'.\' frontiers

in Marine Science

ORIGINAL RESEARCH
published: 30 January 2020
doi: 10.3389/fmars.2020.00022

OPEN ACCESS

Edited by:
Rodney Forster,
University of Hull, United Kingdom

Reviewed by:

Daniel Louis Kamykowski,
North Carolina State University,
United States

Jonathan Peter Fram,

Oregon State University,
United States

*Correspondence:
Jordan N. Snyder
Jjordan_snyder@ucsb.edu

Specialty section:

This article was submitted to
Ocean Observation,

a section of the journal
Frontiers in Marine Science

Received: 26 September 2019
Accepted: 13 January 2020
Published: 30 January 2020

Citation:

Snyder JN, Bell TW, Siegel DA,
Nidzieko NJ and Cavanaugh KC
(2020) Sea Surface Temperature
Imagery Elucidates Spatiotemporal
Nutrient Patterns for Offshore Kelp
Aquaculture Siting in the Southern
California Bight. Front. Mar. Sci. 7:22.
doi: 10.3389/fmars.2020.00022

Check for
updates

Sea Surface Temperature Imagery
Elucidates Spatiotemporal Nutrient
Patterns for Offshore Kelp
Aquaculture Siting in the Southern
California Bight

Jordan N. Snyder™, Tom W. Bell’, David A. Siegel’2, Nicholas J. Nidzieko™2 and
Kyle C. Cavanaugh?

! Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States, 2 Department
of Geography, University of California, Santa Barbara, Santa Barbara, CA, United States, ° Department of Geography,
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Offshore aquaculture of giant kelp (Macrocystis pyrifera) has been proposed by the
US Department of Energy for large scale biofuel production along the west coast
of California. The Southern Californian Bight provides an ideal area for offshore kelp
aquaculture as the upwelling and advection of cool, nutrient-rich waters supports the
growth of vast native giant kelp populations. However, concentrations of nutrients vary
greatly across space, can be limiting for kelp growth over seasonal to interannual time
scales, and inputs of nutrients to surface waters may be subject to local circulation
processes. Therefore, it is important to understand both the spatiotemporal variability
of seawater nitrate concentrations and the appropriate scale of observation in order
for offshore kelp aquaculture to be successful. Here, we use a combination of satellite
sea surface temperature imagery, in situ measurements, and modeling to determine
seawater nitrate fields across multiple spatial and temporal scales. We then combine
this information with known giant kelp physiological traits to develop a kelp stress
index (KSJI) for the optimal siting of offshore kelp aquaculture over seasonal to decadal
scales. Temperature to nitrate relationships were determined from in situ measurements
using generalized additive models and validated with buoy data. Summer and winter
relationships were significantly different, and satellite-derived products compared well
to buoy validations. Surface nitrate patterns, as derived from satellite temperature
products, reveal the spatial variability in nitrate concentrations, and indicate areas that
that may cause nutrient stress seasonally and during the negative phase of the North
Pacific Gyre Oscillation. As the spatial scale of the surface nitrate product decreased,
the negative bias increased and fine scale spatial variability was lost. Similarly, the
averaging of daily nitrate concentration determinations over longer time scales increased
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the negative bias. We found that daily, 1 km spatial resolution nitrate products were
most sufficient for identifying localized upwelling and areas of consistently high surface
nitrate concentrations, and that areas in the northern and western-most portions of the
Southern California Bight are the most suitable for sustained offshore kelp aquaculture.

Keywords: sea surface temperature, remote sensing, kelp, spatiotemporal, aquaculture, scaling, modeling

INTRODUCTION

Satellite remote sensing allows for the daily determination
of global sea surface temperature (SST), which can be used
to estimate nutrient concentrations in the surface water via
empirical temperature to nutrient relationships. Over the last
four decades, the rapid increase in global satellite missions and
freely available satellite-based data products have led to spatially
explicit seawater nutrient estimates in many regions. Early work
by Kamykowski and Zentara (1986) modeled temperature to
nutrient relationships globally using in situ temperature, nitrate,
phosphate, and silicic acid measurements for use with Coastal
Zone Color Scanner SST imagery. Others have built upon this
technique to include additional nutrients for marine flora and
established time series over large spatial extents in various regions
(Sathyendranath et al., 1991; Morin et al., 1993; Dugdale et al,,
1997; Kamykowski et al., 2002; Son et al, 2006). The more
recently launched Landsat 8 Operational Land Imager has the
capability to monitor surface temperatures at a finer spatial
resolution than traditional ocean observing satellites. Landsat 8
imagery is particularly useful for work in coastal environments
because the thermal infrared sensor (TIRS) has a high signal-
to-noise ratio and 100-m spatial resolution. High-resolution SST
from Landsat 8 can be accurately determined after accounting for
atmospheric effects using coincident satellite imagery and have
been used to aid in the siting of aquaculture, such as oyster farms
in Maine (Snyder et al., 2017).

Recently, the United States Department of Energy has invested
in research to develop offshore giant kelp aquaculture farms for
the production of biofuels and other products (e.g., fertilizer,
animal feed, and chemicals). Thus, a temporospatial knowledge
of nutrient availability in these often nutrient-poor offshore
waters is required. The floating kelp canopy exists at the sea
surface, so while nutrients at depth may fluctuate depending on
seasonal stratification, year-round estimations of SST should be
sufficient for this application. Seawater nitrate concentration is
strongly and inversely related to seawater temperature in regions
influenced by coastal upwelling and empirical temperature to
nitrate relationships (T2N) have been developed for this region
(Eppley et al., 1979; Dugdale et al., 1997; Kim and Miller, 2007;
McPhee-Shaw et al., 2007; Omand et al., 2012; Jacox et al., 2015)
to study ocean dynamics and biophysical interactions in a variety
of ecosystems (Kamykowski and Zentara, 1986; Kamykowski
et al., 2002; Edwards and Estes, 2006; Fram et al, 2008;
Stewart et al., 2009).

The growth, distribution, and lifespan of giant
kelp (Macrocystis  pyrifera) fluctuates due to multiple
environmental drivers, such as wave disturbance, temperature,
nutrients, light availability, and herbivory (Gerard, 1982a;

Graham et al.,, 2007; Parnell et al., 2010; Bell et al., 2015a).
The spatial and temporal variability of these drivers must be
quantified to optimize the spatial planning of these large-scale,
offshore kelp aquaculture operations (Gentry et al, 2017;
Lester et al., 2018). Two of these physical parameters, seawater
temperature and nutrient concentration, are particularly
relevant as upwelling processes deliver cool, nutrient-rich
water to the surface and fuel giant kelp growth, while water
temperatures >23°C can lead to severe reductions in canopy
biomass (Zimmerman and Kremer, 1984; Deysher and Dean,
1986; Cavanaugh et al., 2019). The upwelling and advection of
nutrient-rich seawater to the surface varies greatly across space
and through time and is associated with seasonal to interannual
fluctuations in giant kelp abundance over local to regional scales
(Bell et al., 2015a). Ambient seawater nitrate accounts for a
large portion of readily available inorganic nutrients and is a
necessary ion for tissue building and photosynthesis, where frond
elongation rate declines dramatically when nitrate concentrations
are <1 pmol L™! (Zimmerman and Kremer, 1984; Rodriguez
et al, 2016). While seawater nitrate concentration is closely
related to kelp frond elongation and biomass accumulation in
natural kelp forest systems (Zimmerman and Kremer, 1984;
Bell et al., 2018), other forms of nitrogen, such as ammonia and
urea, have been proposed for the maintenance of photosynthetic
processes during periods of low nitrate availability (Brzezinski
et al., 2013; Smith et al., 2018). However, the benthic sources
of these reduced forms of nitrogen (Brzezinski et al., 2013;
Burkepile et al., 2013; Peters et al., 2019) suggest they will be less
important in offshore areas. Furthermore, while kelp can absorb
nitrogen throughout the water column, the photosynthetic
condition of the canopy is strongly related to seawater nitrate
concentrations at the surface (Fram et al., 2008; Konotchick
et al,, 2012; Bell et al., 2018; Bell and Siegel, in review). Since the
surface canopy exists in a high light environment and provides
the largest contribution to production, the assessment of surface
seawater nitrate concentration is an essential first step in the
aquaculture siting process (Colombo-Pallotta et al., 2006).

Since seawater nutrient concentrations are dynamic and can
be limiting for kelp forest growth, this variability across space
and through time needs to be well understood if offshore kelp
aquaculture is to be successful. It is also necessary to understand
the appropriate spatial and temporal scale to observe these
nutrient dynamics, as local circulation processes may play a
critical role in nutrient delivery to aquaculture farms. This is
especially important as aquaculture farms are usually on the
scale of 10’s to 100’s of meters and may be subject to processes
operating over a variety of scales. Larger spatial and longer
temporal resolution satellite data products may mask smaller
scale nutrient inputs that may be important to kelp growth in
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proposed offshore aquaculture areas. Since T2N relationships
tend to be non-linear, the mean seawater temperature state
across several days or over several kilometers may lead to a
vastly different estimate of mean nitrate concentration when
compared to estimates determined from sensors with increased
temporal or spatial resolution. With the numerous spatial
and temporal scale SST products available to the aquaculture
community, a quantification of error associated with changes in
spatial/temporal resolution is necessary. In order to determine
the optimal spatial and temporal scale to observe seawater
nitrate dynamics for use with offshore kelp aquaculture, we
(1) used high spatial resolution (100 m) SST imagery from
Landsat 8 to quantify the error associated with determining
nitrate concentrations at several common spatial resolutions,
(2) determined the error associated with averaging temperature
data across various temporal scales, and (3) determined the
optimal spatial/temporal scale of observation and combined these
analyses with known kelp physiological traits to develop a kelp
stress index (KSI) to aid in a siting analysis of offshore kelp farms
in the Southern California Bight.

MATERIALS AND METHODS

Study Area

The United States portion of the Southern California Bight is
a part of the California Current System that stretches from
Point Conception to San Diego, California, and experiences
a Mediterranean climate of cool, wet winters and warm, dry
summers. Seasonal upwelling of cool, nutrient rich waters is
driven by intensified winds in late winter and spring along
the west coast of the United States (Harms and Winant, 1994;
Otero and Siegel, 2004; Henderikx-Freitas et al., 2016). This
season is followed by a period of reduced upwelling, when waters
warm and stratify throughout the summer and fall months.
The Santa Barbara Channel falls within the Southern California
Bight and is defined by the Channel Islands to the south, Point
Conception to the northwest, and the Santa Clara River to the
southeast. A strong east/west gradient in seawater temperature
(typically > 5°C) often exists in the Santa Barbara Channel in the
late spring and early summer (e.g., Otero and Siegel, 2004).

Development of Temperature to Nitrate

Relationships

In order to derive surface water temperature to nitrate
relationships which can be applied to remotely sensed SST
data, we used in situ seawater temperature and seawater nitrate
concentration measurements across seasons and locations in the
Southern California Bight. Generalized additive models (Wood,
2006) were used to model these relationships for nitrate + nitrite,
hereafter referred to as nitrate (Kamykowski et al., 2002; Parnell
et al,, 20105 Bell et al., 2018). In previous studies of the Southern
California Bight, nitrate represented the vast majority of nutrients
in pooled nitrate + nitrite samples (Paulson, 1972; ~98%
CalCOFI). Input to the model was from all data collections
spanning 1980-2018 at depths from 0 m to 3 m within the
Southern California Bight (Figure 1). For analyses using Landsat
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FIGURE 1 | In situ data collection sites (orange, yellow, and blue markers) in
the Southern California Bight used for temperature to nitrate relationships in
the Santa Barbara Channel, California.

8 imagery of the Santa Barbara Channel, data were used from a
subset of CalCOFI cruises within the boundaries of the Landsat 8
overpass over the Santa Barbara Channel (33.496°N to 35.706°N;
and —118.594°E to —121.186°E), Santa Barbara Coastal Long
Term Ecological Research cruises, and UCSB Plumes and
Blooms cruises' >’

Temperature and nitrate data from all cruises were binned
into two groups according to a seasonal, climatological pattern
in the Southern California Bight: cool and wet winter months
(December - May), and warm and dry summer months (June -
November) (Otero and Siegel, 2004). Temperature and nitrate
data were also binned by coastal vs. offshore (at least 10 km
from the nearest coast), and sub-regionally, (northern: >34.15°N
and < —120.5°E, central: from 33.75°N to 34.41°N and —120.4°E
to —119.3°E, and southern: < 34.03°N and >—119.3°E) inside
the Southern California Bight (Supplementary Figure SI).
A GAM was fit for the two seasonal, three regional, and
coastal/offshore temperature and nitrate datasets using the
mgev package in R with a Tweedie error structure (power
function = 1.3; k = 10).

Satellite Imagery

Sea surface temperature (SST) imagery from multiple satellite
sensors were used to produce seawater nitrate estimates with
the empirical seasonal T2N relationships developed in this

!CalCOFLorg
Zhttp://sbc.lternet.edu/
3 http://www.oceancolor.ucsb.edu/plumes_and_blooms/
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study. One kilometer resolution SST imagery was obtained via
a combined MODIS/VIIRS-derived product for the Southern
California Bight*; while 100 m resolution data from the Landsat
8 TIRS thermal band was used to derive high spatial resolution
SST products in the Santa Barbara Channel’. An atmospheric
correction was applied to the Landsat 8 imagery by scaling
brightness values with fully processed 1 km SST product data
(Snyder et al, 2017). Clouds, cloud shadows and land were
masked from the Landsat 8 SST imagery using the Fmask
algorithm (Zhu et al., 2015), and fog banks and airplane contrails
were manually removed. Imagery was processed for twelve clear
Landsat 8 overpass dates between 2016 and 2018, and then
five of these images that displayed the best results from the
atmospheric correction step (as well as the greatest dynamic
range in nutrient values throughout the Channel), were chosen to
represent the highest spatial resolution imagery available. Landsat
8-derived SST imagery were validated with SST data from four
NOAA ocean observing buoys in the Santa Barbara Channel
(buoys 46218 Harvest, 46054 West Santa Barbara, 46053 East
Santa Barbara, and 46217 Anacapa Passage; r* = 0.93, mean
error = 0.23°C, mean absolute error = 0.59°C, and linear fit
equation y = 1.2x — 1.2). Buoy temperature time series from
the Santa Monica Basin and West Santa Barbara (Figure 1) were
also converted to time series of nitrate concentration using the
T2N relationships developed in this study. These buoy time series
were used to validate seawater nitrate estimates from the 1 km
MODIS/VIIRS-derived product described above.

Spatial Scaling Analysis

We performed a scaling analysis to examine the effect of using
SST products with different spatial resolutions to produce maps
of seawater nitrate concentration. We started with a processed
Landsat 8 100 m SST image and degraded the spatial resolution
to produce 1, 2, 4, 9, 15, and 25 km pixel scale imagery of nitrate
concentration via two methods (Figure 2).

The first method preserves the high-resolution nitrate
estimates by spatially degrading a 100 m nitrate product
(assuming this product is “truth’), and the second method
simulates the use of a lower resolution SST product by first
spatially degrading the 100 m SST image before estimating
the nitrate concentrations. We then found the difference in
nitrate concentration between the two methods as the spatial
resolution of the imagery was decreased. Differences in modeled
seawater nitrate concentration were quantified using simple
linear regressions. We also investigated the spatial error within
a spatially degraded pixel by quantifying the fine scale physical
processes hidden by using lower spatial resolution imagery.
These fine scale (100 m) errors due to changing resolution were
quantified by fitting normal probability distribution functions to
the error distributions at each spatial scale.

Temporal Scaling Analysis
We performed a temporal scaling analysis to examine the effect
of averaging SST through time on estimated seawater nitrate

*http://spg-satdata.ucsd.edu/
Searthexplorer.usgs.gov

concentration. Temperature measurements were made every
10 min by the Santa Monica Basin buoy and West Santa Barbara
buoy, and we sampled the timeseries (blue trace, Figure 3) at
1:30PM local time each day to mimic a satellite SST acquisition.
These daily temperatures were then averaged over several time
intervals (5, 10, 15, and 30 days) to simulate SST products at
commonly available temporal resolutions (Figure 3).

These averaged temperature intervals were then converted
to nitrate concentration and compared to the mean nitrate
concentration estimated from the individual daily buoy
temperatures over the same time period. The accuracy of the
nitrate concentration estimate was determined using the mean
absolute error for each temporal resolution (MAEy), defined as:

1 ,
_ Satellite Buoy
MAE;, = ;E |Ngellte N1 (1)
i=1

where Nﬁiteuite is the estimated nitrate concentration from
the simulated daily satellite SST averaged over each temporal
resolution k, Nflimy is the estimated nitrate concentration from
the continuous i)uoy temperature measurements, and n is the
total number of absolute error determinations. Mean absolute
error is an unambiguous measure of error compared to root mean
squared error because it is less sensitive to the distribution of
error magnitudes (Willmott and Matsuura, 2005). To quantify
bias in the estimation of nitrate concentration, we determined
the mean error for each temporal resolution (MEy) which was
calculated as:

1 — ; B
ME), = ; Z (Nliaitellzte _ N](”;")’) 2)
i=1

Cloud cover limits the ability of satellites to measure SST and
varies seasonally. In order to account for the effect of variable
cloud cover, a fraction of daily SST values (0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, and 0.8) were randomly removed from each time
interval before averaging was completed. Mean absolute error
and mean error were then determined from these estimated
nitrate concentrations as stated above.

Siting Analysis

We performed a siting analysis for all areas in the United States
portion of the Southern CA Bight. Since the technology of
farm design is changing rapidly, we included areas regardless of
depth. We used daily, 1 km SST from the MODIS/VIIRS-derived
product from 2002 to 2018 (see text footnote 4) and converted to
nitrate concentration according to the seasonal T2N relationships
derived in this study. We then calculated the mean and coefficient
of variation of nitrate concentration in the surface water across all
dates and the mean nitrate concentration for each season.

We also determined the proportion of time that giant kelp
farms exist in nutrient conditions to support adequate growth
rates. Giant kelp has internal nitrogen stores to support growth
for roughly 2 to 3 weeks (Gerard, 1982a) and frond elongation
rate maximizes at seawater nitrate concentrations of 1 mol L™!
(Zimmerman and Kremer, 1984). Therefore, we examined the
number of consecutive days when surface nitrate concentrations
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2 at each spatial resolution.
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FIGURE 3 | (1) Continuous temperature data (blue line) from a buoy was sampled daily to simulate daily satellite SST determinations (red dots). (2) These daily
temperatures are then averaged over four temporal resolutions (5, 10, 15, and 30 days; shown as colored lines plotted over the continuous buoy data). The mean
SST across the entire time series for each temporal resolution is shown. (8) Use empirical temperature to nitrate relationship (T2N) to estimate time series of nitrate
concentration which are plotted over the continuous estimated nitrate concentration derived from the buoy temperature data (maroon line). The mean estimated
nitrate concentration across the entire time series for each temporal resolution is shown.
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(NPGO), affects nitrate delivery to the Southern California Bight
(Di Lorenzo et al., 2008; Parnell et al., 2010). Stronger winds
drive increased upwelling during positive NPGO years, and
greater concentrations of nutrients are delivered to the surface
(Di Lorenzo et al., 2008). We also determined the difference in
the KSI for each season when the NPGO was in a negative versus
a positive mode.

RESULTS

Temperature to Nitrate Relationship and
Satellite Imagery

There were significant seasonal differences found in the T2N
relationships developed from in situ temperature and nitrate
data. The winter GAM had an R? = 0.83; p < 0.001; n = 2691;
and the summer GAM had an R? = 0.91; p < 0.001; n = 2758,
with winter months defined as December — May and summer
months defined as June - November (Figure 4). The summer
T2N relationship showed higher nitrate concentrations than the
winter T2N relationship between 11 and 15°C. These seasonally
specific relationships were used for all further analyses.

There were no significant differences found between coastal
and offshore T2N relationships, nor were significant differences
found between the three sub-regional T2N relationships
(Supplementary Figure S1). The results are qualitatively similar
to prior work in the region (cf. Omand et al.,, 2012 or Jacox et al.,
2015 for summaries of coastal and offshore T2N relationships
derived from in situ observations).

High spatial resolution maps of SST and estimated nitrate
concentration (Figure 5) were generated for the Santa Barbara
Channel on five clear days between 2016 and 2018 (October 3,
2016, October 19, 2016, October 22, 2017, November 10, 2018,
and December 28, 2018).

Landsat 8-derived temperature data compared well to buoy
validation data in the Santa Barbara Channel (r* = 0.93). Surface
nitrate concentrations followed an inverse pattern to SST, as

expected, where nitrate concentrations in the Santa Barbara
Channel are typically highest in the western half of the channel,
where cold, nutrient rich waters upwelled along the central coast
of California are advected southward toward the western Channel
Islands (Figure 5). This is observed in all five sets of Landsat
imagery analyzed (Supplementary Figures $3-56).

Satellite retrievals of SST (1 km MODIS/VIIRS product) and
estimated nitrate concentration matched the general patterns of
variability estimated from the continuous data at both buoys
(Figure 6). General temperature patterns followed a seasonal
cycle of highest values in the summer and lower values in the
winter, while nitrate concentrations had an inverse pattern of
peaks during the spring/winter and lows during the summer/fall.

Comparisons of SST between the buoys (West Santa Barbara
and Santa Monica Basin) and the satellite product were highly
significant and more strongly correlated (r2 = 0.93 and 0.95,
p < 0.001) than the estimated seawater nitrate concentrations
(r* =0.89 and 0.79, p < 0.001) because nitrate estimates contain
error from both satellite temperature estimates as well as the
T2N relationship. Both mean absolute error and mean error were
greater in magnitude for both SST and nitrate concentration
for the West Santa Barbara buoy than the Santa Monica Basin
buoy (Table 1).

Spatial Scaling Analysis

The spatial scaling analysis showed that values of T2N estimated
nitrate concentrations were reduced as the spatial resolution of
the image was decreased (Figure 7). As the spatial resolution was
degraded from 1 km to 25 km, nitrate concentrations greater
than 1 wmol L~! were disproportionately underestimated and
pixel nitrate concentration magnitude was reduced (Figure 7 and
Supplementary Figures S3-S6).

As the spatial resolution was degraded, local scale variations
in nitrate concentration were lost. As spatial resolution decreased
from 1 km to 25 km, the standard deviation of the distribution of
errors became larger, indicating that the level of error increased
over a greater number of pixels (Figure 8). The mean of the error
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distribution decreased from zero to negative values as the spatial
scale increased from 1 km to 25 km, indicating that local scale
nitrate concentration was more often underestimated.

Maps of the difference in estimated nitrate concentration
between the 100 m product and the 25 km product show the
higher values of nitrate were diminished, (up to 5 pumol LD
in places where there was higher spatial variability in SST, such
as around Point Conception in the northwest and around the
Channel Islands (Figure 9).

Temporal Analysis Results

The temporal scaling analysis showed that increasing the
temporal averaging of daily SST imagery negatively biased
nitrate concentration estimates (Figure 10). The average MAE

(wmol L™ across all cloud contamination fractions did not
show large changes as temporal scale increased for both buoys
(West Santa Barbara, 0.66 to 0.64 and Santa Monica Basin, 0.13
to 0.14). However, there were large increases in MAE as the
degree of cloud contamination increased, when averaged over
all temporal scales (West Santa Barbara, 0.47 to 0.86 and Santa
Monica Basin, 0.10 to 0.17), meaning that a reduction in the
number of images due to cloud cover affected MAE more than
averaging samples over a specific time period. The magnitude
of the ME (umol L™!) increased and became more negative
as the temporal scale increased (West Santa Barbara, —0.27 to
—0.50 and Santa Monica Basin, —0.06 to —0.12) and displayed
a smaller effect associated with increasing cloud contamination
(West Santa Barbara, —0.42 to —0.32 and Santa Monica Basin,
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TABLE 1 | The mean absolute error (MAE), mean error (ME), coefficient of
determination (r2), and linear equation for relationships between sea surface
temperature (SST) and estimated nitrate concentration (Est. NO3) between buoys
and satellite determinations (1 km) MODIS/VIIRS-derived SST product.

Buoy Variable MAE ME r? Equation

Santa Monica SST (°C) 049 031 095 y=1.00x+ 0.04
Basin Est. NOg (umol L™1)  0.23 —0.02 0.79 y=0.91x + 0.04
West SST (°C) 051 023 093 y=098x+ 057
SantaBarbara ot NO, (umol L-1) 091 —052 0.89 y=0.85x + 0.05

All relationships significant at the p < 0.001 level.

—0.09 to —0.07). Meaning that averaging samples over a specific
time period led to a greater negative bias compared to a reduction
in available imagery due to cloud cover.

Siting Analysis

The siting analysis shows areas in the Southern California Bight
that maintain consistent nitrate levels above 1 wmol L™! at the
surface in all seasons, and some areas that exhibit seasonal and
interannual differences. We found that nitrate concentrations
remain elevated in areas north of Pt. Conception and in the
western SB Channel throughout the time series, with a coeflicient
of variation of nitrate concentration close to 1 (Figure 11).

The coefficient of variation was higher in the rest of the SB
Channel and close to 2 in much of the southeastern quadrant
of our study area. Seasonal patterns of nitrate concentration
were >1 pwmol L™! for most of the study area in winter with
increased concentrations in the northern half of the study area
in spring. Summer and fall were characterized by reduced nitrate
concentrations over the vast majority of the study area.

The KSI was low during the winter and spring seasons, the
fraction of nutrient stress was close to zero throughout most of
the Santa Barbara Channel and into the open ocean beyond the
Channel Islands (Figure 12A). In the summer season KSI values
were high, especially in the eastern half of the Channel and close
to shore, where the fraction of nutrient stress was well above 0.8.
There was moderate nutrient stress in the fall season, the stress
fraction was above 0.5 in most of the SB Channel and southward.

During the positive phase of the NPGO the spatial pattern
of nutrient stress changed the most during the spring season
(Figure 12B). There was a decrease in KSI in areas offshore and
south of the channel, in some places by as much as 0.5. The winter
season also had a strong reduction in stress fraction, especially
along the coast and to the southeast. The summer only had weak
reductions in KSI near Point Conception, and the fall had mild
reductions in the channel and along the southeast coast.

DISCUSSION

Siting of Kelp Aquaculture Farms

Estimated surface nitrate concentration imagery show seasonal
means that follow expectations for the Southern California
Bight (Figure 11). Spring upwelling leads to elevated nitrate
concentrations, especially in the northern and western halves

of the study area. The SE quadrant of the study area can
have less than 1 wmol L™! nitrate in surface waters for much
of the year; and with CV’s of around 2, this area shows a
great degree of variability through time. For kelp aquaculture,
and especially farms fixed to the seafloor, areas with more
stable nutrient conditions (both seasonally and interannually,
i.e., the northern and western areas) should lead to more
stable aquaculture production and should be considered in
spatial planning analyses (Gentry et al., 2017; Lester et al,
2018). The Santa Barbara Channel is uniquely protected from
exposure to wave action and high-resolution thermal imagery
could be especially useful for identifying areas with nutrient
concentrations high enough to support year-round kelp growth
(Cabral et al., 2016).

The analysis of the KSI (i.e., fraction of days with kelp nutrient
stress) shows that much of the study area is not under potential
nitrate stress for the winter and spring seasons (Figure 12).
During summer and fall the northern half of the study area can
still display low kelp nutrient stress, but low nutrient surface
waters dominate during summer in the SE quadrant and as
they flow into the Santa Barbara Channel from the east and
increase nutrient stress (Harms and Winant, 1994; Otero and
Siegel, 2004). There are areas in the Southern California Bight
that maintain less than ideal conditions for kelp growth (mean
nitrate concentration stays below 1 umol L™! nitrate as indicated
by the white contour line in Figure 11). Nevertheless, there are
kelp forests that occur for periods of several years in the SE
quadrant of the map despite a high average KSI, for example,
along the coast of San Diego, CA.

By incorporating decadal forcing like NPGO into the siting
analysis we found valuable information that may have otherwise
been missed by the averaged data through time. When the
NPGO was positive, areas in the southern portion of the
study area increased in their proportion of time with adequate
nutrients for kelp growth, especially in the winter and spring.
In fact, the NPGO is an important interannual driver of kelp
canopy biomass dynamics along the California coast and natural
kelp forests in these southern areas may only form canopies
during positive NPGO years (Parnell et al., 2010; Cavanaugh
et al., 2011; Bell et al., 2015a). It follows that engineered kelp
farms planted in areas that typically experience low nitrate
conditions may only be successful during high NPGO periods.
We can learn from the dynamics of natural kelp systems
in these low nitrate areas, especially if planned aquaculture
requires that no external fertilizers are applied. The KSI is
modulated by factors other than mean seasonal temperature
and nutrient concentrations, so it is helpful to consider low
frequency marine climate oscillations, like the NPGO, that
may allow kelp to persist (Di Lorenzo et al, 2008). In the
Santa Barbara Channel the KSI never exceeds 0.5, except in the
Summer and Fall seasons near the eastern section and along
the mainland coast. This highlights the western Santa Barbara
Channel as an ideal site for maintaining kelp growth at
the surface in offshore aquaculture during both negative and
positive NPGO years.

It is important to note that this study only covers nitrate
concentrations at the surface, and stratification and internal

Frontiers in Marine Science | www.frontiersin.org

January 2020 | Volume 7 | Article 22


https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Snyder et al.

Spatiotemporal Nutrient Patterns for Aquaculture

25km pixel size

8 8
6 6
4

15km pixel size

9km pixel size

4km pixel size

Nitrate (umol L'1) estimated from 100 m SST

2km pixel size

0 5

1km pixel size

8 8 8
6 6 6
4 4 4
2 2 2
00 5 00 5 OO 5

Nitrate (umol L'1) estimated from larger scale SST

FIGURE 7 | Nitrate concentrations for 25, 15, 9, 4, 2, and 1 km spatial resolution nitrate products calculated from the 100 m Landsat 8 SST product (x-axis) and the
larger spatial resolution Landsat 8 SST product (y-axis). Red line is regression fit, dashed black line is 1:1. Image was collected on October 19, 2016.

N w B
T T T

Probability density

-
T

0 e :
-2 -1.5 -1 -0.5 0 0.5 1 1.5
A Nitrate (umol L'1)
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waves may be responsible for translocation of nutrients at depth
(Zimmerman and Kremer, 1984; McPhee-Shaw et al., 2007).
Despite this, we know that kelp canopy health declines when
surface waters warm and nitrate decreases, both seasonally and
during marine heatwaves, and thus surface waters are very
important to monitor for kelp canopy condition and growth

(Bell et al.,, 2018; Cavanaugh et al., 2019). While the spatial
resolution of the MODIS 1 km product adequately captures
surface patterns of SST and nitrate, it is important to note
that the temporal resolution of satellite imagery only provides
a snapshot of conditions at a single moment during the day. As
such, this daily measurement likely misses oceanographic events,
some of which could be especially important for supporting
kelp growth. Internal waves are strong at 12 h periods and
drive influxes of upwelled water into the Santa Barbara Channel,
so for siting purposes it would be advantageous to collect
continuous or hourly measurements with moored sensors that
can capture these events and supplement satellite datasets
(Zimmerman and Kremer, 1984).

These maps do not directly identify the best overall areas
to site a kelp farm, but they do offer spatially and temporally
explicit information to help with the decision-making process,
as several factors will come into play depending on farm
design, permitting, economic forces, and environmental impacts.
As a foundation species and ecosystem engineer, giant kelp
serves as a habitat for bryozoans, bacterial colonies, fishes
etc, and floating kelp farms in the open ocean could have
positive and/or negative effects on surrounding ecosystems by
modulating local nutrient availability. Rather than solely rely
on nitrate concentration, it is better to map how the organism
of interest will respond to these nutrient dynamics. Maps
of nutrient stress periods show areas where kelp production
may suffer seasonally. Sainz et al. (2019) showed that bivalve
aquaculture is also expected to do poorly in the Southern
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California Bight during these negative NPGO periods, however, this period. Due to the nature of decadal climate cycles in the
Lester et al. (2018), showed that finfish aquaculture may benefit =~ Southern California Bight, it may be worthwhile to examine
from warmer waters, conditions that would be common during a dynamic approach to marine spatial planning, where kelp
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aquaculture could shift to other products during negative
periods of the NPGO.

Effect of Spatial Scaling on Nitrate
Estimates

Spatially degrading SST tends to underestimate the amount of
nitrate in the surface waters due to the non-linearity of the
T2N relationship. This is most apparent at the lowest spatial
resolutions (25, 15, and 9 km in Figure 7) where the best
fit line slope is lower than the 1:1 line. The largest effect is
seen at nitrate values between 1 and 4 wmol L™! because this
area is located at the curve of the T2N relationship, where the

relationship is the most non-linear (Figure 4). At low nitrate
values there is less of an effect because there is little nitrate in
the water from 16°C to 24°C, thus averaging does not affect these
lower values as much. Accurate nitrate concentration estimates
around 1 - 4 wmol L™! are important because this is a critical
concentration range for the growth of giant kelp (Gerard, 1982b;
Bell et al., 2015a). Uptake rates by giant kelp vary non-linearly
with ambient seawater nitrate concentration, and the nitrogen
uptake rate changes the fastest over this 1 - 4 wmol L™! range
(Gerard, 1982b). Thus, an error in estimating sea surface nitrate
concentration, especially at low spatial resolutions, can lead to
disproportionate errors in estimating nitrogen uptake by kelp.
As errors tend to underestimate nitrate concentrations, larger
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spatial scale estimates may exclude areas as potential sites for
kelp aquaculture.

Fine scale physical processes that bring cool, nutrient-rich
water to specific sites can be hidden when the spatial resolution
of remote sensing imagery is degraded. This is shown in the
probability distribution functions (Figure 8) and maps of error
(red and blue areas in Figure 9) at the 25, 15, and 9 km scale.
Localized areas of upwelling, such as coastline and seamounts,
or eddy formation (around the Channel Islands and headlands)
may be good places for aquaculture but are often missed in lower
spatial resolution imagery (Broitman and Kinlan, 2006; Bell et al.,
2015b). The spatial scaling analysis showed that, under most
circumstances, 1, 2, and 4 km resolution imagery compared well
to the 100 m scale nitrate estimates for this study area.

Effect of Temporal Scaling on Nitrate

Estimates

One-kilometer MODIS satellite retrievals performed well for SST
and nitrate dynamics as seen in validation data by continuous
buoy measurements in both cool and warm areas of the
Southern California Bight (Table 1). The increased magnitude
of MAE and ME of estimated nitrate concentrations in the West
Santa Barbara buoy were likely caused by the higher magnitudes
of nitrate at that site relative to the Santa Monica Basin site.
As part of the temporal scaling analysis, higher values in MAE
were due to the higher fraction of cloud contaminated daily
SST estimates as opposed to the increase in temporal scale
(Figure 10). Offshore areas to the west of the Channel Islands
and Pt. Conception are generally cloudier than areas inside the
Channel Islands (Supplementary Figures S2A,B), and overcast
and cloudy conditions often persist throughout the summer
and fall seasons over the Santa Barbara Channel. This makes
it difficult to build an accurate climatology, as clear imagery
are sometimes only available once or twice per week. We see
that as new satellites come online, such as VIIRS in 2012, the
increased number of passes allows at least one sensor to get a clear
image of daily SST more often. The future launch of Landsat 9,
scheduled for 2020, promises an improved TIRS-2 sensor that will
reduce stray light issues in Landsat 8’s thermal imagery, as well
as increase global coverage and data collection. Improvements in
future satellite missions, the addition of geostationary satellites,
and greater cooperation between global space agencies will
continue to mitigate this limitation (Castelao et al., 2006). For
areas with persistent cloud cover and frequent storms (and thus
lower SST and possibly higher nitrate concentrations) in situ
monitoring will be necessary for farmers and stakeholders to
observe local conditions.

On the contrary, increases in the ME are driven mostly by
increases in temporal averaging and not cloud contamination.
It is important to note that ME is always negative and becomes
more negative as temporal scale (the averaging of daily SST
determinations) increases. We cannot control the level of cloud
contamination, but we can control the temporal scale at which
we convert SST to nitrate concentrations. We would recommend
that each daily determination of SST is converted to nitrate before
averaging over time (Figure 2).

Conclusion

It is important to understand the implications of spatial and
temporal scale of temperature data when estimating seawater
nutrient fields for assessing the suitability of kelp aquaculture
sites. We found that daily, 1 km SST imagery does an adequate
job of replicating continuous buoy measurements. For studies
in the NE Pacific, a merged daily 1 km multi-satellite product,
like the one used in this study, captures a great deal of the
variability in temperature and nitrate concentration in this
system at a fine spatial and temporal scale. It is also important
to remember that SST does not estimate temperature dynamics
below the surface of the water, and that waters can be stratified
in the summer. This stratification may hide subsurface dynamics
of seawater nutrients. Future offshore aquaculture farms may
use technology to overcome this, like farms which can alter
buoyancy to sink below a nutricline or employ the use of artificial
upwelling devices.
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