURE 1 | lllustration of the elements of ACLIM’s integrated modeling enterprise for evaluating climate change impacts on socio-ecological systems in Alaska.
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to be associated with overwintering survival of walleye pollock
(Gadus chalcogrammus) and Pacific cod (Gadus macrocephalus),
two abundant and economically important species (Heintz
et al., 2013; Duffy-Anderson et al., 2017). Laboratory studies
have quantified key bioenergetic responses for commercially
important groundfish and the impacts of ocean acidification on
key developmental processes of commercially important crab
stocks (Long et al., 2013, 2019).

The origins of the ACLIM project can be traced back to a long
legacy of interdisciplinary research programs. Early versions of
the current high spatial and temporal resolution oceanographic
model [a Regional Ocean Modeling System (ROMS) model with
10 km horizontal resolution for the Bering Sea, Bering10K] were
developed as part of the US GLOBEC Northeast Pacific program,
a partnership between the National Science Foundation (NSF)
and the National Oceanic and Atmospheric Administration
(NOAA) (Curchitser et al., 2005). Early food web models were
developed as part of the Southeast Bering Sea Carrying Capacity
research program, a partnership between the Coastal Ocean
Program, the Pacific Marine Environmental Laboratory, and the

NMES (Aydin et al., 2007). Development of climate-enhanced
single-species projection models (CE-SSM, Ianelli et al., 2016)
and fully coupled end-to-end ecosystem models (Hermann et al.,
2013, 2016; Ortiz et al., 2016), and fisher’s choice models (Haynie
and Pfeiffer, 2013) were all developed as part of the Bering Sea
Project (BSP); a partnership between the NSF, the North Pacific
Research Board (NPRB), and the NOAA (Wiese et al., 2012). The
Climate-Enhanced Age-based model with Temperature-specific
Trophic Linkages and Energetics (CEATTLE, Holsman et al.,
2016) was funded directly by NMES research initiatives focused
on the development of integrated ecosystem assessments and
stock assessment improvement. This legacy of collaborative
research led to a mechanistic understanding of key biophysical
linkages governing fish production (Sigler et al, 2016a)
and completed model performance verification studies that
served as the foundation for the ACLIM project. Briefly,
the ACLIM framework generates dynamically coupled,
regionally downscaled projections of the oceanography and
biogeochemistry of the EBS ecosystem derived from earth
system models (ESMs) driven under contrasting future
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emission scenarios [representative concentration pathways
(RCPs)] (Table 1). Recognizing that there are strengths and
weaknesses to every modeling approach (e.g., Hollowed et al.,
2013), investigators proposed a multi-model inter-comparison
approach (Stock et al, 2011; Stouffer et al, 2017). Projected
ocean and biogeochemical conditions are directly or indirectly
utilized to project the future of marine species and fisheries in
the region (Figure 1 and Table 1) using a suite of population
dynamics models with various levels of complexity (Figure 2
and Table 2).

Using the multi-model approach, projections of fish and
shellfish distribution and abundance are assessed for the
current (2006-2020), mid-century (2030-2050), and end-of-
century (2080-2100) time periods under suites of potentially
viable fishing scenarios and management strategies that are
vetted through the NPFMC. Projected stock conditions (e.g.,
size-at-age, abundance, reproductive potential, reproductive
success, and distribution) for six core species (walleye pollock;
Pacific cod; yellowfin sole, Limanda aspera; northern rock sole,
Lepidopsetta polyxystra; arrowtooth flounder, Atheresthes stomias;
and snow crab, Chionoecetes opilio) are compared to assess the
performance of current and alternative fishing scenarios with
respect to the ecosystem, social and economic goals of the
NPFMC. Projections of key ecosystem status indicators (e.g.,
species diversity, mean trophic level of the catch) are derived
from ecosystem models and are evaluated under current and
alternative fishing scenarios. In this context, fishing scenarios
include both the suite of constraints imposed by a given fisheries
management strategy and external processes influencing fishing
behavior [e.g., allocation of total allowable catch (TAC) between
fishing sectors, fuel costs, world markets] (Groeneveld et al,
2018; Fulton et al.,, 2019). The implications of shifting spatial

distributions of commercial species on the coupled social-
ecological system are assessed using spatially explicit models
(Table 2). Collectively, these projections provide the scientific
information needed to identify thresholds for management action
and viable adaptation strategies. For example, many regions
monitor proxies for reproductive potential (i.e., spawning stock
biomass) and establish biological reference points for reductions
in fishing mortality or the development of rebuilding plans.
Examination of the performance of current and alternative
fishing scenarios and management strategies helps to identify
climate-ready harvest control rules that are robust to changing
climate, and to inform the public and management of trade-offs
associated with different options for the management of marine
resources under a changing climate.

The origins of the EAFM approach used in the region and
the keen interest of managers and stakeholders in improved
climate- and ecosystem-based information for decision making
can be traced to the iterative communication between scientists,
managers, and stakeholders. The NPFMC was one of the
first Councils in the United States to adopt an ecosystem
considerations report (Livingston et al., 2001). This report has
evolved over the years and is now considered an integral part
of the NPFMC’s annual assessment reviews (Zador et al., 2017)
and in 2018, the NPFMC adopted a Fishery Ecosystem Plan
for the Bering Sea’. The shared recognition of the scientific
and management community of the potential risks of changing
climate conditions on sustainable fishery management in the
region underscored the need for a climate module within the
FEP which would serve as a strategic planning tool for the

Zhttps://www.npfmc.org/bsfep/

TABLE 1 | Summary of global or earth system models and scenarios used in ACLIM and Bering Sea Project (BSP) experiments.

ACLIM GCMor ESM Emission Spatial-temporal resolution Spatial-temporal resolution Boundary

phase scenario for atmosphere for ocean nutrients

BSP MIROC-3.2 A1B 2.79° Latitude 2.81° Longitude Daily 0.5° latitude at equator, 1.4° Latitude at poles 1.4° Longitude No
44 Levels vertically Monthly

BSP ECHO-G A1B ~3.7° Latitude ~3.75° Longitude Daily ~2.8° Latitude ~2.8° Longitude Monthly No

BSP CGMC3-t47 A1B ~3.75° Latitude ~3.75° Longitude Daily ~1.85° Latitude ~1.85° Longitude Monthly No

1 GFDL-ESM2M 4.5 2.0° Latitude 2.5° longitude 6 Hourly 0.33-1.0° Latitude 1.0° Longitude 50 Levels vertically Monthly Yes

1 GFDL-ESM2M 4.5 2.0° Latitude 2.5° Longitude 6 Hourly 0.33-1.0° Latitude 1.0° Longitude 50 Levels vertically Monthly No

1 CESM1 4.5 0.94° Latitude 1.25° Longitude Daily 1.0° Latitude 1.0° Longitude 60 Levels vertically Monthly Yes

1 CESM1 4.5 0.94° Latitude 1.25° Longitude Daily 1.0° Latitude 1.0° Longitude 60 Levels vertically Monthly No

1 MIROC-ESM 4.5 2.79° latitude 2.81° longitude Daily 0.56° Latitude near equator, 1.71° latitude at poles 1.4° No
Longitude 44 Levels vertically Monthly

1 GFDL-ESM2M 8.5 2.0° Latitude 2.5° Longitude 6 Hourly 0.33-1.0° Latitude 1.0° Longitude 50 Levels vertically Monthly Yes

1 GFDL-ESM2M 8.5 2.0° Latitude 2.5° Longitude 6 Hourly 0.33-1.0° Latitude 1.0° Longitude 50 Levels vertically Monthly No

1 CESMA1 8.5 0.94° Latitude 1.25° Longitude Daily 1.0° Latitude 1.0° Longitude 60 Levels vertically Monthly Yes

1 CESMA1 8.5 0.94° Latitude 1.25° Longitude Daily 1.0° Latitude 1.0° Longitude 60 Levels vertically Monthly No

1 MIROC-ESM 8.5 2.79° Latitude 2.81° Longitude Daily 0.56° Latitude near equator, 1.71° Latitude at poles 1.4° No
Longitude 44 Levels vertically Monthly

GFDL-ESM4* SSP119  1.0° Latitude 2.5° Longitude 49 Levels 6 Hourly 0.5° Latitude 1.0° Longitude 75 Levels vertically Monthly Yes
GFDL-ESM4* SSP585  1.0° Latitude 2.5° Longitude 49 Levels 6 Hourly  0.5° Latitude 1.0° Longitude 75 Levels vertically Monthly Yes

*An example of one of the six global models that will be used in ACLIM phase 2 included to illustrate the progression to finer spatial resolution.
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GFDL-ESM2M*- PO (AR5 RCP 4.5 & 8.5)

GFDL-ESM2M*- PON (AR5 RCP 8.5)
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explicit drivers of population variability (climat
‘ tion variability (random error); low computational demand & multiple iterations
FIGURE 2 | lllustration of the multiple models and climate and fishing scenarios used in the ACLIM project.

TABLE 2 | ACLIM model classification, descriptions, and key references.

Model index Model name Brief description References

VA Vulnerability assessment A qualitative assessment based on expert judgment using Hare et al., 2016; Spencer
information on exposure and adaptive capacity of the stock etal., 2019
based on trait based metrics

CE-SSM Climate-enhanced single-species projection model Age- or size-structured population dynamics model that Wilderbuer et al., 2013;
incorporates climate impacts on complex fish capture and lanelli et al., 2016; Spencer
life history processes. Includes spatial CE-SSM etal., 2016

CE-MSM Climate-enhanced multi-species projection model Age-structured population dynamics model that Holsman et al., 2016
incorporates climate impacts on complex fish capture and
life history processes including predator-prey interactions

VAST-MICE Vector autoregressive spatial temporal model A climate-enhanced spatially explicit statistical model with Thorson et al., 2017;

potentially including species interactions as a model multiple size classes and/or species, where each is Thorsen et al., in press
of intercomplexity for ecosystems impacted by both local (e.g., temperature) and regional

(e.g., cold pool extent) climate features

IBM-CP Individual based model - closed population A climate-coupled spatially explicit population model for Rose et al., 2015
single-species with emphasis on early life history processes

EwE Climate-enhanced version of Ecopath with Ecosim A climate-enhanced food web model Aydin et al., 2007

MIZER Climate-enhanced version of size spectrum model A climate-enhanced model that traces predator—prey Reum et al., 2019
interactions using size as a proxy for predator-prey
interactions

FEAST Forage Euphausiid Abundance in Space and Time A fully coupled end to end model that is embedded in the Ortiz et al., 2016

Bering 10K model. This model tracks fish distribution and
abundance by following size modes. Spatial shifts in
distribution are driven by local energetic requirements (a
function of temperature) and local prey
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NPFMC. The ACLIM modeling framework is designed to fill
this strategic need.

CLIMATE MODEL STRUCTURAL
UNCERTAINTY AND EMISSION
SCENARIOS

Projections are completed in phases that are tied to the availability
of updated ESM projections and funding. Phase 1 is nearing
completion. Phase 1 utilized output from six ESMs developed
for the IPCC fourth or fifth Assessment Reports (based on
output from the third or fifth Coupled Model Intercomparison
Project, “CMIP3” or “CMIP5”) (Table 1). In this phase, the
ACLIM framework was developed and tested, providing multi-
model projections of the impacts on fish, invertebrates, and
fisheries under status quo and two fishing scenarios. In phase 2,
the entire suite of biological models (Table 2) will be updated
with ESM output developed for the IPCC Sixth Assessment
Report (i.e., CMIP6) and evaluated under an expanded suite
of fishing scenarios that will include alternative management
strategies. Comparison of results from phase 1 and 2 will allow
analysts to explore how improvements in ESMs affect projected
impacts on fish and fisheries. This paper focuses on phase
1 of the project.

Structural differences among global climate models and
uncertainty regarding emission scenarios were addressed in
phase 1 of the ACLIM project by comparing outcomes based
on multiple climate models under several emission scenarios
(Van Vuuren et al, 2011; Van Vuuren and Carter, 2014;
Table 1). In this phase, output from six global climate models
(three from CMIP3 and three from CMIP5) were selected
from the full suite of global climate models considered by
IPCC (Table 1). The CMIP3 suite was selected during the
BSP to span a broad range of potential sea ice dynamics
(Hermann et al., 2016). Selected models from the CMIP5
suite included: the Geophysical Fluid Dynamics Laboratory
(GFDL) - ESM 2M (ESM2M) (Dunne et al., 2012); the National
Center for Atmospheric Research (NCAR) Community Earth
Systems Model (CESM) (Kay et al, 2015); and the MIROC
ESM (Watanabe et al., 2011) (Table 1). These three models
were selected because they projected a broad range of global
patterns for precipitation and SST, and provided contrasting
views of future ocean conditions in the EBS. Output from
these models under two RCPs (4.5 and 8.5; Van Vuuren
et al,, 2011; Van Vuuren and Carter, 2014) were used to drive
the BeringlOK regional model. RCP 8.5 and 4.5 represent a
high-emission business-as-usual scenario and an intermediate
scenario, respectively.

CLIMATE PROJECTION DOWNSCALING

Previous analysis of the skill of global scale ESMs over
the historical period revealed that these coarse resolution
models are unable to adequately resolve the seasonal

spatial patterns of sea ice extent and bottom water

temperatures that are key structural features of the EBS
shelf (Vancoppenolle et al, 2013). Additionally, model
intercomparisons of 21 global biogeochemical models’
abilities to reproduce observed net primary productivity in
the Arctic Ocean revealed several limitations that varied
by region (Lee et al, 2016). Many of these deficiencies
related to mixed layer depth and sea ice concentration in
the simulations.

To address these potential deficiencies, the ACLIM framework
deploys the Beringl0OK ROMS model (Hermann et al., 2016,
2019) to dynamically downscale CMIP5 projection simulations
for the Bering Sea region. In this framework, the ROMS ocean
model is forced at the surface by heat fluxes, freshwater
fluxes, and wind stress values derived from prescribed
atmospheric states based on the global model projections
and modeled surface temperature (SST), and at the lateral
boundaries by temperature, salinity, and current speeds from
the ocean component of the global model projections. In
two simulations, nitrate and ammonium values from the
biogeochemical component of the ocean model in the global
projections were also used in the lateral boundary condition
variables; in these instances, simulations were run under
projected nutrient boundary conditions and alternatively with
World Ocean Atlas-derived climatological nutrient boundary
conditions to contrast the relative impact of temporal trends
in projected nutrients. This downscaling framework allows
for approximately a 100-fold increase in the number of
horizontal grid points compared to that of the global models
(Figure 3). The Beringl0OK model also includes its own sea
ice and biogeochemical models through which the climate
model forcing data influence the local dynamics. When
forced in hindcast mode with surface and lateral boundary
conditions from the data-assimilating Climate Forecast System
Reanalysis (CFSR), the Beringl0K model has demonstrated
significantly improved representation of features such as
advection pathways, mixed layer depth, sea ice extent, and the
strength and interannual variability of the Bering Sea cold pool
compared to that seen in CFSR itself (Hermann et al., 2016;
Kearney et al., in press).

Since phytoplankton and zooplankton are responding to both
physics and nutrients, the BeringlOK ocean model is coupled
to a biogeochemical model (BESTNPZ) that simulates lower
trophic level dynamics for the Bering Sea (Gibson and Spitz,
2011; Kearney et al., in press). Within the ACLIM framework,
the use of this single biogeochemical model to derive biological
indices for all the downscaled climate simulations is the one place
where neither structural nor parameter uncertainty is addressed
via an ensemble approach. During development of the ACLIM
modeling framework, the merits of including multi-model- or
parameter-varying ensembles of biogeochemical models were
discussed but ultimately not included due to the need to limit
the permutations assessed in the project. Therefore, for phase
1, the only uncertainty related to lower trophic dynamics that
is quantified is that relating to projected trends in nutrient
boundary conditions.

Relevant biogeochemical and physical properties (Tables 3-5)
were projected for the period 2006-2100 for scenarios based
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TABLE 3 | Fish- and fisheries-relevant output variables from the Bering10K-BESTNPZ model*.

Variable Description 2D/3D Grid Unit

U u-Component of velocity, approximately across-shelf 3D u ms~'

) v-Component of velocity, approximately along-shelf 3D % ms~!

Temp Potential temperature 3D 0 °C

Salt Salinity 3D 0

Shflux Surface net heat flux (positive = cooling) 3D 0 Wm—2

Ssflux Surface net salt flux [(evaporation — precipitation) x salinity] 3D 0 ms~!

Aice Fraction of grid cell covered by sea ice 3D 0

lceNH4 Ammonium concentration in the skeletal layer (base) of sea ice 2D 0 mmol N m—3
lceNO3 Nitrate concentration in the skeletal layer (base) of sea ice 2D 0 mmol N m—3
NO3 Nitrate 3D 0 mmol N m—3
NH4 Ammonium 3D 1) mmol N m~3
PhS Small phytoplankton (cell <10 pwm) 3D 0 Mg C m~3
PhL Large phytoplankton (bloom forming diatoms) 3D 0 Mg C m~3
MzL Microzooplankton 3D (p mg C m~3
Cop Small-bodied copepods (e.g., Pseudocalanus spp) 3D 0 mg C m~3
NCaS On-shelf large-bodied copepods (primarily Calanus marshallae) 3D o mg Cm~3
NCaO Off-shelf large-bodied copepods (primarily Neocalanus spp) 3D 0 mg C m~3
EupS On-shelf euphausiids (primarily Thysanoessa raschii) 3D 0 mg Cm~3
EupO Off-shelf euphausiids (primarily Thysanoessa inermis) 3D 0 mg C m3

Jel Jellyfish (Chrysaora melanaster) 3D 0 mg C m~3
Ben Benthic infauna (bivalves, amphipods, polychaetes, etc.) 2D 0 mg C m~2
Det Slow-sinking detritus 3D 1) mg Cm~3
DetF Fast-sinking detritus 3D p mg Cm~3
DetBen Benthic detritus 2D p mg C m~2
prod_PhS Small phytoplankton gross primary production 3D 0 mgCm-3s!
prod_PhL Large phytoplankton gross primary production 3D 0 mgCm-23s!
prod_MZL Microzooplankton net production (grazing—egestion —excretion —respiration) 3D 0 mgCm3s!
prod_Jel Jellyfish net production (grazing—egestion —excretion —respiration) 3D 0 mgCm3s!

The “2D/3D” column indicates whether the variables are two- or three-dimensional, and “Grid” refers to the positions of the variables on the ROMS grid: u = east/west,
v = north/south, and p = center of grid cells. * The mix of units for biological state variables is for output purposes only; internally, all model calculations use nitrogen as

the primary currency, with a constant 106:16 C:N ratio.

on CMIP5 models. Since CMIP3 did not cover the entire
time period 2006-2100, we used CMIP3 for those periods
to the extent possible (2003-2040). In addition, a hindcast
simulation spanning the period of 1970-2018, forced by a
combination of version 2 forcing for Coordinated Ocean-Ice
Reference Experiment, i.e., COREII (Large and Yeager, 2009)
(1970-1994), the CFSR (Saha et al., 2010) (1995-March 2011),
and the Climate Forecast System Operational Analysis, i.e.,
CFSv2-OA (April 2011-Sep 2018) was performed for use in
calibrating the various upper trophic level models for past
decades. Comparison of these hindcasts using different ESM
boundary conditions revealed potential temperature biases.
Several methods have been used to address systematic biases
in global model temperatures relative to current observed
temperatures (Piani et al, 2010). In comparative studies,
bias can be accounted for by evaluating relative changes in
mean state between time periods (Hermann et al, 2019).
However, when animals respond to environmental thresholds,
relative environmental changes may not be adequate when
downscaled variables are used to drive responses of secondary
producers and higher trophic levels (Small et al, 2015;
see section “Bias Corrections for Biological Responses”).

To address this issue, projections with and without bias
corrections are compared.

EXPLORATIONS OF THE POTENTIAL
ROLE OF BIOLOGICAL COMPLEXITY

The ACLIM framework employs a multi-model approach for
projection of biological responses to explore the trade-offs
between computational speed and ecosystem realism inherent
in the selection of higher trophic level models (Hollowed et al.,
2013). When models of varying complexity are considered jointly
(some with high spatial resolution and species interactions
and others with well-defined distributions for key parameters),
multi-model projections can provide a more complete suite
of future projections for evaluating climate change impacts
on ecosystems and resource-dependent human communities
(Plaganyi et al., 2011; Tittensor et al., 2018). Within the ACLIM
framework the suite of models range from minimally realistic
single-species climate-enhanced stock projection models (CE-
SSM) that are capable of detailed treatment of process error
and measurement error, to whole ecosystem models that track
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TABLE 4 | Eastern Bering Shelf-derived indices.

Index Description Variations Units
SR Seas.

Surface temperature Temp, top layer X X °C
Bottom temperature Temp, bottom layer X X °C
Surface salinity Salt, top layer X
Bottom salinity Salt, bottom layer X
Cold pool fractions Fraction of survey area where bottom temperature meets certain X

criteria. Includes: <2, >0, >1, >2, >4, >6, >2 and <6, >0, and <6
Cold pool bottom temperature Mean bottom temperature within the cold pool masks defined above X °C
U-component velocity Depth-averaged u X ms~!
V-component velocity Depth-averaged v X ms~!
Ammonium mean Depth-averaged NH4 X mmol N m~3
Ammonium total Depth-integrated NH4 X mmol N m~2
Nitrate mean Depth-averaged NO3 X mmol N m~3
Nitrate total Depth-integrated NO3 X mmol N m~2
Small phytoplankton mean Depth-averaged PhS X mg Cm~3
Large phytoplankton mean Depth-averaged PhL X mg Cm~3
Phytoplankton mean Depth-averaged PhS + PhL X mg Cm~3
Microzooplankton mean Depth-averaged MZL X mg Cm~3
Small copepods mean Depth-averaged Cop X mg Cm~3
Small copepods total Depth-integrated Cop X mg C m~2
Large copepods mean Depth-averaged NCaS + NCaO X mg Cm~3
Large copepods total Depth-integrated NCaS + NCaO X mg C m~2
Large copepods surface NCaS + NCaO, top layer X mg C m~3
Euphausiids mean Depth-averaged EupS + EupO X mg C m~3
Euphausiids total Depth-integrated EupS + EupO X mg Cm~2
Euphausiids surface EupS + EupO, top layer X mg C m~23
Copepods mean Depth-averaged Cop + NCaS + NCaO X mg C m~3
Mesozooplankton mean Depth-averaged Cop + NCaS + NCaO + EupS + EupO X mg Cm~3
Mesozooplankton total Depth-integrated Cop + NCaS + NCaO + EupS + EupO X mg Cm~3
Benthic infauna Ben X mg C m~2
Benthic detritus DetBen X mg Cm~2
Ice fraction Aice X
Ice algae lcePhL X mg Cm~3
lce ammonium lceNH4 X mmol N m~3
lce nitrate lceNO3 X mmol N m~3
Small phytoplankton gross primary production Depth-averaged prod_PhS X mgCm-3s!
Large phytoplankton gross primary production Depth-averaged prod_PhL X mgCm3s!
Microzooplankton net production Depth-averaged prod_MZL X Mg C m—S8s~!
Jellyfish net production Depth-averaged prod_Jel X MgCmS8s~!

These index variables are extracted from the Bering10K-BESTNPZ output as yearly time series. The spatial and temporal reduction is applied in two ways: (1) survey
replication (SR): variables are sampled at the same location and day-of-year as in the annual groundfish survey, then averaged across each year, and (2) seasonal
(seas.): values within the survey sampling strata polygons are averaged spatially, then in time for each season (fall = Oct-Nov, spring = Apr—Jun, summer = Jul-Sep,

winter = Dec—Mar) and annually.

potential structural changes within the ecosystem that may
emerge from complex ecosystem interactions (Figure 2 and

Tables 2, 5; Plaganyi et al., 2011; Stock et al., 2011). The

diverse multi-model projection suite provides a reasonable
range of representative futures (with sufficient contrast in
climate scenarios) that can be used to evaluate short- and
long-term implications of management actions under future

climate change.

The ACLIM framework leveraged eight types of stock or
ecosystem projection models (Table 2):

e Trait-based vulnerability analyses (Hare et al, 2016;
Spencer et al, 2019). The VA model utilizes expert
judgment to assess sensitivity, exposure and vulnerability
to climate change and does not project the specific outputs
shown in Table 5.
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TABLE 5 | Selected outputs produced by ACLIM biological models.

CE-SSM
CE-MSM

*

Spatial CE-SSM
VAST-MICE
IBM-CP

EWE

MIZER

FEAST

e Climate-enhanced single species stock projection
models (Wilderbuer et al., 2013; Ianelli et al., 2016;
Spencer et al., 2016);

e Climate-enhanced multi-species stock projection models
(Holsman et al., 2016);

o Individual-based models (sensu Rose et al., 2015);

e Foodweb models wusing Ecopath with Ecosim
(Aydin et al., 2007);

e Multi-species size-spectrum models based on the R package
“MIZER” (Scott et al., 2014; Reum et al., 2019);

e End-to-end model [Forage Euphausiid Abundance in Space
and Time (FEAST)] (Ortiz et al., 2016);

e VAST-MICE: Spatiotemporal models of intermediate
complexity for ecosystems (MICE) using the vector
autoregressive spatiotemporal (VAST) package
(Thorson et al., 2019).

The ACLIM framework enables analysts to evaluate the
contributions of different sources uncertainty. The inclusion of
MICE assessment (Plaganyi et al., 2014) in the ACLIM framework
provides opportunities to explore the contribution of process
error and scenario uncertainty in single- and multi-species
projections. Two MICE models in particular are included in
ACLIM; the CEATTLE model (Holsman et al., 2016), and a CE-
version of the spatiotemporal models of intermediate complexity
for ecosystems (i.e., “MICE-in-space” model; Thorson et al,
2019). These models can be run relatively quickly, allowing
sensitivity testing of the implications of uncertainty in climate
linkages to: predator—prey overlap (and hence mortality rates);
prey switching, prey availability, and metabolic rates (growth
and maturation rates); and reproductive success (via the
spawner-recruit relationships). Of these processes, the linkages
between climate variability and future fish production are
the most influential in terms of projected stock status and
the most challenging to parameterize correctly (Szuwalski
et al., 2015) because the processes governing climate impacts
on fish and crabs are temporally varying and stage-specific
(Bailey, 2000). The inclusion of food web, size spectrum,
and end-to-end models provides an opportunity to evaluate
the relative contributions of structural uncertainty, species
interactions, fishing, and ecosystem changes to future states
of nature.

Techniques for assessing the predictive skill of ecosystem
models are emerging and they reveal a modest ability to
reconstruct observed dynamics in stock status (Olsen et al,
2016). FEAST is a spatially explicit end-to-end ecosystem
model that tracks core species in space and time (Table 2).
Movements are determined from an evaluation of the relative
quality of the current location with respect to foraging needs
(demands on metabolic rate and prey availability) to adjacent
cells within the ROMS Bering 10K grid (Figure 3). In long-
term projections, small errors can accumulate in a spatial model
of this complexity (Punt et al., 2016b). To address this issue,
FEAST can be nudged by initiating the model using the projected
environmental conditions at mid-century (2030-2050) and end
of century (2080-2100) and seeding the starting abundance of
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FIGURE 3 | Geometry of the ROMS domain. The model domain grid is laid along the bathymetry with the native 10-km resolution of the ROMS grid. Real coastlines
are in light blue with the ROMS land mask in a darker blue. The EBS sampling polygon is shown in green, along with the locations used for survey-replication
sampling (colors indicate the day of year associated with each sampling location; the color-bar further shows the season subdivisions used for seasonal indices). The
zoomed-in grid in the lower right shows the orientation of the grid as well as the location of rho-, u-, and v-points.

core species using output from simpler single- or multi-species
climate enhanced models (Table 1).

BIAS CORRECTIONS FOR BIOLOGICAL
RESPONSES

A critical element of the ACLIM framework is the demonstration
that the modeling suite used for projections is skillful in
reconstructing observed population dynamics of core species and
catch. To confirm this skill, it was necessary to demonstrate
that when driven by hindcasts of observed oceanographic and
biogeochemical conditions, the projected higher trophic level
and fishing responses were consistent with observed historical
interannual fluctuations. Functional forms and parameters used
in the ACLIM were derived from a combination of retrospective
studies external to the model (e.g., laboratory studies of metabolic
rate or consumption, Holsman et al., 2016), retrospective data
analysis based on observed data (e.g., climate envelope studies,
Spencer et al., 2016), or retrospective analysis based on output
from previous Beringl0K hindcasts (e.g., spawner-recruitment
relationships). In the case of CE-SSMs and the CE-MSM,
environmentally linked age- or size- based statistical assessment
models were used to derive functional forms and base parameters

(see Holsman et al., 2016; Ianelli et al., 2016; Spencer et al.,
2016 for examples). For all models, once parameterized, we drove
our hindcast period (2006-2017) with reanalysis-based (e.g.,
Saha et al,, 2010) and data-assimilating input products, which
successfully tied our hindcast simulation time series to their
real-world counterpart datasets. These hindcasts incorporate
observed variations due to radiative forcing changes from natural
and anthropogenic sources and internal natural variability.
When incorporating downscaled physical and biogeochemical
indices (Tables 3-5) into hindcast-trained models, it was
necessary to account for both systematic biases in each global
model as well as mismatch at any given time due to internal
variability of each model compared to the hindcast period. While
we have identified methods to address the former, the latter
is left unaddressed during phase 1 of the ACLIM simulations.
The existing simulations include only a single decade of overlap
(2006-2017) between the hindcast and projection simulations.
This time period is not long enough to separate model bias
from decadal variability due to internal oscillations such as
ENSO or the PDO. For the phase 2 of ACLIM simulations,
we will extend the downscaled climate model projections to
include several decades from the historical period (i.e., 1970-
present). This will allow for the diagnosis of model biases vs.
the hindcast and observations, and allow for smoother forcing
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of the upper trophic level models as they cross the hindcast-
to-projection threshold. Given the lack of a sufficient overlap
period for phase 1 calculations, we assumed that the mean and
variance during the reference overlap period are representative
for both the hindcast and projections under present-day radiative
conditions, and that conditions during the reference period
are not anomalous.

Bias corrections must be considered carefully when projected
environmental data are used to drive biological responses.
Global climate model ensemble projections routinely apply
additive bias correction (e.g., the “delta method”; Ho et al,
2012; Hawkins et al., 2013). The procedure adjusts projections
based on mean differences between the hindcast and projection
variable in a period of overlap. However, the procedure is
not straightforward to apply to biological projections such
as biomass densities that are bounded by zero because the
resulting values can take negative values. Instead, a proportional
correction can be applied. As with the additive correction
method, the biomass density projection is re-centered based
on the mean difference between the projection and hindcast
overlap period, but the proportional change observed in the
uncorrected projection (that is, variable level relative to the
mean value from the overlap) is carried through to the re-
centered projection (Buser et al, 2009; Haerter et al., 2011;
Reum et al,, in press).

FISHING SCENARIOS AND
MANAGEMENT STRATEGIES

There are myriad pathways through which climate change
can impact marine industries (Allison and Bassett, 2015).
Bounding the range of possible management futures within
the context of global shared socio-economic pathways is
challenging and requires strong communication between
management and modeling teams (O’neill et al, 2014
Groeneveld et al., 2018). In phase 1, a narrow suite of fishing
scenarios was selected which represented two variations in
TAC allocations across fishing sectors within the existing
constraints of the NPFMC’s existing EAFM management
strategy. These fishing scenarios reflected two alternatives
to status quo that have a significant impact on stakeholders
(Ono et al., 2017).

The NPFMC’s EAFM in the EBS employs a complex suite
of management measures that are designed to sustain fisheries
using science-based precautionary harvest control rules that are
designed to sustain the reproductive potential of the stocks,
preserve essential fish habitats, maintain a sustainable forage base
for fish and other top trophic level consumers, and preserve
ecosystem structure by limiting the overall removal of groundfish
from the ecosystem (Stram and Evans, 2009; Hollowed et al.,
2011). Under the US guidelines for the Magnuson Stevens Fishery
Management Act, the TAC must be less than or equal to the
Acceptable Biological Catch (ABC) and the combined TACs for
federal groundfish fisheries in the Bering Sea Aleutian Island
(BSAI) region cannot exceed the 2 million t system level cap.
Groundfish fisheries are constrained by bycatch [Prohibited

Species Caps (PSC)] that limit on non-groundfish species
targeted by other commercial, recreational, and subsistence
harvester (Pacific halibut, Hippoglossus stenolepis; Pacific herring,
Clupea pallassi, salmon, and crab). The management system also
includes catch share provisions and sector limitations designed
to ensure that: a diverse suite of fishing sectors and communities
have access; gear conflicts are avoided; and prey for protected
species (such as marine mammals) is protected (Stram and
Evans, 2009; Abbott and Haynie, 2012; Reimer and Haynie, 2018;
Kroetz et al.,, 2019). In 2018, the NPFMC adopted a Fisheries
Ecosystem Plan for the Bering Sea that specifically calls for
the exploration of climate impacts on EBS fisheries (NPFMC,
2018). These features of the management system needed to
be adequately represented in the suite of models employed by
the ACLIM project.

In phase 1, all fishing scenarios employed the NPFMC’s EBFM
Management Strategy with respect to estimation of biological
reference points, prevention of overfishing, and prohibitions
on fishing forage fish. The fishing scenarios explored four
alternatives of the groundfish TAC across fishing sectors under
the 2 million t cap: (a) no fishing; (b) the status quo; (c)
a 2 million t cap which allows for the expansion of flatfish
fisheries (10% increase in the total cap allocation to different
flatfish species under the overall system level cap); and (d)
a shift in the groundfish TAC allocation across species such
that potential pollock and/or cod TAC at high stock sizes
could expand despite its impact on fishing opportunities for
non-pollock and cod groundfish fishers under the cap (10%
increase in the allocation of gadids under the cap). This suite
of alternative management strategies allows the NPFMC to
explore trade-offs between harvesting more pollock and cod
or more flatfish.

Stakeholder engagement is a critical element of successful
management strategy evaluations (MSEs; Colenbrander and
Sowman, 2015; Jones et al., 2016; Punt et al., 2016a). The
selection of the initial suite of fishery scenarios that only modified
allocations of groundfish TAC across species and fishing sectors
had the benefit of being easily understood by managers and
stakeholders. This provided an excellent opportunity to introduce
the utility of the ACLIM framework for management planning
in a public forum through multiple workshops. A benefit
of the workshops was the two-way communication between
stakeholders, managers, and the scientific community. The
current scenarios are also valuable as they provide insight to
managers of the trade-offs of sustained increases in allocation
to one group of species. As of this submission, the first phase
of projections of climate conditions to the end of the 21st
century are complete for CE-SSM, CE-MSM, EwE, and MIZER
models, including projections of catch for core species under
no fishing, baseline (status quo) fishing conditions, and two
alternative fishing scenarios. Projections based on FEAST and
IBM models are in preparation. FEAST runs will not include
the fisher response capability. Incorporating fisher’s responses
within the spatial-temporal ecosystem model would require
fleet/sector level data and predictions that was beyond what
could be done in phase 1. In phase 2, scenarios generated
from the multi-model framework will be expanded to explore
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fishing scenarios where the performance of alternative climate-
informed fishery management strategies will be tested to identify
and avoid maladaptive pathways (Wise et al., 2014) and explore
climate resilient options (Holsman et al., 2019; Karp et al., 2019).
This is challenging given the broad suite of potential fishery
management strategies that could be considered by the modeling
team (Fulton et al, 2019) and possible shifts in societal
choices regarding marine resources (Groeneveld et al., 2018).
An integrated approach of vetting strategies with the public
based on results from climate-enhanced single- and multi-
species models will help to narrow the suite of candidate fishery
management approaches applied to the fully integrated spatial-
temporal ecosystem model (FEAST). Broader suites of fishery
management strategies and parameter settings can be explored
across other biological models.

FISHERY-DEPENDENT COMMUNITY
IMPACTS ASSESSMENTS

Several models have been developed to assess the economic
impacts of changing groundfish distributions and abundance.
Climate envelope assessments coupled with spatial impacts
on vital rates have been used to assess climate impacts on
regional (Le Bris et al., 2018) and global (Cheung et al., 2019)
fisheries. Models have been used to assess climate change
impacts on regional economies (Seung et al., 2015; Seung and
Tanelli, 2016) and global supplies of fish on fishery dependent
communities (Merino et al., 2012). Evaluation of community
impacts and adaptation options examine multiple pathways
through which changes in the quantity, location, and value of
harvest translate into regional economic impacts on communities
(Seung and Miller, 2018).

In phase 2, shifting species ranges can impact fisheries in
multiple ways (Pinsky et al., 2018). Fisher responses can be
directly included in FEAST. Alternatively, expected shifts in
the spatial distribution of fish and shellfish can be predicted
from spatiotemporal models informed by size-specific and non-
local responses to climate projections (Thorson et al, 2017;
Thorson, 2019) and implications for shifting distribution on core
parameters in single- or multi-species models can be modeled
as a function of projected environmental conditions (Spencer
etal,, 2016). For example, the CEATTLE multi-species model uses
a climate-specific overlap index (Carroll et al., in revision) for
predator and prey species to inform annually varying predation
mortality. In phase 2 of ACLIM, the Spatial Economics Toolbox
for Fisheries (FishSET) could be linked with the spatiotemporal
model to project variables that influence fishers’ choices regarding
where and when to fish (Haynie and Pfeiffer, 2012).

DATA SYNTHESIS AND INFERENCE

The outcomes of projections derived from the ACLIM framework
can be synthesized using techniques commonly used in the
stock assessment community. Multi-model inference can be used
for several purposes, including evaluating the extent to which

general conclusions regarding management actions are robust to
structural assumptions (e.g., Murawski et al., 2010; Payne et al.,
2016; Kaplan et al.,, 2019), using simple models (such as CE-
SSM and CEATTLE, MICE-in-space, and perhaps even EwE) to
identify the most consequential uncertainty which can then be
used to prioritize sensitivity runs for more complex models such
as FEAST, and improve stability in management advice (Stewart
and Hicks, 2018). Structural uncertainty is a source of uncertainty
that is usually hard to qualify but can be amongst the largest
sources of uncertainty when providing management advice (Hill
et al., 2007). Consequently, structural uncertainty has become a
major focus for MSEs (Punt et al., 2016a).

Given the multiple sources of potential uncertainty in
climate impact assessments, multi-model ensembles within
and across models of different complexity are of interest.
Ensemble modeling approaches will be applied to synthesize the
information to derive overall system level trends (Ianelli et al.,
2016; Rosenberg et al.,, 2018; Lotze et al., 2019). Selection of
models used to derive ensemble estimates may be informed by an
analysis of among model correlations (Stewart and Hicks, 2018).
Current decisions relevant to formulating the ensemble include
selection criteria for model inclusion in the ensemble (e.g.,
Butterworth et al., 1996) and weighting criteria for the models
included in the ensemble (Anderson et al., 2017) among others.
In applications for stock assessments, the results from each model
could be weighted by its fit to the available data using a Bayesian
approach (e.g., Butterworth et al., 1996; Hill et al., 2007) to create
probability distributions for model outputs. Model selection and
weighting for ecological projections is more challenging due to
the lack of observations for tuning. Our approach has been to
tailor ensemble syntheses within each application and question,
and different approaches are illustrated in recent publications
(e.g., Hermann et al., 2019; Kearney et al., in press; Reum et al., in
press). Another key outcome of this analysis will be an evaluation
of which parameters and processes within the linked model most
determine uncertainty; such parameters and processes could be
the target of future research (see Reum et al., in press); such
parameters and processes could be the target of future research.

The performance of each “climate scenario/biological
model/fishing scenario” combination relative to the goals
of EAFM can be evaluated using indicators of social,
industry, and ecosystem status (Long et al, 2015; Levin
et al, 2018). Evaluation of the performance of fishing
scenarios from the multi-model suite in the ACLIM project
will involve two approaches. Initially, output from each “climate
scenario/biological model/fishing scenario” combination will
be evaluated relative to an agreed upon suite of standard
indicators previously selected by the NPFMC and its advisory
bodies (Zador et al., 2017; Fissel et al., 2019; Table 6). Output
from vulnerability assessments, whole ecosystem models,
and FEAST can be used to calculate ecosystem and socio-
economic indicators (Table 6). Subsequently, indicators derived
from ensemble of “climate scenario/biological model/fishing
scenario” combinations will be evaluated. This two-step process
will enable analysts to contrast the synthesized projection
relative to the range of possible outcomes from models of
different complexity.
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TABLE 6 | Suite of candidate performance indicators for ACLIM.

Name

Derivation

Purpose

Core species abundance
Core species recruitment

Core species average size and age at maturity

Core species exploitation
Core species crab status

Core species crab catch

Centroid of distribution for core species
Euphausiid biomass

Motile epifauna biomass

Benthic forager biomass

Pelagic forager biomass

Apex predator biomass

Species diversity index

Mean trophic level of the catch

Number of fishery closures by core species
Core species and fleet CPUE

Fishing effort by fleet

Core species first-wholesale revenue index
Core species percent TAC utilization

Mean and variance for time block
Mean and variance for time block
Mean and variance for time block
Annual time trend F/Fysy

Annual time trend reproductive potential vs. target
reproductive potential.

Mean and variance for time block

Annual time trend

Mean and variance for time block

Mean and variance for time block

Mean and variance for time block

Mean and variance for time block

Mean and variance for time block

Alpha and beta diversity indices

Mean and variance for time block

Average for time block

Annual time trend of CPUE by species and fleet
Annual time trend of fishing effort

Annual time trend

Percentage of total allowable catch landed

Sustainable fishing index
Sustainable fishing index
Sustainable fishing index
Sustainable fishing index
Sustainable fishing index

Sustainable fishing index

Index distribution

Ecosystem stability index

Trophic structure index

Trophic structure index

Trophic structure index

Trophic structure index

Ecosystem stability index

Ecosystem Based Fishery Management index
Fishery efficiency index

Fishery catchability index

Fisheries participation and employment
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INITIAL RESULTS

The results of the first phase of the ACLIM suite revealed
substantial differences in projected spatially averaged air
temperature in the Bering Sea based on the GFDL and the
MIROC ESM with projected air temperatures differing by
approximately 5°C at end of century (see Figure 2 in Hermann
etal., 2019). This result illustrates the importance of considering
the ensemble projections. Under RCP 8.5, Bering Sea shelf
average mean bottom temperatures may warm by as much
as 5°C by 2100, with associated loss of large zooplankton
(Figure 4), whereas, under the lower emission scenario, bottom
temperatures will warm by approximately 2.5°C (Figure 4).
Results from a sub-set of the full ACLIM multi-model
suite illustrate the utility of applying the ACLIM framework.
Comparison of projections of future status of walleye pollock
and Pacific cod from three different modeling approaches
under the status quo fishing scenario under RCP 8.5 using
the size spectral model (Reum et al, in press), the CE-
MSM projection model (CEATTLE), and the vulnerability
assessment (Spencer et al, 2019) provide an interesting
contrast and exemplify the importance of the multi-model
approach employed by the ACLIM team. Projections from
the size spectral model that incorporated bioenergetics and
predator-prey interactions indicated that future status of
walleye pollock will decline, while results were more modest
and mixed for Pacific cod (see Figure 4 in Reum et al,
in press). The CE-MSM model incorporated temperature
effects on growth and recruitment of walleye pollock and
Pacific cod. This model projected warm ocean conditions will
negatively impact both stocks through impacts on survival

to age-1. In contrast, Spenceretal. (2019) utilized a trait
based approach and expert judgment of 34 experts to assess
the vulnerability of walleye pollock and Pacific cod to
changing climate. Their results indicate that walleye pollock
and Pacific cod exhibit numerous traits that would allow
these populations to adapt to a changing climate (e.g., broad
spatial distribution, mixed prey, large populations, relatively
high rate of production). This preliminary comparison illustrates
the importance of contrasting outcomes using a multi-
model approach.

SUMMARY

Alaska Climate Integrated Modeling is a novel multidisciplinary
modeling study designed to quantify the impacts of climate
change on Bering Sea species and fisheries. The management
strategies used to project future capture of marine species,
processing, and distribution represent a realistic suite of future
options. The evaluation of alternative management strategies
allows analysts to assess the performance under a range of
climate change scenarios. The ACLIM framework is designed
to quantify the contributions of climate forcing scenario,
model parameter, and management uncertainty in projected
impact assessments.

The operationalized framework developed through ACLIM
aligns global projections of climate impacts on the physical
biogeochemical environment with assessments of the impacts
of these changes on ecosystems and humans. Ideally, the
ACLIM framework would be re-employed in parallel with
new climate assessments to provide climate ready fisheries
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FIGURE 4 | Ensemble projections of bottom temperature, surface temperature, and large zooplankton based on Representative Concentration Pathway 4.5 and 8.5
using the MIROC and GFDL models. Large Zooplankton = Large Copepods mean + Euphausiids mean (see Table 4).
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management advice that enables resiliency to a rapidly changing
climate. During each climate assessment cycle, the generalized
ACLIM approach will involve three steps for rapidly generating
updated climate change assessments for the Bering Sea
following: (1) release of new IPCC emission projections of
global climate models will be downloaded and interpolated
to generate boundary conditions for the high resolution
regional ocean model (Bering 10K or its successor); (2)
identify novel management challenges that require climate-
specific MSEs. In each of these cases (or both combined)
a new climate assessment will be initiated; and (3) with
input from stakeholders and fisheries management councils,
various harvest and management strategies will be used to
iteratively develop and refine MSEs. This will enhance the
global assessment of climate impacts on the world’s oceans
as well as regional management actions to ensure climate
resilience for the Bering Sea ecosystem and the fishing
industry it supports.

Identifying harvest strategies that perform well under non-
stationary environmental conditions is a challenging (Szuwalski
and Hollowed, 2016). Recent studies indicate that ecosystem
dynamics can substantially influence optimal harvest strategies
in multi-species fisheries (Kasperski, 2015) and impact the
cost of harvesting commercial species (Haynie and Pfeiffer,
2013), thus climate-driven changes to predation and production
could alter future optimal harvest strategies. The proposed
iterative ACLIM framework conducted on a ~5 year cycle
is modeled after the annual stock assessment cycle in the
region; the approach should ensure that fisheries management
decisions account for climate-driven changes to fish production
and distribution and that climate-ready fisheries management
in the region reflects the most recent global climate and

carbon emission projections and best available ecosystem and
socioeconomic science.

The ACLIM modeling framework is designed to inform
the NPEMC of the performance of current and alternative
management approaches in a changing climate. The scenarios
will help to identify and test climate-resilient management
options (Holsman et al., 2019). The Climate Action Module
within the Bering Sea FEP provides a vehicle for communicating
results to managers, stakeholders and the public. The scope of
the framework serves to integrate the socio-ecological research
community providing a forum for improving and adapting the
framework. The near future projections (2030-2050) provide
useful information regarding how changing climate will affect
peoples’ livelihoods, longer term projections inform the public of
what is at risk in the region.

Five key messages have emerged from first phase of
ACLIM. Structural uncertainty in ESMs used as boundary
conditions for the ROMs model is a key consideration in the
assessment of climate impacts on marine resources. Comparison
of projected change based on boundary conditions from
different earth systems models differs strongly with differences
being comparable in scale to differences stemming from
different RCPs in a single model. Structural uncertainty in
ecosystem complexity should be considered in regional impact
assessments. Results from a subset of models from phase 1
of ACLIM revealed alternative response pathways for walleye
pollock and Pacific cod. Ensuring the conservation measures
currently in place in an existing EAFM system was critical to
managers and stakeholders because these measures do preserve
resources into the future. Aligning fishing scenarios with the
evolving EAFM approach of the NPFMC requires strong
community engagement.
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