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Remote Sensing of Natural Waters
Using a Multichannel,
Lidar-Compatible Raman
Spectrometer and Blue Excitation
Andréa de Lima Ribeiro* and Helen Pask

Department of Physics and Astronomy, MQ Photonics Research Centre, Macquarie University, Sydney, NSW, Australia

The design and operation of a custom-built LIDAR-compatible, four-channel Raman

spectrometer integrated to a 473 nm pulsed laser is presented. The multichannel design

allowed for simultaneous collection of Raman photons at spectral regions identified

as highly sensitive to changes in water temperature. Four independent temperature

markers were calculated for ultrapure (Milli-Q) and natural water samples [two-color(||),

two-color(⊥), depolarisation(A), and depolarisation(B)]. Temperature accuracies of up to

±0.5◦C were achieved for both water types when predicted by two-color(||) markers.

Multiple linear regression models were constructed considering all simultaneously

acquired temperature markers, resulting in improved accuracies of up to ±0.2◦C. The

potential benefits of blue laser excitation in relation to avoiding overlap between the

Raman signal and fluorescence by chlorophyll-a are discussed, along with the higher

Raman returns anticipated compared to the more-conventional green laser excitation.

Keywords: raman spectroscopy, remote sensing, water temperature, LIDAR, blue excitation

INTRODUCTION

Temperatures on our planet have increased at concerning rates following the industrial
developments from the 19th and 20th centuries due to changes in Earth’s radiative balance (IPCC,
2014), an equilibrium relationship between how much of the heat received by our planet can be
either re-emitted back to space or absorbed by the planet’s heat sinks, such as the oceans. The
oceans act as massive thermal reservoirs due to the high specific heat capacity of water, demanding
large amounts of heat in order to change its temperature. Increased greenhouse gases emissions
from industrial and agricultural activities have reduced the amount of radiation re-emitted by the
Earth, generating a radiation unbalance which needs to be compensate by increased heat absorption
by the heat sinks. Recent discussions regarding climate changes brought public awareness to the
consequences of this thermal unbalance, leading to increased temperatures, thermal expansion of
water and sea level rise at coastal areas directly impacting human activities. In a world undergoing
accelerated climate changes, measuring water temperatures is essential for risk assessment and
continuously monitoring oceanic and coastal zones.

Water temperature information can be assessed by traditional and remote sensing methods.
Traditional in situ methods such as thermometers, CTDs and buoys have been broadly used in
oceanographic investigations, collecting highly accurate depth-resolved temperature data; however,
they are restricted to providing non-continuous information from sampling stations, present high
costs associated with data acquisition and processing and are not compatible with time and space
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scales of many processes occurring at oceanic and coastal zones
(Dickey, 2002). As an alternative when traditional methods
are not compatible with the scales being studied, researchers
rely on remote sensing tools to collect information from
the environment.

Remote sensing techniques retrieve information from a target
without direct interaction with the object under investigation. In
oceanography, it involves the study of the oceans, the atmosphere
and their interactions by analyzing electromagnetic radiation
emitted by these media. Satellite sensors and LIDAR methods
(Light Detection and Ranging) are the most conventional remote
sensing techniques for studying the oceans (Rees, 2001; Solan
et al., 2003).

Satellite sensors, such as AVHRRs (Advanced Very High
Resolution Radiometers) collect infrared signal passively emitted
by the first micrometers of water column, exhibiting accuracies
for temperature measurements up to ±0.1◦C and typical spatial
resolution of 4 km. However, the accuracy and periodicity of
AVHRR measurements are compromised by the presence of
clouds and require several atmospheric corrections, as the
infrared signal is absorbed by water vapor, carbon dioxide
and methane present in the atmosphere (Breschi et al., 1992;
Soloviev and Lukas, 2014). Recently, (Brewin et al., 2017)
compared sea surface temperature acquired by AVHRR sensors
with in situ reference measurements performed by buoys and
surfers along the UK coast, finding discrepancies from ±0.4
to ±0.6◦C for measurements on offshore sites and from ±1.0
to ±2.0◦C for coastal stations. This indicates that, additionally
to not providing depth-resolved information, infrared satellite
temperature predictions may vary substantially from real values
at coastal zones.

The evolution of operational oceanography and the increasing
need for new tools to validate satellite data and fast vertical
profiling of aquatic environments led to the development
of a new class of remote sensing techniques, known as
LIDAR. Active LIDAR systems comprise (1) a pulsed light
source in the visible or near-infrared range; and (2) fast
detectors allowing for time-resolved signal collection. As the
excitation light is transmitted in water, it interacts with
water molecules and other active optical constituents, with
a fraction of the incident photons being scattered back to
the surface (backscattered signal). The interpretation of the
backscattered, time-resolved, signal enables assessment of water
bulk characteristics and systematic bathymetric mapping in
coastal areas (Gordon, 1982; Churnside, 2008).

In 1979 a scientific seminar was organized to discuss the use
of LIDARmethods for monitoring the oceans, and consideration
was given to the use of several spectroscopic techniques for
measuring water temperature, such as Raman spectroscopy
(Gordon, 1980). Raman spectroscopy is a technique based
on the inelastic scattering of an incident photon, usually
from a laser source, such that scattered photons exhibit lower
(Stokes) or higher (anti-Stokes) frequencies, corresponding to
the natural frequencies of vibrational modes in the scattering
media. Liquid water is a substance governed by hydrogen-
bonding processes, exhibiting a tetrahedral structure with
several intra and intermolecular Raman-active modes (Carey

and Korenowski, 1998). The water Raman spectrum exhibits
temperature-dependent behavior, firstly identified by the authors
of Walrafen et al. (1986), which can be clearly seen at the spectral
region known as OH stretching band. For pure water, the OH
stretching band is located between 2,900 and 3,900 cm−1 and
includes a temperature-insensitive point known as the isosbestic
point. The polarization properties of Raman-scattered photons
are also temperature-dependent (Whiteman et al., 1999).

As a consequence of the temperature-dependent behavior
found for unpolarized and polarized components of the
water Raman spectra, there exist Raman temperature markers:
ratios calculated from signals at distinct spectral positions
whose values vary linearly with water temperature (hereafter
referred to as “markers”). These markers can be calculated
from Raman signals having the same polarization state and
are known as “two-color” ratios, or from the number of
photons having perpendicular/parallel polarization, referred to as
“depolarisation” ratios. These ratios form the basis for numerous
studies undertaken from the 1970s until the present time, aimed
at using Raman spectroscopy to remotely determine water
temperature (Chang and Young, 1972; Leonard et al., 1979;
Leonard and Caputo, 1983; Artlett and Pask, 2015). When
used in combination with LIDAR methods, there exists great
potential to obtain depth-resolved measurements of subsurface
water temperature. Such a capability would address currently
un-met needs of modern oceanography and is, in principle,
compatible with airborne, surface or underwater platforms.
The over-arching goals of our research project, of which this
paper is a part, is to develop a straightforward instrumentation
that could be used to determine subsurface water temperature
with accuracy ≤ ±0.5◦C, depth resolution ≤0.5m in near-
real time.

In (Artlett and Pask, 2015) accuracies of ±0.1◦C were
reported for water temperature measurements performed in the
laboratory using a commercial dispersive Raman spectrometer
(Enwave-EZRaman I), incorporating a 532 nm, continuous
wave, excitation laser. That work utilized unpolarized Raman
spectra, two-color markers, and Reverse-Osmosis laboratory
water. When trying to conduct the same analysis for temperature
predictions in natural waters, we found substantially lower
accuracies, which we attributed to the overlapping of the
Raman peak for 532 nm excitation and fluorescence signals
(de Lima Ribeiro et al., 2019a). The commercial dispersive
Raman spectrometer (RS) used in Artlett and Pask (2015)
and de Lima Ribeiro et al. (2019a) did not fulfill LIDAR-
compatibility requirements and, in order to transition from
commercial equipment toward LIDAR-compatible technologies,
we designed and assembled a LIDAR-compatible multichannel
RS integrated to a 532 nm pulsed excitation laser (de Lima
Ribeiro et al., 2019b). The equipment allowed for simultaneous
Raman signal collection in four spectral channels, and two-
color and depolarisation markers were estimated for ultrapure
(Milli-Q) and natural water sample, achieving best accuracies of
±0.3◦C in both cases. The simultaneous Raman signal collection
enabled the Linear Combination (LC) methods to be used;
these enabled temperatures to be predicted based on all four
temperature markers.
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The complexities of working with Raman spectroscopy in
natural waters include laser-induced fluorescence arising from
optically-active constituents and overlapping of these signals with
the water Raman peak (James et al., 1999; Lin, 1999, 2001). These
issues are particularly concerning when using 532 nm (green)
excitation as the water Raman peak overlaps with fluorescence
from Chlorophyll-a (Chl-a), compromising the accuracy of
temperature predictions. The authors of James et al. (1999)
and Lin (1999, 2001) recommended using shorter wavelengths
for excitation, such as blue light around 480 nm in order to
avoid overlapping with the broad Chl-a fluorescence band,
which is centered around 680 nm. For comparative purposes,
the water Raman peak (OH stretching band) lies between 550
and 575 nm when excited by blue light at 473 nm, and between
635 and 660 nm when excited by green light at 532 nm. Figure 1
shows our measured Raman spectra for milli-Q water at various
temperatures, when using (a) blue and (b) green laser excitation.
Note the differences in shape are due to different spectral
resolutions for the two measurements (the spectra in Figure 1A

are not fully resolved). Nevertheless, the temperature dependent
behavior is clear in both cases.

Blue excitation light has not been widely used for Raman
remote sensing of water temperature, and most oceanographic
LIDAR methods for bathymetric measurements employ green
excitation at 532 nm. Nevertheless, the use of blue lasers would
be beneficial for LIDAR implementations in natural waters for
the following reasons: (1) avoiding direct overlapping between
the Raman peak and fluorescence from Chl-a at 680 nm (James
et al., 1999; Lin, 2001); (2) Blue light has high transmission in
most coastal and oceanic waters, achieving higher depths than
green light (Jerlov, 1968); (3) the Raman cross-section of liquid
water is inversely proportional to the wavelength of Stokes-
shifted photons (Faris and Copeland, 1997); (4) wavelengths
for Raman shifted photons generated by blue excitation are
in the green range, undergoing lower transmission losses for
returned Raman photons around 560 nm (for blue excitation)
than 650 nm (for green excitation). Despite being effective in
avoiding overlap with the Chl-a fluorescence peak, Raman signals
scattered from blue excitation are more susceptible to overlap
with DOM fluorescence. Accordingly, it is necessary to evaluate
which excitation wavelength will be less likely to overlap with
fluorescence from natural water constituents and provide better
accuracy for Raman temperature predictions.

In this work we present a multichannel, LIDAR-compatible
Raman spectrometer (RS) integrated to a 473 nm (blue) pulsed
laser which is used to determine the temperature of small
volumes (cuvettes) of ultrapure and natural samples. We have
evaluated the effectiveness of the two-color and depolarisation
temperature markers, each of which is calculated from spectral
channels acquired simultaneously by the RS, in terms of
sensitivity to temperature change, % error in the markers and the
accuracy with which temperature can be predicted. Finally, we
explore the relative merits of using blue vs. green laser excitation,
with a view to understanding which source might ultimately be
best for use in field measurements. This is firstly in terms of
comparing the measured accuracies with those reported in de
Lima Ribeiro et al. (2019b) using green excitation. Second, we use

simple LIDAR equations to estimate the relative Raman returns
for the cases of blue and green excitation.

METHODS AND ANALYSIS

Spectrometer Design
The experimental setup for our multichannel LIDAR-compatible
Raman spectrometer using a 473 nm laser is shown in Figure 2

(hereafter this will be referred as “blue multichannel RS”).
Milli-Q (ultrapure) and natural water samples collected at a
location inside Sydney Harbor were placed inside a temperature-
controlled cuvette holder (QNW QPod2e, accuracy of ±0.2◦C)
and their temperature was varied from 18 to 40◦C, stepping every
2◦C. For natural water samples, Raman signals were acquired
within a few hours of collection. Blue light produced by a linearly-
polarized 473 nm pulsed laser (Nd:YAG, 5 µJ per pulse, 1.5 ns
at FWHM, 5 kHz repetition rate) was collimated by lenses and
coupled into the samples via a Dichroic Mirror (DM, Semrock
Di02-R488, R∼94% from 471 to 491 nm, T∼93% between 499.8
and 900 nm). Raman-scattered photons passed through a Long
Pass filter (LP, Semrock BLP01-473R, T∼93% between 486 and
900 nm) in order to eliminate Rayleigh scattering, and were split
into 2 beams bymeans of a 50/50 Beam Splitter Cube (BSC). Each
beam then passed through a Band Pass filter: BP561

low
acquiring

photons at the low shift end (Semrock FF01-561/4, central
wavelength at 561 nm and band pass of 8 nm at the FWHM) and
BP568

high
acquiring Raman photons at the high shift end (Semrock

LL01-568, central wavelength of 568 nm and band pass of 4 nm
at the FWHM). The choice of BP filters was constrained by
commercial availability, and the pass band for each of these filters
is indicated in Figure 3. In units of wavenumbers, the spectral
widths at the FWHM were 254 cm−1 for the low shift channel
and 136 cm−1 for the high shift channel.

After passing through the BP filters, each beam was divided
into two polarized components by a Polarizing Beam Splitter
Cube (PBSC), which were finally focused by lenses (f =

25mm) onto fast-response photomultipliers (PMT, Hamamatsu
H10721-20). The PMT gains were set around 700V, well-
below the setting for maximum gain (900V). Signals from
each channel were registered by a four-channel oscilloscope
(Tektronix DPO4104B), with averaging over 512 pulses.

In order to estimate signal-to-noise ratios (SNR), acquisitions
were performed with and without excitation light, with averaging
over 512 pulses. SNRs were calculated for each spectral channel
according to Equation 1:

SNR=

∫

Signal(FWHM)
∫

Noise(FWHM)
(1)

where
∫

Signal(FWHM) represents the integrated Raman signal
pulse around the full width of half maximum (FWHM); and
∫

Noise(FWHM) refers to the integrated noise signals over the
same time period.

Table 1 shows a list of information regarding each spectral
channel of collection, including polarization state, band pass filter
used, typical SNRs and the nomenclature which will be adopted
in this paper.
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FIGURE 1 | Temperature-dependent Raman unpolarised spectra from a Milli-Q water sample using (A) blue excitation at 473 nm (QE65000 Raman spectrometer,

average sampling interval of 14 cm−1 for the OH stretching band region); (B) green excitation at 532 nm (Enwave EZ-Raman spectrometer, 2 cm−1 sampling interval).

FIGURE 2 | Experimental design of the 4-channel Raman spectrometer.

Temperature Markers Calculations
Each average of 512 pulses acquired by the oscilloscope was
integrated in Matlab (Mathworks, R2017b) using the trapezoid
method over an approximate range of 2.0 ns around the FWHM,
corresponding to 10 data points (Figure 4). Raman signals
corresponding to those spectral channels were used to calculate
four types of temperature markers, according to Equations 2–5.

Two− color(‖) =
I
high
‖

Ilow
‖

(2)

Two− color(⊥) =
I
high
⊥

Ilow
⊥

(3)

Depolarisation(A) =
I
high
⊥

Ilow
‖

(4)

Depolarisation(B) =
Ilow
⊥

I
high
‖

(5)

where Ixxx
pol

indicates the intensity of Raman signal at a certain

channel (high/low) on a given polarization state.
For each water sample, three independent acquisitions were

performed for each temperature, hence three sets of two-
color and depolarisation markers could be calculated for
each temperature. Aiming to increase robustness, the markers
calculated from the independent acquisitions were averaged,
giving origin to a new (fourth) dataset for each temperature
marker hereafter referred as the “average markers dataset.” In
order to determine the uncertainties in the temperature markers,
percentage errors (%) were estimated by adding the percentage
uncertainties associated with SNRs calculated for each channel
used in the marker calculation.

Marker Sensitivity to Temperature
Sensitivities, i.e., the % change in a marker per ◦C, were estimated
for markers calculated for each water sample. As outlined in
Artlett and Pask (2015) the use of mean-scaled temperature
markers is most useful for sensitivity calculations. Those are
determined by scaling each marker by the mean value of all
markers within a set of temperature measurements (Equation
6). The linear model generated from the relationship between
mean-scaled markers and reference temperatures provided
the information necessary to estimate sensitivities for each
water sample.

Mean− scaled markers sensitivity =
d(marker)

dT
1

mean(marker)
(6)

Predicting Temperature Using a Single
Marker
In keeping with previous studies (Artlett and Pask, 2015,
2017; de Lima Ribeiro et al., 2019b), the relationships between
temperature markers and reference temperatures are found to
be linear, allowing for the use of linear regression models
with coefficients gradient and intercept. These coefficients
were then rearranged in order to calculate a new set of
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FIGURE 3 | Band pass filter transmissions superimposed on (A) parallel and (B) perpendicularly-polarized temperature-dependent water Raman spectra.

TABLE 1 | Nomenclature adopted for each spectral channel and typical SNRs.

Channel

number

Polarization

state

Band Pass

filter

Nomenclature Typical

SNR

1 Parallel BP568
high I

high
‖ 6,221

2 Perpendicular BP568
high I

high
⊥ 1,749

3 Perpendicular BP561
low Ilow⊥ 3,255

4 Parallel BP561
low Ilow‖ 4,533

FIGURE 4 | A typical set of signals (channel 4), recorded for different

temperatures and showing the area over which the signals were integrated.

temperatures dependent on the markers, hereafter called
“predicted temperatures” (Equation 7).

Tpredicted =
(

gradient ×marker
)

+ intercept (7)

where Tpredicted represents the predicted temperature estimated
by a temperature marker. RMSTE values (±◦C) were calculated
for the predicted temperature in comparison with the reference
temperature values and used as a measure of the accuracy of
temperature determination by the various markers.

Linear Combination Methods: Enhancing
Temperature Predictions
Our spectrometer design enabled signals to be collected from
all spectral channels simultaneously, hence the four temperature
markers described in Equations (2–5) each contain independent
information about temperature. In de Lima Ribeiro et al.
(2019b) we proposed and evaluated a multiple linear regression
model, which we will call the linear combination (LC) method,
combining all four markers into one model to enhance
temperature predictions according to Equation 8.

Tpredicted = β0 + β1 × two− color(‖)+ β2 × two− color(⊥)

+ β3 × depol(A)+ β4 × depol(B)+ ε (8)

where β0 is an independent term, β1−β4 are calibration terms
generated by the model and correlated with each marker and are
the residual errors. LC models for the set of “average markers”
were constructed for each sample analyzed in this paper.

RESULTS AND DISCUSSION

Milli-Q Water Analysis
In this section, we explore the temperature markers calculated
from Raman signals retrieved by our blue multichannel RS for
an ultrapure (Milli-Q) water sample. Specifically, we consider the
accuracy of temperature predictions, markers sensitivities and %
errors in the temperature markers. We consider that the Raman
signals acquired from the ultrapure water sample are solely due to
the interactions between the excitation light and water molecules
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TABLE 2 | RMSTEs (±◦C), sensitivities (% change/◦C), and absolute percentage

errors in markers (%) for a Milli-Q water sample.

Temperature marker Milli-Q water sample

RMSTE

(±◦C)

Sensitivity

(%/◦C)

Marker %

error (%)

Two-color(||) [Range] 0.5 [0.5–0.7] 0.68 0.04

Two-color(⊥) [Range] 0.7 [0.7–1.6] 0.62 0.12

Depolarisation(A) [Range] 0.5 [0.5–0.6] 0.92 0.09

Depolarisation(B) [Range] 3.2 [2.5–3.2] 0.38 0.07

Linear combination 0.3 [0.3–0.6] - -

Data in brackets is based on the analysis of four datasets; data without brackets is based

on the “average markers” dataset. Refer to section Temperature Markers Calculations

for details.

FIGURE 5 | Mean-scaled temperature markers for Milli-Q water.

and will give rise to optimum performance of our RS. A summary
with the main results found for ultrapure water analysis is shown
in Table 2.

The mean-scaled value of each temperature marker is shown
as a function of temperature in Figure 5. Their sensitivities
extracted from the slope of each curve are summarized inTable 2.

Maximum sensitivities of 0.92%/◦C were found for
depolarisation(A) markers, significantly higher than the
second best sensitivities found for two-color(||) (0.68%/◦C).
Additionally, these were the markers which exhibited lowest
absolute % errors [0.04% for two-color(||) and 0.09% for
depolarisation(A)] and the best RMSTEs of ±0.5◦C were found
for both markers. Sensitivity values were generally smaller than
the 1%/◦C reported by the authors of Chang and Young (1972)
and Leonard and Caputo (1983), however, it is necessary to
consider the impact of the spectral channels widths on the final
sensitivities. The authors of Artlett and Pask (2015) evaluated
the trade-offs between spectral channels and sensitivities
by performing simulations with unpolarized Raman signals
acquired from ultrapure (Reverse-Osmosis) water samples. The
mean-scaled markers sensitivities calculated from two spectral
channels of 250 cm−1 width exhibited values around 0.68%/◦C;
and sensitivities for channels widths around 150 cm−1 were

estimated to be around 1.03%/◦C. Considering that the spectral
channels used in our work had widths of 234 cm−1 and 137 cm−1

at the FWHM, the sensitivities found for both depolarisation(A)
and two-color(||) markers were reasonably in agreement with
the values proposed in Artlett and Pask (2015).

Two-color(⊥) and depolarisation(B) had inferior
performance for all parameters analyzed, exhibiting lower
sensitivities, higher absolute % errors and higher RMSTEs.
This was particularly true for depolarisation(B) markers, with
RMSTEs of ±3.2◦C, sensitivities of 0.38/◦C and % errors
of 0.07%, indicating that the markers showed low efficiency
when extracting temperature-dependent information from
water Raman signals. LC methods resulted in an average
improvement of 40% in RMSTEs for the Milli-Q water sample,
showing it to be a valuable technique for enhancing accuracy of
temperature prediction.

There is a lack of LIDAR-compatible studies in the Raman
remote sensing of water temperature using blue lasers, restricting
the discussion of the results from this article to comparisons
with the reports of Leonard and Caputo (1983). In the occasion,
the authors reported the use of a LIDAR-compatible custom-
built RS integrated to a 470 nm laser (15 mJ per pulse, 2 kHz
repetition rate) measuring water temperature in laboratory
from depolarisation markers and finding accuracies of ±0.5◦C.
These were the same accuracies found for our multichannel
blue RS when measuring Milli-Q water temperature from
depolarisation(A) information.

In de Lima Ribeiro et al. (2019b), we reported a multichannel
LIDAR-compatible RS integrated to a 532 nm excitation laser
(green) which configuration was similar to our multichannel
LIDAR compatible RS integrated to a 473 nm laser (blue)
presented in this work. The similarities between both
systems include: (1) same number of collection channels;
(2) simultaneous collection of both orthogonally-polarized
components of the water Raman signal; (3) same methods
of calculation for temperature markers. In de Lima Ribeiro
et al. (2019b), RMSTEs as low as ±0.4◦C were achieved for
temperature predictions from two-color(||) markers, similar to
the findings in this report (±0.5◦C). Regarding sensitivities,
maximum values for maximum sensitivity for the green
multichannel RS were 0.68%/◦C, whilst sensitivities for the blue
multichannel RS reached values as high as 0.92%/◦C. However,
comparisons between RMSTEs and sensitivities achieved in this
report and the findings in de Lima Ribeiro et al. (2019b) are
limited by the following factors: (1) the laser power used for
excitation in the abovementioned study was five times larger than
the laser power used for excitation in this study; (2) channels
widths for the green multichannel RS were twice as large as the
channel widths used in the blue multichannel RS; and (3) there
were differences in the central wavelength relative to the Raman
spectra for the blue and green RS. Both RS, blue and green,
allowed for temperature predictions equal or better than±0.5◦C.

Natural Water Analyses
Natural water samples from Sydney Harbor were collected on
various dates and analyzed with our blue multichannel RS. We
start by acknowledging that comparisons between the results
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obtained for the samples are somewhat limited, considering the
presence of different (unquantified) concentration of optically
active components in water for each natural sample. Our
intention here was to use a range of authentic natural samples
in our analyses rather than “fine-tune” our methods to one
particular sample.

Accuracy of temperature predictions (RMSTEs), sensitivities
and % errors in the temperature markers were calculated for each
natural water sample and results for the fourth dataset (“average
markers”) are summarized in Table 3. The range of RMSTEs
found for all datasets (1, 2, 3, and “average markers) is also
indicated in the table.

We start by analyzing the temperature sensitivity for each
marker in natural waters. For two-color(||), two-color(⊥) and
depolarisation(A) markers, sensitivities from all natural samples
were smaller of marginally greater than the ones found for
ultrapure water (0.68%/◦C, 0.62/◦C, and 0.92%/◦C, respectively).
This is in agreement with the findings reported in de Lima
Ribeiro et al. (2019b), where lower sensitivities were reported
in natural waters due to the fluorescence of optically active
constituents. Here, the main purpose of using excitation at
473 nm was avoiding Chl-a fluorescence at 680 nm, as the water
Raman peak for blue excitation lies around 560 nm. However,
constituents other than Chl-a exhibit fluorescence peaks around
560 nm, including DOM and other photosynthetic pigments
(James et al., 1999; Lin, 1999, 2001; de Lima Ribeiro et al.,
2019a), and it is virtually impossible to avoid overlapping
between the water Raman peak and all possible signal sources
in natural waters. In de Lima Ribeiro et al. (2019b), the
presence of Chl-a fluorescence signals overlapping with the water
Raman signals excited by green light (532 nm) led to higher
signal counts and consequent higher SNRs, and lower % errors
in the markers calculated for all-natural water sample. The
same pattern was not so clearly identified in all natural water
samples analyzed in the present study using blue excitation,
indicating that signal counts were generally less impacted
by the presence of fluorescence when using blue excitation.
Comparisons between both studies, however, are limited due
to the use of different natural water samples which will have
particular optical characteristics. To allow for full comparison
and reasoning regarding fluorescence impact in total signals,
further investigations could be conducted in the future where the
same natural sample is analyzed by both green (532 nm) and blue
(473 nm) Raman spectrometers.

RMSTE values varied from ±0.5◦C [two-color(||), natural
sample 4)] to ±7.1◦C [depolarisation(B), natural water sample
1]. The two-color(||) marker consistently delivered the best
RMSTEs (±0.5 to ±0.7◦C) for all samples. Next was the
depolarisation(A) marker, which delivered RMSTEs ranging
from ±0.7 to ±1.3◦C. These were also the markers with
highest temperature sensitivities found in this investigation.
Depolarisation(B) exhibited consistent poor accuracies when
predicting water temperature (RMSTEs higher than±2.2◦C) and
was also the marker with lowest sensitivities in all water samples.
This indicates that the temperature marker is not effectively
extracting temperature information from Raman signals, and its
use should be re-evaluated in future investigations.

The LC analyses resulted in average improvements in
temperature accuracies of 47% when compared to the best
RMSTE obtained using a single marker. Final accuracies after the
LCmethod were equal or better than±0.5◦C for all natural water
samples under investigation, indicating the method was effective
extracting meaningful temperature-dependent information from
multiple markers.

Considering the Relative Merits of
Spectrometers Using Blue and Green
Excitation
The design of our multichannel LIDAR-compatible RS using
blue excitation is conceptually similar to the RS reported in
de Lima Ribeiro et al. (2019b), which used a green excitation
laser. In practice, the two excitation lasers differed, most
notably in pulse energy, and the band pass filters defining the
spectral channels also differed in regard to their width and
their positions relative to the Raman band. In this section we
compare the prospects for predicting water temperature using
blue and green excitation, and we also evaluate the potential
benefits that blue excitation might have when combined with
LIDAR depth-resolved measurements. Table 4 summarizes the
key characteristics of the blue and green excitation lasers used
here and in de Lima Ribeiro et al. (2019b), respectively, along
with the corresponding channel width, center positions and
wavelength bands, as well as the key findings for temperature
prediction in Milli-Q water and in natural waters.

We start our comparison by analyzing the accuracies achieved
by each equipment measuring natural water temperature in the
laboratory. Predictions performed by the green multichannel
RS exhibited maximum accuracy of ±0.4◦C, marginally higher
than the RMSTEs achieved by the blue multichannel RS
(±0.5◦C). In both cases, these accuracies were achieved by
temperature predictions using two-color(||) markers. Linear
combination methods were effective in predicting temperature
more accurately for both setups, with final accuracies of
±0.2◦C being found for the blue RS and ±0.3◦C for the
green RS. These are the maximum accuracies ever reported
for LIDAR-compatible Raman spectrometers predicting natural
waters temperatures.

The key factors affecting RMSTEs are the intrinsic dependence
of Raman spectra on temperature, and the errors and
uncertainties associated with its measurement. In Milli-Q water,
the measured sensitivities for the various markers reflect this
dependence, plus the positions and widths of the spectral
channels. According to simulations performed by Artlett and
Pask (2015) for ultrapure (Reverse-Osmosis) water, an optimum
trade-off between Raman signals strength and RMSTEs would be
obtained for acquisition channels with spectral widths of around
200 cm−1. Optimum spectral positions for such channels were
explored using simulations in Artlett and Pask (2017), with the
“low shift” channel central position at 3,200 cm−1 and the “high
shift” channel central position at 3,600 cm−1. The availability of
commercial Band Pass filters within these conditions is extremely
limited, therefore the differences between spectral widths for
channels collecting signals in the blue (254 and 136 cm−1)
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TABLE 3 | RMSTEs (±◦C), sensitivities (% change/◦C), and absolute percentage errors in markers (%) for natural water sample analyzed by two-color and depolarisation

markers.

Temperature markers

Two-color(||) Two-

color(⊥)

Depol(A) Depol(B) LC

Natural 1 RMSTE (±◦C)

[Range]

0.70

[0.70–0.80]

1.50

[1.50–1.60]

1.30

[1.20–1.70]

7.20

[4.70–7.20]

0.4 [0.4–0.7]

Sensitivity (%/◦C) 0.71 0.42 0.71 0.42 -

Marker % error (%) 0.05 0.12 0.42 0.07 -

Natural 2 RMSTE (±◦C)

[Range]

0.70

[0.70–1.0]

1.20

[1.20–2.0]

1.30

[1.10–1.70]

2.30

[2.30–5.60]

0.5 [0.5–0.7]

Sensitivity (%/◦C) 0.62 0.50 0.74 0.38 -

Marker % error (%) 0.04 0.74 0.09 0.06 -

Natural 3 RMSTE (±◦C)

[Range]

0.70

[0.50–1.10]

0.90

[0.90–1.50]

0.80

[0.80–1.00]

4.90

[3.70–5.6]

0.3 [0.3–0.8]

Sensitivity (%/◦C) 0.71 0.51 0.85 0.38 -

Marker % error (%) 0.03 0.09 0.09 0.06 -

Natural 4 RMSTE (±◦C)

[Range]

0.50

[0.50–0.8]

0.80

[0.80–1.30]

0.70

[0.70–1.20]

2.20

[1.20–3.70]

0.2 [0.2– 0.7]

Sensitivity (%/◦C) 0.60 0.54 0.70 0.44 -

Marker % error (%) 0.05 0.15 0.11 0.09 -

Data in brackets is based on the analysis of four datasets; data without brackets is based on the “average markers” dataset. Refer to section Temperature Markers Calculations for details.

and green (315 and 463 cm−1) setups. Higher sensitivities for
both setups were found for depolarisation(A) markers calculated
from Raman signals scattered by Milli-Q water samples, with
sensitivities of 0.92%/◦C found in the blue setup and 0.59%/◦C
in the green. These values found in both setups are in agreement
with was proposed by the simulations in Artlett and Pask (2015).

The errors and uncertainties associated with measurements
performed on Milli-Q water originate from the SNR for each
channel, and here the 5-times higher pulse energy of the
green excitation laser, the higher Raman cross-section for blue
excitation (Faris and Copeland, 1997) and the characteristics
of the band pass filters all contribute. As can be seen in
Table 4, despite the significant differences between the blue
and green RS, the RMSTEs are remarkably similar for both
cases. When it comes to natural waters, we can expect
fluorescence signals arising from optically-active constituents
such as DOM and photosynthetic pigments compromising
the achievable RMSTE to some extent. As discussed earlier,
the overlapping between the water Raman peak for this
excitation and the chlorophyll-a peak at 680 nm is inevitable,
reducing the accuracies that could be achieved by Raman signal
analyses. Conversely, Raman photons from blue excitation have
green wavelengths (550-575 nm), which exhibit good vertical
transmission in water and do not overlap with the Chl-
a peak; however, they are susceptible to other interactions
with optically active constituents in water, such as DOM
and phytoplankton.

The overlapping between the Raman peak for blue excitation
and fluorescence from DOM has been previously assessed by
other researchers (Dolenko et al., 2011; Vervald et al., 2015),
who used Artificial Neural Networks (ANN) to solve for DOM
fluorescence in water Raman spectra. The authors of Dolenko

et al. (2011) created a database of Raman spectra excited by
a blue laser (488 nm) acquired from water samples at different
temperatures, salinities and DOM concentrations, which was
used as reference by the ANN model. In the occasion, accuracies
of ±0.8◦C were achieved for water temperature determination,
and the model was able to neglect the overlapping between DOM
and Raman peaks. Later, the authors of Vervald et al. (2015)
conducted laboratory investigations of natural water samples
using the same ANN model, achieving accuracies of up to
±0.1◦C. It is clear that ANN models are capable of minimizing
the effect of the overlap between DOM fluorescence and Raman
peaks acquired with blue excitation; however, this approach
requires complex data manipulation and is not compatible with
rapid, LIDAR methods. In de Lima Ribeiro et al. (2019a) we
proposed a new technique for minimizing spectral baselines
arising from fluorescence in natural waters named “correction
by temperature markers.” In this method, Raman two-color
markers are calculated for a “standard” water sample (i.e., a
water sample without optically active constituents interacting
with the excitation light) and compared with Raman markers
calculated for same temperature from signals scattered by natural
waters. The premise of the method is that the differences
between the markers values are due to fluorescence from
natural water constituents, and accuracies of up to ±0.2◦C were
achieved for temperature predictions in natural waters after
the correction.

When it comes to considering the best excitation
wavelength for combining our RS with LIDAR methods,
there are additional facts to take into account. The number
of Raman photons generated at a depth z and reaching
the surface, NRaman(z) can be described by Equation 9,
which is based and adapted from theory presented in
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TABLE 4 | Technical overview of two multichannel LIDAR-compatible RS

integrated to 473 nm (blue) and 532 nm (green) excitation lasers.

Blue

multichannel RS

Green multichannel RS

[de Lima Ribeiro et al.,

2019b]

Excitation wavelength

(nm)

473 532

Laser energy

(µJ/pulse)

5 25

Pulse duration at FWHM

(ns)

1.5 0.9

Wavelength of Raman photons

(nm)

550–575 630–660

Spectral channel widths

(cm−1)

254 315

136 463

Milli-q water

Best sensitivity

(%/◦C) [marker]

0.92

[depolarisation(A)]

0.68

[depolarisation(A)]

Best RMSTE (±◦C)

[marker]

0.5

[Two-color(||)]

0.4

[Two-color(||)]

RMSTE (LC) 0.3 0.3

Natural water samples

Best sensitivity (%/◦C)

[marker]

0.85

[depolarisation(A)]

0.59

[depolarisation(A)]

Best RMSTE (±◦C)

[marker]

0.5

[Two-color(||)]

0.4

[Two-color(||)]

RMSTE (LC) 0.2 0.3

Data in brackets is based on the analysis of 4 datasets; data without brackets is based

on the “average markers” dataset. Refer to section Temperature Markers Calculations

for details.

Leonard et al. (1979). For simplicity, we have overlooked
Fresnel reflections into and out of the water and assumed
solid angles of collection sufficiently small so that the
Raman photons reach the surface at near-normal angles
of incidence.

NRaman (z) = Nlaser (z)Nscat (z) σRaman1R�(z)
n2

Tλ1 (z)Tλ2 (z)(9)

where Nlaser(z) is the number of excitation laser photons at a
given depth (z);

Nscat is the density of water molecules interacting with the
excitation light (molecules/m3);

σRaman is the Raman scattering cross-section per molecule per
steradian (m2/molecule sr);

R is the minimum vertical range resolution, determined by the
laser pulse duration (m);

�(z) is the solid angle of collection, dependent on the diameter
of the telescope or other collection optics used (steradians) at a
given depth;

n is the refractive index of seawater;
Tλ1(z) and Tλ2(z) are, respectively, the vertical transmission

values for the excitation and Raman wavelengths in water (m−1).
These are functions of Tλ = e−Kdz , where Kd(λ) is the diffuse
attenuation coefficient for light in water.

Modeling retrieval of Raman photons requires knowledge
about the transmitter and receiver geometries and is beyond the
scope of this paper. Here our purpose is to explore the relative
benefit of using blue excitation, compared to green excitation. It
is relatively straightforward to estimate the ratio of the expected
Raman returns using blue or green excitation by considering only
the terms in Equation 9 that are wavelength-dependent. The ratio
is calculated assuming same pulse energy and duration for both
excitation wavelengths (Equation 10).

N473
Raman(z)

N532
Raman(z)

=
λ473σ 473

Ramane
−

((

K473
d

+K568
d

)

z
)

λ532σ 532
Ramane

−

((

K532
d

+K660
d

)

z
) (10)

The top section of Table 5 provides typical values for the
key LIDAR parameters (Nlaser , 1R, Nscat , σRaman) and the
wavelength-dependent parameters used to calculate Equation 10.
The bottom section of Table 5 gives the calculated 1% extinction
depths for blue and green excitation and the correspondent
Raman wavelengths. These are calculated for three Jerlov water
types. Jerlov water type I represents oceanic clear waters, and
coastal waters were represented by types 1C (clear coastal
water) and 7C (turbid coastal water). Raman cross-sections
σRaman) were calculated according to Faris and Copeland
(1997) for collection channels centered at 568 nm (for blue
excitation) and 660 nm (for green excitation). These “high
shift” channels were chosen because attenuation increases with
increasing wavelength.

The transmissions of the excitation laser photons and
returning Raman photons in the water column were estimated
using the downwelling diffuse attenuation coefficient Kd(λ). The
values of Kd(λ) for Jerlov water types I, 1C and 7C were obtained
from Solonenko and Mobley (2015) and interpolated for the
wavelengths of interest in our study.

The depths of extinction (1% of incident light) for excitation
and Raman photons varied between different Jerlov water types.
For excitation light, blue light exhibited better transmission in
waters type I (oceanic clear) and 1C (coastal clear); in contrast,
green light had better transmission in turbid coastal waters
(type 7C) in comparison with blue. For Raman returns the
depths of extinction of photons at 568 nm (for blue excitation)
were always >660 nm (for green excitation). Bigger differences
were found in type I (factor of 5), lesser differences in type
1C (factor of 3), and small differences in type 7C (factor
of 2).

Figure 6 shows the ratio of expected Raman returns
under blue vs. green excitation, as a function of depth.
The ratio is always >1, due to the higher Raman cross-
section when blue excitation is used (factor approaching
two), and the ratio increases exponentially with increasing
depth. Large and very similar ratios were calculated for types
I and 1C, indicating big benefits to using blue excitation,
mainly due to the combination of better excitation/Raman
transmissions in water. The use of blue light, however,
exhibited somewhat smaller advantages for type 7C, where
the much higher transmission of Raman photons (568 vs.
660 nm) is offset by the higher transmission of green excitation
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TABLE 5 | Input parameters for LIDAR modeling and outcomes for blue and green excitation lights in Jerlov water types I, 1C and 7C.

Blue (473nm) Green (532nm)

Nlaser

(Photons/mJ)

2.38 × 1015 1.34 × 1016

1R for typical 2 ns pulse

(m)

0.5 0.5

Nscat

(molecules/m3 )

4.32 × 1020 4.32 × 1020

σRaman

(m2/molecule sr)

9.62 × 10−30 5.14 × 10−30

n 1.34 1.34

Raman wavelength

(nm)

568 660

Coefficients of light attenuation in water

(m−1)

I 1C 7C I 1C 7C

Kd (excitation) 0.020936 0.141501 0.724552 0.056522 0.125776 0.454200

Kd (Raman) 0.067273 0.126629 0.363474 0.373014 0.481169 0.701930

Model outcomes

Calculated 1% extinction depth for excitation laser

(m)

>150 49 9.5 122.5 55 15

Calculated 1% extinction depth for Raman photons

(m)

68.5 36.5 12.5 12.5 10 6.5

FIGURE 6 | The ratio given in Equation 10 is plotted as a function of depth (z) for Jerlov water types: oceanic type I, and coastal types 1C and 7C.

compared to blue. While this model is a rudimentary one,
it clearly indicates the benefits of using blue excitation,
predicting much greater Raman returns and therefore higher
potential to determine subsurface water temperatures with
reasonable accuracies. More sophisticated modeling would be
required to calculate actual Raman returns and to predict
the depth at which subsurface water temperature could
be determined.

CONCLUSION

We have presented the design and performance of a custom-
built multichannel Raman spectrometer integrated to a
473 nm pulsed laser, employing commercial optical filters to
collect polarized Raman signals at spectral regions of interest

for the remote sensing of natural water temperature. Our
spectrometer design is LIDAR-compatible and comprised
of (1) a pulsed laser source with period ≤2 ns at the
FWHM, to allow for depth resolutions better than 0.5m;
(2) collection of Raman signals at spectral regions highly
sensitive to changes in temperature; (3) fast, sensitive detection
by photomultipliers.

This was the first time that polarized Raman signals
scattered from blue excitation (473 nm) were acquired in
spectral channels for samples of natural waters and temperature
was determined with accuracies as high as ±0.5◦C. The
simultaneous acquisition of Raman signals in four channels
at different polarization states and wavelength ranges
allowed for calculation of different types of temperature
markers. Two-color(||) (from parallel-polarized Raman
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signals) and depolarisation(A) (calculated from signals of
different polarization states) exhibited best performances when
predicting water temperature, followed by two-color(⊥) and
depolarisation(B). When all four markers were incorporated
in the linear combination model, enhanced RMSTEs up
to ±0.2◦C were achieved. Those RMSTEs were similar to
values reported in previous studies for green excitation
(de Lima Ribeiro et al., 2019b).

Lastly, we have presented a simple model which predicts
substantially higher Raman returns when blue excitation is
used. The use of blue light is beneficial to our final goal of
rapidly profiling the water column temperature by using a
LIDAR-compatible system. The advantages over green light,
traditionally used in oceanographic studies, include: (1) reduced
spectral overlapping between Raman and fluorescence peak
from chlorophyll-a at 680 nm; (2) higher Raman returns due
to lower attenuation coefficients and higher Raman cross-
sections.

Future work will entail field testing of the methodology
presented in this paper. Particular focus needs to
be given to implementing LIDAR to extract depth-
resolved temperature information and strategies to
mitigate the impact of fluorescence from optically
active constituents.
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