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Oxygen minimum zones (OMZs) in the ocean are expanding. This expansion is attributed

to global warming and may continue over the next 10 to 100 kyrs due to multiple

climate CO2-driven factors. The expansion of oxygen-deficient waters has the potential

to enhance organic carbon burial in marine sediments, thereby providing a negative

feedback on global warming. Here, we study the response of dissolved oxygen in the

ocean to increased phosphorus and iron inputs due to CO2-driven enhanced weathering

and increased dust emissions, respectively. We use an ocean biogeochemical model

coupled to a general ocean circulation model (the Hamburg Oceanic Carbon Cycle

model, HAMOCC 2.0) to assess the impact of such regional deoxygenation on organic

carbon burial in the modern ocean on time scales of up to 200 kyrs. We find that an

increase in input of phosphorus and iron leads to an expansion of the area of the OMZ

impinging on continental margin sediments and a significant decline in bottom water

oxygen in the open ocean relative to pre-industrial conditions. The associated increase

in organic carbon burial could contribute to the drawdown of∼1,600 Gt of carbon, which

is equivalent to the total amount of CO2 in the atmosphere predicted for the year 2100 in

a business as usual scenario, on time scales of up to 50 kyrs. The corresponding areal

extent of sediments overlain by bottom waters with little or no oxygen as estimated by

the model is not very different from the minimum area estimated for two major oceanic

anoxic events in Earth’s past. Such events were associated with major perturbations of

the oceanic carbon cycle, including high rates of organic carbon burial. We conclude

that organic carbon burial in low oxygen areas in the ocean could contribute to removal

of anthropogenic CO2 from the atmosphere on long time scales.

Keywords: oxygen minimum zones, ocean deoxygenation, organic carbon burial, nutrient input, bottom water

anoxia, long-term carbon dioxide removal, oceanic anoxic events

1. INTRODUCTION

Oxygen minimum zones (OMZs) in the ocean are currently expanding, likely due to global
warming (e.g., Schmittner et al., 2008; Stramma et al., 2010; Cocco et al., 2013; Schmidtko et al.,
2017; Breitburg et al., 2018). The long-term climate change initiated by anthropogenic CO2

emissions (Archer, 2005; Eby et al., 2009) is expected to continue in the future (Hansen, 2005;
Friedlingstein et al., 2014a). Rising temperatures decrease the solubility of oxygen in surface waters
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and enhance stratification (Bopp et al., 2002; Stramma et al.,
2009) thereby reducing the ventilation of the interior of the
ocean. A 1◦C warming throughout the upper ocean alone
could result in a 3-fold increase in the volume of ocean waters
containing <5 µM oxygen (Deutsch et al., 2011). Changes
in dissolved oxygen in the ocean have major implications for
biogeochemical cycles. Low oxygen levels alter the availability
of key nutrients, such as phosphorus, iron and nitrogen (Duce,
1986). This can directly impact the carbon cycle by affecting
rates of organic matter production, respiration and burial in
the ocean. On time scales of a hundred thousand to a million
years, increased burial of organic carbon acts as a sink for CO2

(e.g., Freeman and Hayes, 1992; Kuypers et al., 1999; Barclay
et al., 2010) and provides a negative feedback on global warming.
Most studies on ocean CO2 sinks on short to long-time scales
(e.g., Cox et al., 2000; Archer, 2005; Friedlingstein et al., 2014b)
focus on ocean uptake of CO2 through its solubility in seawater,
the biological pump, reactions involving CaCO3 and silicate
weathering. The role of organic carbon burial as a sink for CO2 in
the future ocean has received little attention, despite its potential
for long-term carbon storage.

Given current trends in fossil fuel emissions and the slow
transition to decarbonization, atmospheric CO2 levels are likely
to continue to increase in the near future (Friedlingstein et al.,
2014a). After reaching a maximum, CO2 will decrease within a
few centuries, but enough CO2 will likely persist on timescales
of 100 kyrs to affect climate dynamics (Archer, 2005). The
impact on dissolved oxygen is therefore expected to continue
far into the future. Many studies have assessed the response
of OMZs to climate change over the next 100 to 1,000 years
(e.g., Oschlies et al., 2008; Hofmann and Schellnhuber, 2009;
Stramma et al., 2010, 2012; Cabré et al., 2015), but only a few
have looked into the longer-term consequences. In one such
study, Watson et al. (2017), used a biogeochemical box model
to assess the response of the ocean to anthropogenically driven
phosphorus inputs and concluded that this could lead to an
entirely oxygen depleted ocean within 2000 years. Results of
several studies with general circulation models including marine
biogeochemical processes suggest a significant expansion of
OMZs in response to changes in either CO2-driven changes in
phosphorus inputs fromweathering, ocean circulation or oceanic
temperatures on time scales of 10 to 100 kyrs. However, these
models do not show evidence for full scale oceanic anoxia
(Palastanga et al., 2011, 2013; Beaty et al., 2017; Niemeyer et al.,
2017; Kemena et al., 2019).

Besides phosphorus, other nutrients may limit primary
productivity, such as iron and nitrogen (Duce, 1986). In fact,
most currentmarine productivity is limited by nitrogen.Whether
this will still be the case in the future ocean is uncertain
because the nitrogen inventory is strongly affected by ocean
deoxygenation (e.g., Deutsch et al., 2007; Gruber, 2011; Oschlies
et al., 2019). Moreover, at least 30% of modern marine primary
productivity is iron-limited, particularly in the high nitrate, low
chlorophyll regions (e.g., Martin et al., 1989, 1990; Martin, 1991;
Price et al., 1991, 1994; Moore et al., 2001, 2013). Aeolian dust
is a primary source for iron. Dust inputs are largely driven by
atmospheric moisture, wind patterns, rainfall, soil moisture and

vegetation cover (Duce, 1995), all of which are expected to change
in the future. Despite large modeling efforts, predicting future
changes in dust inputs remains a challenge (Jickells et al., 2005;
Evan et al., 2014; Kok et al., 2018) and global warming may lead
to a decrease or an increase in the input of aeolian dust (e.g.,
Harrison et al., 2001;Mahowald and Luo, 2003; Tegen et al., 2004;
Mahowald et al., 2005). The most recent hypothesis is that rates
of modern global dust emission may double in at least the next
100 years due to an increase in wind speed and a decrease in
soil moisture in key source regions (Kok et al., 2018). Iron inputs
from dust lead to important shifts in phytoplankton species and
sizes, and alter nitrogen to iron ratios in the ocean. At least 30% of
modern marine primary productivity is iron-limited, particularly
in the high nitrate, low chlorophyll regions (e.g., Martin et al.,
1989, 1990; Martin, 1991; Price et al., 1991, 1994; Moore et al.,
2001, 2013). Consequently, changes in the oceanic iron cycle may
lead to variability in global rates of ocean productivity, dissolved
oxygen concentrations and organic carbon export (Moore et al.,
2001, 2013; Altabet et al., 2002). Besides dust, continental margin
sediments may also act as a key source of iron to ocean waters,
and enhanced future supply to surface waters is expected as
OMZs expand (Severmann et al., 2008; Homoky et al., 2012;
Henderson et al., 2018).

At present, OMZs have a size of 100 × 106 km3, of which
a tenth is considered the ‘core’ of the OMZs, characterized by
waters with an oxygen concentration of < ∼20 µM (Paulmier
and Ruiz-Pino, 2009). Permanent OMZs with suboxic cores are
located in the Eastern South Pacific, Eastern (Sub-) Tropical
North Pacific, Arabian Sea and Bay of Bengal, and account
for 0.8% of the global ocean’s volume. In all areas, except the
Eastern Tropical North Pacific, these OMZs also include large
areas with permanently anoxic (or nearly anoxic) bottom waters
(e.g., Stramma et al., 2008; Paulmier and Ruiz-Pino, 2009). The
total area where suboxic or anoxic waters of permanent OMZs
impinge on the seafloor is estimated at∼1.15× 106 km2 (∼0.3%
of the total ocean floor). Anoxic waters account for 70% of this
area (Helly and Levin, 2004). Note that the low oxygen area in
the Eastern Atlantic is not considered an OMZ here because its
core does not contain <20 µM of oxygen. Since the early 1960s,
anoxia has also increased on continental shelves (e.g., Tropical
Pacific and Atlantic, Northern Gulf of Mexico, and in coastal
waters of Eastern USA, Western and Northern Europe, Korea,
China, Taiwan and Japan) and in semi-enclosed basins (e.g., the
Baltic Sea, Black Sea, and Mediterranean Sea) as summarized
in Stramma et al. (2010) and Breitburg et al. (2018). Due to
limitations in spatial resolution, such near coastal areas are not
considered in this study.

Oxygen minimum zones play an essential role in the oceanic
nitrogen cycle, by contributing to removal of nitrogen through
denitrification and anammox and to the release of nitrous oxide,
a powerful greenhouse gas (Codispoti et al., 2001). Denitrification
requires low oxygen concentrations and is observed in sediments
and the water column of OMZs where oxygen concentrations
are <20 µM (Smethie, 1987). With the exception of the OMZ
in the Eastern Sub-Tropical North Pacific, all permanent OMZs
are associated with a denitrification zone. Together, these zones
account for a third of the total volume of all OMZ cores
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(∼3.4 million km3; Paulmier and Ruiz-Pino, 2009). The area
where benthic denitrification occurs could be larger than that of
water column denitrification (DeVries et al., 2013). Moreover,
OMZs favor benthic recycling of nutrients (Fisher et al., 1982).
In the sediments of OMZs, rates of organic carbon burial are
typically enhanced due to a combination of a high primary
productivity and increased preservation of organic matter under
low oxygen conditions (Emerson, 1985; Arthur et al., 1998;
Hedges et al., 2001).

In the geological past, episodes of widespread ocean anoxia
that lasted for more than 100 kyrs also led to changes in organic
carbon burial (Schlanger and Jenkyns, 1976). Key examples of
such episodes are the mid-Cretaceous Oceanic Anoxic Event 2
(OAE 2; 94 Myr ago) and the Toarcian Oceanic Anoxic Event
(T-OAE, 183 Myr). Both events occurred during a period of
frequent volcanic activity, high concentrations of greenhouse
gases in the atmosphere and global warming (e.g., Schlanger
et al., 1987; Berner, 1992; Hesselbo et al., 2000; Huber et al.,
2002; Wilson et al., 2002; Kemp et al., 2005). During OAE 2,
∼5% of the global sea floor was covered by anoxic and sulfidic
bottom waters (Owens et al., 2013, 2016; Dickson et al., 2016).
This area is thought to have been mainly limited to the proto-
North Atlantic, including various of its continental margins (e.g.,
Schlanger and Jenkyns, 1976; Ruvalcaba Baroni et al., 2014; van
Helmond et al., 2014) whereas the degree of oxygenation of the
Pacific Ocean is uncertain. OAE 2 was attributed to a reduced
solubility of oxygen due to high sea surface temperatures (Barron
et al., 1993) and changes in ocean circulation, enhanced nutrient
supply and recycling (e.g., Parrish and Curtis, 1982,?; Föllmi,
1999; Mort et al., 2007; Wagner et al., 2007; Kraal et al., 2010;
Trabucho Alexandre et al., 2010; Topper et al., 2011; Poulton
et al., 2015). Geochemical analysis revealed high rates of organic
carbon burial in both the open and especially the coastal ocean
(Owens et al., 2018) with an estimated removal of 26% of
atmospheric CO2 during OAE 2 (Barclay et al., 2010).

The exact spatial extent of the anoxia during the T-OAE
is less well-known than that for OAE 2. However, geological
evidence andmodel results suggest that during T-OAE protracted
anoxia/euxinia was geographically widespread (Gill et al., 2011;
Them et al., 2018), but likely mainly confined to relatively shallow
areas (e.g., van de Schootbrugge et al., 2005; Dickson et al.,
2017). These areas account for at least ∼0.3% of the seafloor
(Ruvalcaba Baroni et al., 2018) and provide evidence for high
rates of organic carbon burial. Trace metal and thallium isotope
analysis further suggest that bottom water deoxygenation did
not remain constant over the event (e.g., Montero-Serrano et al.,
2015; Them et al., 2018). Organic carbon burial during T-OAE is
thought to have contributed to at least 8 to 14% of the drawdown
of atmospheric CO2 (Xu et al., 2017; Ruvalcaba Baroni et al.,
2018). Both OAE 2 and T-OAE share similar biogeochemical
characteristics, such as prolonged periods of regional photic zone
euxinia, major losses in marine biodiversity, large perturbations
in most elemental cycles and high rates of organic carbon
burial (e.g., Schlanger and Jenkyns, 1976; Jenkyns, 1985, 2010;
McArthur et al., 2008; Dickson et al., 2017).

In this study, we use a biogeochemical model coupled to a
general ocean circulation model to assess changes in oxygen

and organic carbon dynamics in the modern ocean in response
to increased CO2-driven weathering inputs of phosphorus and
increased inputs of iron from dust on time scales of up to 200
kyrs. We discuss the effects on ocean deoxygenation, export
production and burial of organic carbon and the potential
impact on CO2 drawdown from the atmosphere. Our study
indicates that long term changes in oxygen concentrations and
organic carbon burial in the modern ocean upon continued CO2-
emissions could be comparable to those inferred for periods of
widespread oceanic anoxia in the geological past.

2. METHODS

2.1. Model Description
We use the Hamburg Oceanic Carbon Cycle model (Maier-
Reimer et al., 1993) in its annually averaged version
(HAMOCC 2.0; Heinze et al., 1999, 2003, 2006), which is
specifically designed for long-term integrations. The physical
model has a horizontal resolution of 3.5◦ × 3.5◦ and includes 11
layers for the oceanic water column with a total ocean surface
of 359 301 107 km2, a zonally mixed atmosphere compartment
and a bioturbated sediment layer of 10 cm, separated into 11
sublayers. The model assumes a fixed modern ocean circulation
and is based on the velocity and thermohaline fields of the
Hamburg Large-Scale Geostrophic ocean general circulation
model (Maier-Reimer et al., 1993). The biogeochemistry of
the model describes the marine carbon, silicon, oxygen and
phosphorus cycles (Heinze et al., 1999, 2003, 2006). Sedimentary
phosphorus cycling and the oceanic iron cycle were implemented
by Palastanga et al. (2011) (P-model) and Palastanga et al. (2013)
(PFe-model), respectively. In the later study, the PFe-model
was used to study glacial-interglacial variability. Here, we use
their model version (that includes both phosphorus and iron)
and their preindustrial configuration and apply it to study the
modern ocean. For a full description of the model, we refer to
these earlier papers.

The model includes both aerobic and anaerobic degradation
of organic matter, assuming first-order kinetics, with the
anaerobic pathway becoming active when oxygen is nearly
depleted (i.e., below 5 µM). Rate constants for aerobic and
anaerobic degradation of organic matter vary greatly between
different depositional environments (Tromp et al., 1995). Here,
rate constants for the aerobic and anaerobic degradation of
organic matter were selected based on the best fit of particulate
organic carbon (POC) in the surface sediments (Seiter et al.,
2004). Differences in values of the first-order rate constants
for continental margins (aerobic: 0.01 yr−1; anaerobic: 0.008
yr−1) and the deep sea (aerobic: 0.005 yr−1; anaerobic: 0.002
yr−1) reflect the lower quality of organic matter reaching the
seafloor in the latter environment. The model pattern of POC
in sediments is in good agreement with global observations of
organic carbon contents in surface sediments as demonstrated
by Palastanga et al. (2011). Key biogeochemical processes related
to sediment phosphorus cycling in the model are degradation
of organic phosphorus, precipitation of authigenic carbonate
fluorapatite and binding of dissolved phosphate to and release
from iron-oxides. The sedimentary iron cycle includes both
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formation and dissolution of iron oxides. When oxygen falls
below 5 µM, anaerobic diagenesis becomes active and both iron
and phosphorus are released to the porewater upon dissolution
of the iron-oxides. The model simulates mixing and burial
of all solid phases and diffusion of solutes. While the release
of dissolved phosphate from the sediment to the overlying
water is explicitly modeled, that of iron is prescribed using
the parameterization of Moore and Braucher (2008). In the
model, preferential regeneration of phosphorus in the open ocean
accelerates the expansion of anoxia mainly in the eastern and
western tropical Pacific Ocean, and the southeastern Pacific
sector (Palastanga et al., 2011). Results of sediment phosphorus
profiles for the pre-industrial ocean are in good agreement with
observations in the open ocean and along continental margins
(e.g., Wheat et al., 1996; Harrison et al., 2005; Parekh et al., 2005).
For further details on the implementation of the sedimentary
processes we refer to the work of Palastanga et al. (2011)
and Palastanga et al. (2013) and key references therein (e.g.,
Ruttenberg and Berner, 1993; Filippelli and Delaney, 1996; Slomp
et al., 1996). The model is forced with the preindustrial fields of
annual mean ocean circulation from Winguth et al. (1999) and
annual mean dust deposition from Mahowald et al. (2006), with
a total input of 0.35 Tmol Fe yr−1 (Table 1) as described in detail
by Palastanga et al. (2013).

2.2. Experimental Design
We performed 5 experiments with the model (Table 1): a
preindustrial simulation (Palastanga et al., 2013), an experiment
with a 2-fold increase of the input of phosphorus (2xP), an

TABLE 1 | Summary of the experiments performed with the model version of

Palastanga et al. (2013) (PFe-model).

Scenario

name

Description Total

phosphorus

input from rivers

(Tmol P y-1)

Iron oxides input

from dust

(Tmol Fe y-1)

Preindustrial Pre-industrial conditions,

reference case

0.022 0.35

2xP Doubled phosphorus

input from rivers

0.044 0.35

2xFe Doubled iron input from

dust

0.022 0.7

2xPFe Both phosphorus input

from rivers

0.044 0.7

and iron input from dust

are doubled

2.5xPFe Both phosphorus input

from rivers and

0.055 0.88

iron input from dust

increased by a factor of

2.5

2.5xP4xFe Phosphorus input from

rivers and iron input

0.055 1.4

from dust increased by a

factor of 2.5 and 4,

respectively

experiment with a 2-fold increase of the input of iron from
dust (2xFe), an experiment with a 2-fold increase of the input
of phosphorus from rivers and of iron from dust (2xPFe),
the same but then with a 2.5-fold increase of both riverine
phosphorus and dust iron (2.5xPFe), and finally, an experiment
with 2.5-fold increase in phosphorus and 4-fold increase in iron
(2.5xP4xFe). The pre-industrial simulation was run over 200 kyrs
to ensure near-equilibrium state considering that the residence
time of phosphorus in the ocean is about 120 kyrs. The other 4
experiments started from the pre-industrial scenario but with a
stepwise increase in the nutrient supply andwere further run over
200 kyrs. To assess the role of limitation of oceanic productivity
by phosphorus alone vs. limitation by phosphorus and iron
upon increased nutrient inputs, we compared the oxygen
concentrations and POC export from our 2xPFe experiment
to that presented for a doubling of the phosphorus input
by Palastanga et al. (2011) (Supplementary Material S1). Due
to different model characteristics, such as its horizontal and
vertical low resolution, its yearly integrated forcing, its simplified
topography and its assumed fixed rate constants for organic
carbon degradation, complete loss of oxygen near the seafloor
is strongly underestimated in HAMOCC 2.0. Therefore, we
consider anoxia to occur when the model oxygen concentrations
are close to zero (i.e., below 12 µM) and hereafter use this
approximation. Consequently, the terms hypoxia and suboxia
here refer to oxygen concentrations that are between 60 and
20 µM and between 20 and 12 µM, respectively. The range of
phosphorus inputs from rivers tested here is in line with estimates
of the change in rates of weathering for OAE 2 (Blättler et al.,
2011). The iron concentrations in dust follow the hypothesis
of a future increase in global dust emission as simulated by
various Earth System models when forced by a new emission
scheme that best captures dust emission measurements (Kok
et al., 2018). Note that our 2.5xP4xFe scenario simulates an ocean
where primary productivity is less limited by iron than in all
other scenarios.

3. RESULTS

3.1. The Pre-industrial Ocean
In our pre-industrial simulation (Figures 1A,B), the total volume
of the suboxic and anoxic waters of the OMZs are 25.6 ×

106 and 3.4 × 106 km3 (Table 2). These volumes account
for ∼2% and ∼0.3% of the total ocean volume, respectively.
When compared to recent volume estimates for modern open
ocean waters containing <20 µM of O2 (∼10.3 × 106 km3

with an average thickness of 340 m–i.e., accounting for 0.8%
of the ocean volume; Paulmier and Ruiz-Pino, 2009), our pre-
industrial simulation overestimates the volume of suboxic waters
by nearly a factor of 3. Anoxic waters are present between water
depths of 400 and 900 m over an area of ca. 9.6 × 106 km2,
representing about 3% of the total ocean surface (Figures 1A,B
and Table 2).

Hypoxic bottom waters containing <60 µM of O2 are
present over an area of 3.1 × 106 km2 (∼0.6% of the ocean
floor), of which 0.1 × 106 km2 contains <∼20 µM of O2

in the model (∼0.03% of the ocean floor). The areal extent
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TABLE 2 | Total extent of anoxic waters (<12 µM O2 ) per experiment after 200 kyrs separated into anoxic ocean area, anoxic bottom area and anoxic ocean volume.

Scenario

name

Area

(x 106 km2)

Anoxic

bottom area

(x 106 km2)

Volume

(x 106 km3)

% of ocean

surface

% of ocean

volume

% of

seafloor

Increase in

anoxic

volume

Preindustrial 9.6 – 3.4 3 0.3 – –

2xFe 32 0.2 14 9 1 0.05 3x

2xPFe 47 1 38 13 3 0.3 10x

2.5xPFe 61 1.4 57 17 4 0.4 13x

2.5xP4xFe 90 4.4 100 25 7 1.3 23x

The percentage of the ocean’s surface and volume that is anoxic in each scenario is calculated assuming a total ocean area and volume of 359 × 106 km2 and 1,349 × 106 km3,

respectively. The factor by which the anoxic volume is increased when compared to the pre-industrial simulation. The results of the 2xP experiment were similar to those of the Preindustrial

experiment and therefore, are not shown.

FIGURE 1 | (A,B) Dissolved oxygen concentrations at a water depth of 1,000 m and along an equatorial transect in the Preindustrial scenario and (C,D) in the 2xPFe

scenario and (E,F) the difference in dissolved oxygen concentrations between the Preindustrial and the 2xPFe scenario. Both scenarios were integrated for 200 kyrs.

A simplified schematic of ocean dynamics, the location of the anoxic core of the Pacific OMZ and the location where the largest changes in oxygen concentrations in

intermediate waters are found are indicated in the figure.

of naturally occurring suboxic bottom waters on continental

margins is on the order of ∼1.15 × 106 km2 (Helly and

Levin, 2004), which is an order of magnitude higher than

what we find in the model. Hence, the model overestimates

the volume of the OMZs but underestimates the area where
it impinges on the continental margins. Note however, that

the bottom area considered in Helly and Levin (2004) may
include some shallow areas that cannot be captured by our
model resolution.

3.2. Model Response to a Doubling of
Phosphorus and Iron Inputs
Upon a 2-fold increase in both phosphorus and iron inputs
for 200 kyrs, a significant expansion of low oxygenation occurs
when compared to pre-industrial conditions (Figures 1A–D).
This expansion is even more pronounced when doubling
the riverine phosphorus input in the P-model of Palastanga
et al. (2011), as iron in all our scenarios acts as the limiting
nutrient for POC export production in most of the ocean
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(Supplementary Material S1; Figures S1.1, S1.2). Otherwise
well-oxygenated intermediate waters in the Southern and
Western Pacific, and the Atlantic Ocean show a decrease in
oxygen concentrations of ∼40 to 70 µM (Figure 1E). Bottom
water oxygen concentrations also decrease, with the largest
change (of up to 80 µM of O2) observed for tropical and
equatorial continental margins (Figure 1F). The most expanded
OMZ is that of the Pacific Ocean, where a large anoxic core
develops throughout most of the tropical and subtropical regions
in the Eastern Pacific (Figure 1C). The volume of suboxic
waters with <20 µM increases by a factor of 4.4 relative to the
pre-industrial scenario (with a total volume of 128 x 106 km3),
whereas the volume of the anoxic core increases by a factor
of nearly 10 (Table 2). However, the anoxic volume remains
confined to a relatively thin intermediate layer spanning from
450 to 1,000 m (Figure 1D and Figure S2). The sum of all anoxic
waters in the 2xPFe experiment covers about 13% of the ocean
surface (Figure S2a) with an area of 47 × 106 km2 (Table 2).
Low-oxygen conditions in bottom waters increase and anoxic
bottom waters now develop covering about 0.3% of the ocean
floor (Table 2).

The spatial distribution in organic carbon burial in our 2xPFe
scenario is similar to that in the pre-industrial simulation and
is characterized by high burial rates on continental margins
(Figures 2A,B). In the 2xPFe scenario, on average ca. 33% more
organic carbon is buried than during the pre-industrial at a global
rate of 0.045 Gt of carbon per year. Maximum carbon contents
in sediments of the 2xPFe scenario are 4 wt% (vs. <3 wt% in
the pre-industrial run), and are found in sediments of equatorial
margins, along the northern margins of the Indian Ocean and
eastern margins of the tropical Pacific Ocean, in the Gulf of
Mexico and along the margins of northern Europe. In the 2xPFe
scenario, the average organic carbon content of sediments at the
global scale is∼0.8 wt%, while that for continental margins is 1.5
wt% and that for the open ocean is 0.7 wt% (Figure 2C). In all
our scenarios with high nutrient inputs, the increase in organic
carbon content in sediments of the open ocean is larger than
that of the continental margins when comparing to pre-industrial
conditions (e.g., Figure 2D).

3.3. Model Sensitivity to Increased Iron and
Phosphorus Input
In an ocean where iron is limiting in 85% of the surface
ocean, as is the case in the pre-industrial ocean in the model
used here, increased iron input leads to an enhanced primary
productivity. When, for example, the iron input from dust
alone is doubled (2xFe), the area where primary productivity
is limited by iron decreases to 65% of the surface ocean.
Consequently, POC export production increases by 30% within
10 kyrs. However, a rise in iron alone cannot sustain this
production and the iron consumption by primary producers and
scavenging by sinking particles (see Palastanga et al. (2013)) leads
to a gradual decrease of the iron concentrations by 10% at 200
kyrs (Figure 3A). Changes in oxygen demand follow those in
POC export production and global oxygen concentrations rise
slightly after an initial decline (Figure 3B). Results of the 2xP
experiment are not shown because the lack of iron then limits
primary productivity, resulting in rates similar to pre-industrial

values. The response to an increase in the input of one single
nutrient clearly contrasts with the rise in POC export and decline
in oxygen observed when both iron and phosphorus inputs to
the ocean are doubled, as in our 2xPFe scenario (Figures 3A,B).
The rise in POC export and decline in oxygen is even more
pronounced in the scenarios where nutrients are increased by a
factor>2 (2.5xPFe and 2.5xP4xFe; Figures 3A,B). The associated
increase in oxygen loss below the surface waters in the ocean leads
to amajor expansion of the OMZs (Figure S2b: depending on the
exact scenario, between 1% to 8% of the ocean volume is anoxic
at a depth of 1 000 m) and anoxic bottom waters cover between
0.3 to 1.3% of the seafloor (Figure 3C and Table 2). Increased
POC export production and oceanic anoxia promote the burial of
organic carbon. The cumulative organic carbon burial over 200
kyrs in the scenarios with both increased phosphorus and iron
input ranges from 8,547 to 11,085 Gt of carbon (Figure 3D).

In all our model experiments with increased phosphorus
input, the average phosphorus concentration in the ocean
increased during the experiment. This is because iron is
limiting in large parts of the ocean and phosphorus is only
partially consumed. To illustrate the consequences for the
biogeochemistry of the ocean, we compared the results of the
2xPFe scenario (i.e., performed with the PFe-model) to those of
the scenario in Palastanga et al. (2011) with a doubling of riverine
phosphorus input (i.e., performed with the P-model). We find
that in the latter model, the same increase in phosphorus input
(i.e., a doubling), when compared to the pre-industrial ocean,
leads to lower oxygen concentrations, higher POC export and
higher rates of organic carbon burial after 200 kyrs (Figure S1.1).

4. DISCUSSION

4.1. Increased Nutrient Availability as a
Driver of Ocean Deoxygenation
In our model simulations, increased inputs of iron and
phosphorus led to enhanced export production and ocean
deoxygenation. Importantly, phosphorus in surface waters was
not fully consumed by primary producers and, over time,
enhanced riverine phosphorus inputs led to a significant increase
in the oceanic phosphorus reservoir. Other biogeochemical
ocean models also show such an increase in the global
phosphorus inventory in response to increased riverine supply
(e.g., Palastanga et al., 2011; Niemeyer et al., 2017; Watson
et al., 2017; Kemena et al., 2019). However, the time-scale,
magnitude, causes and consequences of the increase in oceanic
phosphorus differs between models. Typically, the increase in
phosphorus is largest in models where other nutrients, such as
nitrogen and iron are also limiting, because this prevents full
phosphorus uptake in surface waters. This is illustrated by our
comparison of the model results of the P-model of Palastanga
et al. (2011) to those of the PFe-model in this study (Figure S1.2).
In models that consider phosphorus as the only limiting nutrient,
primary productivity mainly follows phosphorus inputs. This
may lead to an overestimation of ocean deoxygenation and
organic carbon burial.

In our simulations, the productivity in most of the surface
ocean is limited by iron, and any additional iron supply is
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FIGURE 2 | (A) Organic carbon content averaged over the sediment layer in the model (10 cm) in the scenario with a doubling of riverine phosphorus and iron dust

inputs (2xPFe), (B) difference in the organic carbon content in the 2xPFe scenario relative to the Preindustrial scenario, (C) rate of burial of organic carbon and (in red)

average organic carbon content of sediments in the total ocean, on the margins and in the open ocean for the 2xPFe scenario and (D) the differences when

compared to pre-industrial values. Results are shown for the run after 200 kyrs.

rapidly consumed by primary producers. In the real ocean,
spatial differences in iron to carbon ratios and, therefore, in iron
limitation depend on the phytoplankton species and size (e.g.,
Moore et al., 2001, 2013). These effects are not included in our
model, therefore, the corresponding detailed spatial variability
in iron limitation and primary productivity is not captured in
our results. However, future changes in the dust field are highly
uncertain and our results show how sensitive the ocean is to dust
input in the model: a 2-fold increase leads to a rise in global
primary productivity and at least a 3-fold increase in the anoxic
water volume in the ocean (Table 2).

Nitrogen also controls primary productivity (Duce, 1986;
Tyrrell, 1999; Moore et al., 2013). A direct consequence of an

OMZ expansion, such as that observed in our scenarios, is the
spreading of its associated denitrification zone (Paulmier and
Ruiz-Pino, 2009). The large increase in the anoxic core of the
OMZs in our simulations (e.g., of a factor 10 in the 2xPFe
scenario; Figure 1 and Table 2) suggests that denitrification
in the water column indeed would be enhanced. Benthic
denitrification could also increase due to the decline in bottom
water oxygen (Middelburg et al., 1996; DeVries et al., 2013).
Enhanced N-loss from the ocean and iron supply to the surface
waters favor N2-fixation which could more than compensate
for the N-loss, especially on long time scales (Codispoti, 1989;
Tyrrell, 1999). However, whether such a compensation will
actually occur in the future ocean is uncertain.
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FIGURE 3 | Particulate organic carbon (POC) and oxygenation for key runs in this study. (A) POC export production, (B) global oxygen concentrations, (C) oxygen

concentrations in bottom waters after 200 kyrs and (D) POC burial rates. Colored numbers in (D) indicate the total organic carbon permanently buried during the run

(i.e., POC burial rates integrated over 200 kyrs). Colored dashed lines indicate the time needed for each respective scenario to remove 1,600 Gt of atmospheric

carbon through organic burial alone.

If we would assume that a doubling of phosphorus
and iron inputs from weathering and dust, respectively, as
implemented in our model, is a realistic scenario for the future
ocean and that phosphorus and iron are the key limiting
nutrients, this would imply a major expansion of low oxygen
areas in the ocean on time scales of up to 200 kyrs. In
our model simulations, low-oxygenated waters in the open
ocean expand and spread from existing OMZs. Suboxic and
anoxic bottom waters may cover 2 and 0.3% of the ocean’s
sea floor, respectively. Given that our model underestimates
bottom water anoxia, these percentages are rather conservative.
Such an oxygen depleted ocean unavoidably leads to major
changes in ocean biogeochemistry and to a reduced biodiversity
(e.g., Chameides and Perdue, 1997; Vaquer-Sunyer and Duarte,
2008; Wright et al., 2012).

4.2. Role of Oxygen Demand vs. Oxygen
Supply
Oxygen concentrations in the ocean depend on the balance
between oxygen demand and supply. In our model scenarios,
we specifically focused on changes in oxygen demand in
intermediate and bottom waters due to nutrient-driven increased

export production. Recently, Beaty et al. (2017) used the

same model (PFe-model) to assess changes in oxygen supply

over 10 kyrs due to increased radiative CO2 forcing (2-8x
pre-industrial pCO2 levels), in scenarios where the associated

temperature rise affected oxygen solubility, while keeping POC
export at pre-industrial values. Comparison of our results for
the first 10 kyrs of the scenario with a doubling of nutrients
(2xPFe) with these scenarios from Beaty et al. (2017) shows that
only their most extreme scenario (8xCO2; i.e., an atmospheric
pCO2 of 2238.24 ppmv and change in sea water temperature
of 11.5 C◦) results in a less-well oxygenated ocean than in our
scenario (Figures 4A–D). This illustrates that while a reduced
solubility due to warming of surface waters is a key driver of
ocean deoxygenation (Bopp et al., 2002; Plattner et al., 2002;
Keeling et al., 2009), changes in nutrient supply have the potential
to become equally important on long time scales.

A striking difference between the results of the 2xPFe
and 8xCO2 scenarios is that in the latter scenario bottom
water oxygen concentrations in the Pacific Ocean are up to
∼30 µM lower (Figures 4D,E,G). This suggests that bottom
water concentrations in the ocean are particularly vulnerable
to changes in oxygen supply. In a set of additional scenarios,
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FIGURE 4 | POC export production (A–C) and dissolved oxygen concentrations (D–F) after 10 kyrs for our scenario with a doubling of nutrients (2xPFe) and 2

scenarios of Beaty et al. (2017): one with a 8x increase in CO2 radiative forcing (8xCO2) and one with a reduction of 25% in the ocean ventilation (25%vent). Difference

in oxygen concentrations (G,H) between our scenario and those of Beaty et al. (2017). Positive values indicate that changes in nutrient-driven oxygen demand are

smaller than those in temperature- or ventilation-driven oxygen supply, hence allowing higher concentrations of oxygen to remain. Negative values indicate the

opposite.

Beaty et al. (2017) also assessed the response of ocean oxygen to a
reduced ventilation, without changing the circulation pattern or
the mixing due to diffusion. The results of these scenarios reveal
that reducing ocean ventilation by up to 75% has a comparatively
much smaller effect on oxygen concentrations than changes in
oxygen solubility or POC export (Beaty et al., 2017). To illustrate
this, we show the results of the scenario for a 25% reduction
in ventilation from Beaty et al. (2017) and the difference with
our 2xPFe scenario (Figures 4C,F,H). Overall, our results suggest
that, on long time scales, increased nutrient input with or without
a reduced oxygen solubility could lead to expanded OMZs and
low oxygen concentrations in bottom waters, particularly in the
Pacific Ocean.

Recent results from an earth-system model simulating global
warming on millennial time scales show a gain of ∼6% of

dissolved oxygen concentrations in the ocean with respect to
modern conditions (Oschlies et al., 2019). This gain of oxygen
is largely explained by an increase in oxygen in deep waters
due to a reduction in the typical aerobic remineralization
pathway (which consumes oxygen) which is replaced by the
anaerobic denitrification pathway. Additionally, earth-system
models under radiative forcing typically show an oxygen gain
in the ocean after several thousand years [e.g., about 16%
in Ridgwell and Schmidt (2010)]. This has been attributed
to warming-induced instabilities of the stratification and its
final break down in the Southern Ocean surface. While earth-
system models can account for changes in marine oxygen
due to both warming and biogeochemistry, they do not yet
account for enhanced nutrient supply due to CO2-induced
weathering. When comparing our equilibrium results of oxygen
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concentrations in bottom waters for the 2xPFe and the pre-
industrial scenarios (Figure 3B), we obtain a loss of about 25%
of oxygen in the global ocean when a doubling of nutrient
is applied. This highlights that the loss of oxygen caused by
enhanced nutrient supply due to CO2-induced weathering is of
the same order of magnitude as the possible gain of oxygen
shown by earth-system models. Because all these drivers occur
simultaneously but on different time scales, it is possible that on a
given time the oxygen loss from enhanced weathering exceeds the
oxygen gain. In such case, enhanced nutrient supply due to CO2-
induced weathering could lead to widespread deoxygenation,
explaining the occurrence of ocean anoxic events.

4.3. Impact of Ocean Deoxygenation on
Long Term Organic Carbon Burial in
Sediments
The modern atmosphere currently contains about ∼870 Gt of
carbon in the form of CO2 (Pachauri et al., 2014) and this
is expected to increase to ca. 1600 Gt by the year 2100 (in a
business-as-usual model scenario; Cox et al., 2000). Atmospheric
CO2 is removed from the atmosphere by terrestrial and oceanic
processes that can act on a range of time-scales and are sensitive
to a range of environmental conditions. For example, the
solubility of CO2 in seawater decreases with rising sea surface
temperatures and is expected to turn the ocean into a less
efficient sink for CO2 on decadal time scales (Sabine et al.,
2004). In contrast, the rate of silicate weathering is expected to
increase upon rising pCO2 and this sets the ultimate maximum
duration of the anthropogenic carbon cycle perturbation, acting
on timescales of∼100 kyrs (Sundquist, 1991).

Our scenarios show that increased organic carbon burial on
continental margins and in the deep ocean could potentially
bury 1600 Gt of carbon within 50 ± 10 kyrs (Figure 2 and
Figure 3D). This implies that organic carbon burial alone could
“permanently” remove all CO2 present in the atmosphere in
the year 2100, when assuming no other sources and sinks. In
reality, the atmosphere is continuously affected by CO2 fluxes
and associated climate feedbacks. The model results suggest
that 20 ± 10 kyrs are required to sequester the carbon from
anthropogenic emissions (about half of the 1600 Gt) through
organic carbon burial alone. The model results also suggest
that, besides continental margins, sediments in the deep sea also
contribute to organic carbon burial (Figure 2). Since our model
does not include near-coastal areas, organic carbon burial on
continental margins is likely underestimated.

In the model, the burial of organic carbon in the sediment
depends on the input of POC from the overlying water and
rates of organic carbon degradation in the sediment. The
POC input depends on its export from the surface ocean
and hence is critically dependent on nutrient availability, i.e.,
the assumed increase in river input of phosphorus and dust
input of iron. This nutrient input must be sustained, otherwise
productivity, ocean oxygen and rates of organic carbon burial will
return to pre-industrial values. For example, if nutrient inputs
are abruptly returned to pre-industrial inputs, after reaching
equilibrium in the 2xPFe scenario, waters at 700 m and 1000
m depth reoxygenate within ∼2000 and 500 years, respectively

(Figure S3). While a 2-fold sustained increase of phosphorus
input due to weathering is in line with the suggested response to
high pCO2 based on the geological record (Blättler et al., 2011),
the long term changes in input of iron are uncertain.

In the model, anaerobic degradation of organic matter
is assumed to be a factor 0.8 and 0.4 slower than aerobic
degradation in continental margin and deep sea sediments,
respectively. This results in a global increase in POC burial
of at least ∼30% due to POC preservation under low-oxygen
conditions alone. These are relatively conservative estimates
for the change in degradation upon oxygen depletion when
compared to data for modern systems and other model studies
(Canfield, 1994; Hartnett et al., 1998; Moodley et al., 2005; Reed
et al., 2011). This implies that our estimates of POC burial could
be minimum values. We conclude that enhanced organic carbon
burial upon ocean deoxygenation could contribute to long term
removal of atmospheric CO2.

4.4. Comparison to Periods of Ocean
Anoxia in Earth’s Past
In all our scenarios with increased phosphorus and iron
inputs, existing OMZs expanded and between 0.3 and 1.3%
of the seafloor was covered by anoxic bottom waters after
50 kyrs. This compares well to the known areas with anoxic
bottom waters during the Toarcian-OAE and the Cretaceous
OAE 2, during which at least ∼0.3% (Dickson et al., 2017;
Ruvalcaba Baroni et al., 2018) and ∼5% (Owens et al., 2013,
2016; Dickson et al., 2016) of the global ocean sea floor
was overlain by waters depleted in oxygen, respectively. High
atmospheric pCO2 and high rates of nutrient input, sustained
over a longer period of time, similar to our scenario for
the modern ocean, have been deduced for these past OAEs
(e.g., Schlanger and Jenkyns, 1976; Poulsen et al., 2001; Cohen
et al., 2004, 2007; Kemp et al., 2005; Barclay et al., 2010; Goddéris
et al., 2012; van Bentum et al., 2012; Poulton et al., 2015).

An important difference between our model projections and
conditions inferred for the past ocean relates to the location
and intensity of the anoxia. In our model results, anoxic
bottom waters are observed mostly along continental margins,
in particular in the eastern Equatorial Pacific Ocean (Figure 1).
In our simulations (and those of Beaty et al., 2017), the
OMZ expands and bottom water anoxia is most pronounced
at intermediate water depths. In such a setting, widespread
sulphidic conditions in the water column are unlikely to develop.
In contrast, during the Toarcian and Cretaceous OAEs, most of
the water column, i.e., from the seafloor to the bottom of the
photic zone, was anoxic and sulphidic (e.g., Sinninghe Damsté
and Köster, 1998; Dickson et al., 2017). This difference in vertical
extent and intensity of the anoxia is likely due to the differences
in continental configuration and ocean circulation, allowing parts
of the ocean to be more prone to anoxia in the past than
today (Donnadieu et al., 2006; Goddéris et al., 2012). During
the Toarcian, this holds specifically for the northern European
Epicontinental Shelf, which was subject to a flow pattern that
promoted the development of anoxia (Ruvalcaba Baroni et al.,
2018). During OAE 2, this was the case in the proto-North
Atlantic (e.g., Sinninghe Damsté and Köster, 1998; Kuypers et al.,
2002; Owens et al., 2013). Sedimentary rock records indicate
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that large amounts of organic-rich sediments were deposited in
low oxygen areas in the ocean during the T-OAE and OAE 2
(Jenkyns, 1985, 2010). This is thought to have led to sequestration
of atmospheric CO2 andmay have contributed to the termination
of these past events (Sinninghe Damsté and Köster, 1998; van
Bentum et al., 2012; Xu et al., 2017; Ruvalcaba Baroni et al., 2018).

In our model simulations, we find that 1600 Gt of carbon can
be sequestered in the modern ocean during a period of 50 kyrs
(Figure 2). To assess whether this is realistic we can compare
these values to the estimates of organic carbon burial for the T-
OAE and OAE 2. During the T-OAE, the suboxic and anoxic
areas on the European shelf alone are thought to have buried 2400
Gt of carbon during a period of 300-500 kyrs (Ruvalcaba Baroni
et al., 2018). We note that nothing is known about the burial in
other coastal settings and in open ocean environments at this
time, hence, the total burial during the T-OAE will likely have
been larger. More is known about the burial of organic carbon
during OAE 2 and a recent calculation suggests it amounts
to at least 41,000 Gt of carbon, as estimated by Owens et al.
(2018) for an approximated event duration of 500 kyrs. In our
scenarios, the average rate of organic carbon burial in themodern
ocean (here, approximated as the final cumulative amount of
organic carbon divided by the time of the run) range from
∼0.032 to 0.055 Gt C yr−1 (Figure 3D). Our results compare
well to the average rate of organic carbon burial estimated
during, for example, OAE 2 (41,000 Gt C/500 krsy ≈0.082 Gt
C yr−1), and therefore, are not unrealistic. The difference in
the average rate of organic carbon burial in the modern ocean
vs. that during OAE 2 may be explained by the widespread
presence of anoxic and sulphidic bottom waters during the event,
which will have promoted preservation of organicmatter through
sulfidization (e.g., Meyers, 2007; Raven et al., 2018) and, possibly,
a higher productivity and hence higher input of organic matter
to the sediment Recent findings on OAEs reveal a time lag
between marine deoxygenation and significant organic carbon
accumulation in sediments (Owens et al., 2016; Ostrander et al.,
2017; Them et al., 2018). This suggests that the contribution
of organic carbon burial to atmospheric CO2 sequestration
became effective only upon widespread deoxygenation and the
establishment of anoxic bottom waters. Our scenarios do not
show such a time lag. This difference is related to differences
in nutrient availability: while in our scenarios, nutrient inputs
are elevated from the start of the simulation, in reality, nutrient
input are expected to gradually increase and the timing of that
increase can determine this time lag. However, we conclude that
the rates of organic carbon burial in our scenario are realistic
when compared to those for the geological record.

In conclusion, anthropogenic CO2 emissions as considered in
the “business as usual” projection (i.e., no reduction of fossil fuel
emissions for the next 100 years) could drive the modern ocean
toward a state of long-term widespread anoxia and increased
organic carbon burial. However, the time scale of recovery from
anoxia may be different from that during an OAE. This is because
anthropogenic emissions represent a single pulse of CO2 on
geological time scales, whereas during the T-OAE and OAE 2,
volcanic inputs replenished the CO2 in the atmosphere. Thus, if
no new CO2 sources are activated, organic carbon burial could

be more efficient as a sink for CO2 in the future ocean than
it was in the past. However, this is highly dependent on the
response of other natural carbon sources to global warming,
such as, for example, the evasion of methane from permafrost,
freshwater systems or clathrates, since this will affect the total
carbon emission to the atmosphere.

5. CONCLUSIONS

Using a biogeochemical model coupled to a general circulation
model for the modern ocean, we show that a long-term increase
in nutrient inputs could lead to a major increase in the
area and volume of suboxic and anoxic waters in the ocean.
Existing oxygen minimum zones are projected to expand, with
anoxia potentially impacting more than 20% of the area of the
ocean. In all our scenarios, the expanding oxygen minimum
zones impinge on the seafloor of continental margins. When
accounting for a minimum of a 2-fold increase of nutrient inputs,
at least 0.3 to 1.3% of the seafloor becomes covered by anoxic
bottom waters.

Ocean deoxygenation is known to lead to major changes in
ocean biogeochemistry. One major consequence of the nutrient-
driven decline in ocean oxygen in our model is the increase in
organic carbon burial on continental margins and in the deep sea.
This increase is the combined result of increased production of
organic matter in the surface ocean and enhanced preservation of
organic matter. Our results suggest that, on a time scale of up to
50 kyrs, this burial of organic matter can significantly contribute
to the removal of atmospheric carbon from fossil fuel burning
and other human activities. Our results critically depend on
increased nutrient inputs from CO2-driven enhanced weathering
on land and from dust over longer periods of time. Such long-
term changes in nutrient input, anoxic area and organic carbon
burial are not unlike those that are thought to have occurred
during periods of oceanic anoxia in Earth’s past. This implies
that modern human activities will likely impact marine life and
ocean biogeochemistry beyond timescales of several hundred
years and even create a new episode of long-term widespread
ocean deoxygenation.
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