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Numerical simulations and emissions estimates of plastic in and to the ocean consistently

over-predict the surface inventory, particularly in the case of microplastic (MP), i.e.,

fragments less than 5 mm in length. Sequestration in the sediments has been both

predicted and, to a limited extent, observed. It has been hypothesized that biology may

be exporting a significant fraction of surface MP by way of marine snow aggregation and

zooplankton fecal pellets. We apply previously published data on MP concentrations in

the surface ocean to an earth system model of intermediate complexity to produce a first

estimate of the potential global sequestration of MP bymarine aggregates, including fecal

pellets. We find a MP seafloor export potential of between 7.3E3 and 4.2E5 metric tons

per year, or about 0.06–8.8% of estimated total annual plastic ocean pollution rates. We

find that presently, aggregates alone would have the potential to remove most existing

surface ocean MP to the seafloor within less than 2 years if pollution ceases. However,

the observed accumulation of MP in the surface ocean, despite this high potential rate

of removal, suggests that detrital export is an ineffective pathway for permanent MP

removal. We theorize a prominent role of MP biological fouling and de-fouling in the rapid

recycling of aggregate-associated MP in the upper ocean. We also present an estimate

of how the potential detrital MP sink might change into the future, as climate change

(and projected increasing MP pollution) alters the marine habitat. The polar regions,

and the Arctic in particular, are projected to experience increasing removal rates as

export production increases faster than MP pollution. Northern hemisphere subtropical

gyres are projected to experience slowing removal rates as stratification and warming

decrease export production, andMP pollution increases. However, significant uncertainty

accompanies these results.
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1. INTRODUCTION

While the scientific community has been aware of the presence of plastic pollution in the
ocean since at least the 1970s (Wong et al., 1974; Day and Shaw, 1987) significant momentum
into cataloging its characteristics, spatial distribution and temporal trends is more recent (e.g.,
Thompson et al., 2004; Law et al., 2010, 2014; Cózar et al., 2014, 2017; Eriksen et al., 2014; Enders
et al., 2015; Isobe et al., 2015). Urgency to quantify the inventory mounts as the negative ecological
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effects of plastic pollution become increasingly apparent (see the
recent review by Galloway et al., 2017). Particle tracking ocean
models are useful in this respect, and have been used to predict
potential locations of plastic accumulation in the ocean surface
and along coastlines (van Sebille et al., 2012) and to estimate
global inventory and concentrations (Eriksen et al., 2014; van
Sebille et al., 2015, and references therein); see Hardesty et al.
(2017) for a review. A notable outcome of these efforts is an
apparent and significant quantity of missing plastic- that is,
plastic that is predicted to exist in the ocean based on available
estimates of plastic pollution (e.g., Jambeck et al., 2015) and what
is known about ocean surface currents, but that is not found in
the surface layer by sampling nets (Cózar et al., 2014; Eriksen
et al., 2014).

While the sources of plastic are thought to be fairly well-
constrained, the sinks of plastic are less so. Plastics are known
to degrade by physical, photochemical, and biological processes
(see Galloway et al., 2017, for a review). More than 80% of
the missing plastic qualifies as microplastic (MP, or plastics
between 0.1 and 5 mm in length), and smaller (Cózar et al.,
2014). These tiny particles might have been missed by historical
sampling and are thus under-reported, or they might sink to
the sediments (Woodall et al., 2014) or into deeper ocean water
masses (Peng et al., 2018; Choy et al., 2019). Also, not all
plastics are transported uniformly in the real ocean; e.g., the
most significant concentrations of microfibers occurring far away
from the most significant concentrations of other plastics in a
recent survey of the Arctic (Cózar et al., 2017). MP particle
modeling suggests MP might oscillate within the upper 100
m as a product of biofouling/de-fouling (Kooi et al., 2016).
Microplastic aggregation in marine snows (e.g., Long et al., 2015;
Moehlenkamp et al., 2018; Porter et al., 2018) and ingestion (and
subsequent egestion) by zooplankton (e.g., Cole et al., 2013, 2016)
offer an intriguing potential pathway for MP export out of the
surface layer and in to the deep ocean and sediments, but to date
no global estimate of the potential of marine aggregates (marine
snow and fecal pellets) to transport MP has been made.

If marine snows and fecal pellets are a globally significant
vector for microplastic removal from the surface ocean then it
is concerning that primary and export production, particularly in
the low latitudes, are projected to decline in the coming decades
due to changes in climate (e.g., Kvale et al., 2015b; Laufkötter
et al., 2015, 2016; Moore et al., 2018). At the same time, increases
in the ocean plastic inventory are forecast (Jambeck et al., 2015;
Koelmans et al., 2017; Isobe et al., 2019). Thus, the global ocean
may be hit with a “double-whammy” of decreased plastics export
potential and rapidly increasing plastics pollution in the coming
decades. We present a first model-based estimation of the recent
historical and future MP global surface export and sequestration
potential of marine aggregates.

2. METHODS

For this study we use the University of Victoria Earth System
Climate Model (UVic ESCM; Weaver et al., 2001; Eby et al.,
2009; Keller et al., 2012). This particular version includes
small phytoplankton and calcifiers (Kvale et al., 2015a), which
were deactivated for the simulations as in Kvale et al. (2015b,

2018, 2019) to keep the model simple. The UVic ESCM used
here therefore contains mixed phytoplankton and diazotroph
phytoplankton categories, and a single zooplankton type. A
seasonally-variable iron mask is applied (Keller et al., 2012).

Additionalmodifications were required in order to distinguish
roles of zooplankton and phytoplankton export pathways on
MP sequestration. Detritus in the UVic ESCM is formed by
phytoplankton mortality, and zooplankton mortality, sloppy
feeding and egestion. We assume MP aggregates in fecal pellets
via zooplankton ingestion (Cole et al., 2016) and physically
aggregates in marine snow (Moehlenkamp et al., 2018), though
we do not explicitly trace MP, nor model marine particle
aggregation. We introduce a new detritus tracer to divert 50% of
zooplankton particulate losses into a detrital pool representing
fecal pellets with an initial sinking rate of 18 m d−1 (double
the initial sinking rate of the original detrital pool). We do this
to calculate a separate detrital export pool (fecal pellets), with
a faster sinking rate than the rest of the detritus. These new
rates produce a decent fit to observed ocean nutrient profiles
(Figure 1) and reflect the settling approximations of diatoms
from Moehlenkamp et al. (2018) and copepod fecal pellets (Cole
et al., 2016), where diatoms settle at approximately half the rate
as pellets. What proportion of all zooplankton particulate losses
is appropriate to represent egestion is un-constrained, therefore
50% is assumed. The remineralization rates of both detrital pools
are the same, and unchanged from earlier versions of the model.
Globally integrated NPP is now 53.04 Pg C per annum, lower
than previous model versions (64.19 Pg C y−1, Kvale et al., 2015a)
but still within the range reported (44–78 Pg C y−1; Carr et al.,
2006; Jin et al., 2006; Buitenhuis et al., 2013). Primary production
and grazing rates are shown in Figure 2.

The model was integrated at year 1800 boundary conditions
(including agricultural greenhouse forcing and land ice) for more
than 10,000 years until equilibration was achieved. From year
1800 to 1980, historical CO2 forcing (Battle et al., 1996; Etheridge
et al., 1996; MacFarling Meure et al., 2006), and geostrophically
adjusted wind anomalies (Weaver et al., 2001) are applied as
the control case. From 1980 to 2000 the model is forced with
historical CO2 forcing, and a surface MP concentration mask in
particles per square kilometer (Eriksen et al., 2014) is applied.
This mask is scaled by change in atmospheric CO2 from the
baseline at 2010, which was the (Eriksen et al., 2014) dataset
year. Thus, the MP plastic concentration is at a minimum in year
1980, and increases at the same rate as atmospheric CO2 into
the future. The mask has no impact on particle export; it merely
functions as a diagnostic tool for the export estimations. From
2000 to 2100, the MP particle mask is applied and atmospheric
CO2 follows business-as-usual RCP8.5 forcing (Riahi et al., 2007;
Meinshausen et al., 2011). The choice to apply the MPmask from
year 1980 is largely arbitrary, given how poorly historical and
modern globalMP distribution is known. It is known that plastics
were present in the North Pacific and North Atlantic gyres at
this time (Wong et al., 1974; Day and Shaw, 1987; Law et al.,
2010). Figure 3 shows global MP inventory and atmospheric
CO2 forcing.

Microplastic particle-to-mass conversions used two sources-
Eriksen et al. (2014) and van Sebille et al. (2015), of which the
latter produces significantly lighter plastic.
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FIGURE 1 | Model global and basin-average profiles at year 2000 compared to WOA (Garcia et al., 2010a,b), and GLODAP (Key et al., 2004) data.

3. DISCUSSION

3.1. Are Marine Aggregates a Plausible
Vector of Surface Microplastic Removal?
There were about 4.8E12 particles of MP in the surface ocean
in 2010 (Eriksen et al., 2014). This figure is about 100 times too
low given what is known about plastic pollution and breakdown
(Eriksen et al., 2014). If these estimates are correct, a large—and
as yet unconfirmed—sink ofMPmust operate in the ocean. In the
following we investigate the potential role of marine aggregates
(marine snow, and fecal pellets) as a sink.

A conservative estimate converts the annual average detrital
export flux out of the surface layer in the UVic ESCM to
a total number of marine snow and fecal pellet aggregates.
Shanks and Trent (1980) estimated 3–5% of total particulate

organic carbon in the NE Atlantic andMonterrey Bay, California
becomes aggregated. We take 3% as a global minimum, and
conservatively convert 3% of modeled phytoplankton detrital
surface export to mol C m−3 s−1 exported as aggregated marine
snow. If each aggregate contains between 1.27 mg of carbon [an
intermediate approximation from Shanks and Trent (1980)] and
8.8 mg of carbon (if all aggregates have the characteristics of
diatom aggregates, Simon et al., 1990), then a high and low value
of the total number of aggregated marine snow in the surface
ocean exported per year can be obtained. This is repeated for
zooplankton egestion, which is traced separately. Zooplankton
egestion is assigned a conversion factor of 1 pellet = 17mg carbon
(Shatova et al., 2012) and 100% of egested materials are pellets. In
the UVic ESCM at year 2010, this produces a range of 3.4E17–
2.3E18 (3.9E18 at 5% flocculation rate) marine snow aggregates,
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FIGURE 2 | Model year 2000 net primary production (Top) and zooplankton

grazing rates (Bottom) in g C y−1. Values are integrated across depth and

therefore values are larger for zooplankton grazing.

FIGURE 3 | Model atmospheric CO2 concentrations in ppm (black line) and

MP inventory in particles∗1010 (red line).

and 4.2E18 pellets exported per year from the surface ocean
layer (top 50 m). That is, there are 5 to 6 orders of magnitude
more sinking biogenic particles in the surface ocean than MP
particles. Even if it is assumed that one MP particle is transported
by 1 organic marine snow aggregate or pellet, biological export
can easily explain all of the missing MP. In ideal conditions,
aggregates can hold 20 or more MP particles (see the photos
in Cole et al., 2016; Moehlenkamp et al., 2018). In less ideal

FIGURE 4 | Number of days from year 2010 it took for marine aggregate

export at the seafloor to deposit an amount of MP equivalent to the surface

concentration, if it is assumed 1 MP particle is transported by 1 organic

particle.

conditions, or in the real world, this ratio could be higher, or
lower- the authors were not able to find other published, or
unpublished, estimates. But why any MP would be found in the
surface ocean at all, given the potential for marine snow and fecal
pellets to remove it, suggests there are other factors that must be
accounted for.

3.2. Microplastic Surface Export Potential
Is Not Removal
Of course not all plastic will encounter biogenic particles,
therefore the MP export potential must consider the spatial co-
occurrence of MP and marine aggregates. Also, only a small
fraction of organic detritus exported from the surface reaches the
ocean floor, with the remainder remineralizing in the subsurface.
If rates of marine aggregates reaching the seafloor replace surface
export in the above calculation, and the result is scaled against
MP surface concentration, the timescale of sequestration at the
seafloor in 2010 was less than 2 years in the gyres (a maximum
of 760 days in the North Pacific Gyre, Figure 4), assuming a
3% flocculation rate and diatom aggregate mass conversion.
The model does not trace MP, so we make this calculation by
dividing the surface MP concentration against the rate of organic
aggregates reaching the seafloor, using the conversion and
MP:aggregate assumptions mentioned above. Note the timescale
of MP removal in the Arctic is the same order as the gyres,
despite relatively low MP concentrations, because of the low
annual average biological export rates. A 5% flocculation rate
and the Shanks and Trent (1980) aggregate carbon conversion
rate would produce a maximum time to seafloor sequestration
of 480 days in the gyres (1.3 years). These estimates are faster
than the removal rate approximation of about 3 years from both
Koelmans et al. (2017) and Isobe et al. (2019), who prescribed
rates of removal not explicitly based on biology. These removal
rates are reduced still further when considering that aggregates
might transport multiple MP particles. However, our model does

Frontiers in Marine Science | www.frontiersin.org 4 January 2020 | Volume 6 | Article 808

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Kvale et al. Marine Aggregates and Microplastic

not resolve a biofouling/de-fouling cycle or other mechanisms,
such as coprophagy, that might increase the timescale of removal
to the seafloor.

The above analyses suggest marine snow and fecal pellets are
an enormous and significant potential sink for MP in the surface
ocean, with the applied assumptions. But, they are an ineffective
sink in that only a small fraction of the potential removal
results in permanent removal, otherwise there would exist noMP
surface inventory. A biofouling/de-fouling cycle (used here to
describe uptake and release by aggregation and remineralization,
not biofilm fouling as described in Galloway et al., 2017), must
be widespread and significant. The plastic exported from the
surface by aggregates that does not reach the seafloor would
be released via organic particle remineralization in the water
column. Particle remineralization is a temperature-dependent
process in our model. In 2010 in our model, about 75% of the MP
could be expected to be de-fouled in the upper 500 m globally,
but with geographical variability. MP exported out of the surface
in the very high-MP concentration regions within the warm
subtropical gyres could be expected to de-foul in the top 150 m,
which suggests an additional mechanism for rapid accumulation
of surface MP in these regions: high rates of de-fouling and
surface return driven by high rates of remineralization.

3.3. The Missing Microplastic
In 2010 there were about 3.4E4 tons of MP in the near-surface
ocean, with the quantity of “missing” microplastic being 2 orders
of magnitude greater (Eriksen et al., 2014). Our simulation allows
us to calculate that the marine snow and pellet sink transported
2.3E5–6.6E5 tons of MP to the seafloor between 1980 and 2010,
depending on conversion assumptions. This removal explains
about 7–20% of the total missing microplastic. However, if it is
assumed that each organic particle transports an average of 20
MP particles, this figure increases to 4.6E6–1.3E7 tons (139–393%
of the total missing MP, respectively).

FIGURE 5 | Change in the number of years in 2100 (relative to 2010) it would

take for marine aggregate export at the seafloor to deposit an amount of MP

equivalent to the surface concentration, if it is assumed 1 MP particle is

transported by 1 organic particle.

Consider now that our methods scale model detrital export
against the Eriksen et al. (2014) dataset, from which the “missing
plastic” is already missing. This is a necessary assumption given
the limitations of our earth systemmodel, which does not resolve
traceable plastic particles. The Eriksen et al. (2014) dataset is
derived from a combination of langrangian modeling and surface
sampling, biased toward known accumulation hotspots, such as
the gyres. In the real world, it is expected that the majority of MP
originating from coastlines would encounter organic aggregates
well before reaching the gyres, and the fouling/de-fouling cycle
would begin within a few days of the MP entering the ocean
(Michels et al., 2018). Thus, the true estimate of MP removal by
aggregates may be closer to 100% than 7%, and the majority of
affected MP particles may follow advection pathways different
from the larger plastics; never reaching the gyres, and escaping
the attention of scientists towing neuston nets.

3.4. The Future of the Marine Aggregate
Microplastic Sink
Borrelle et al. (2017) observed a quasi-linear relationship between
carbon emissions and plastic production since the early-2000s.
If it is assumed that surface layer MP concentrations are also
changing at the same rate as atmospheric CO2 concentrations,
then the projected surface ocean MP inventory in the model is
prescribed to increase at rates on the low end of projections by
Koelmans et al. (2017) and Isobe et al. (2019). This prescribed
MP concentration pathway is a highly oversimplified assumption,
but unfortunately necessary given the lack of relevant data and
mechanistic understanding of MP sinks. At the same time, global
detrital export production is modeled to be 11% lower in 2100,
relative to year 2010 rates. Surprisingly, the model predicts only
a 1% decline in MP removal by aggregates over this time frame.
The discrepancy arises because the model prescribes a uniform
increase in MP concentrations, keeping the spatial distribution
the same as the Eriksen et al. (2014) dataset. Aggregate export

FIGURE 6 | Potential marine aggregate export of MP (in tons per year) to the

seafloor, using a MP particle-to-mass conversion from Eriksen et al. (2014)

and assuming 1 MP particle is transported by 1 organic particle.
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changes very little in the gyres, with the largest low latitude
decreases occurring in upwelling zones. At the same time,
aggregate export rates in the Arctic and Southern Ocean increase
enough that even though regional MP concentrations remain
relatively low, the high removal rates mostly compensate for low
latitude declines. The Arctic shows the higher sensitivity of the
two poles, with decreases in time-to-removal of up to 10 years
(Figure 5). The North Pacific subtropical gyre, on the other hand,
shows an increase in the time-to-removal of about 5 years by
2100. This suggests that even though the global aggregate sink
may change very little into the future, in the subtropical gyres it
may become increasingly difficult to mitigate the MP pollution
problem. Though, a more accurate projection of removal rates
must include accounting for other forms of MP surface removal
(e.g., photochemical degradation and physical breakdown, as well
as microbial and aggregate fouling) that are not modeled here.

4. CONCLUSIONS

This study supports the hypothesis of a high potential of marine
aggregates to remove MP from the ocean. This pathway, through
marine snow and zooplankton fecal pellets, has been observed
in controlled conditions, but not assessed at a global scale. Our
estimates of annual MP sequestration at the seafloor by marine
aggregates (Figure 6) represent about 0.06–8.8% of total annual
ocean plastic pollution (Jambeck et al., 2015) and produce a
removal timescale in the gyres shorter than other modeling
efforts (Koelmans et al., 2017; Isobe et al., 2019). We theorize
that MP exported by aggregates that does not reach the seafloor
is released closer to the surface in the gyres, suggesting another
mechanism for MP accumulation in these regions. In the future,
the combined factors of increasing MP concentrations and
decreasing detrital export production is calculated to have a
small effect on the marine aggregate MP sink, because increased

export in the polar regions mostly offsets decreased export in the
low latitudes. However, this analysis suggests globally significant
fouling and defouling of MP, changes in which might also affect
future trends in net MP removal.

Themany assumptionsmade to produce our calculations were
necessary given the lack of relevant data. This study is meant
to serve as a first back-of-the-envelope estimate of the potential
role of aggregates in sequestering MP in ocean sediments. We
look forward to more detailed analyses in the coming years, and
significant reductions in the calculation uncertainties, as more
data become available.
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