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Editorial on the Research Topic

Facing Marine Deoxygenation

INTRODUCTION

Marine deoxygenation is increasingly recognized as a major environmental threat (Breitburg et al.,
2018).

Global warming drives a substantial part of this deoxygenation trend (Keeling et al., 2010), which
is projected to continue during the next decades both in the open ocean and in the coastal waters.
Future increasing anthropogenic pressures (e.g., eutrophication) are expected to further exacerbate
this trend (Fennel and Testa, 2019).

Several main challenges need to be addressed by the scientific community:

1) To understand natural variability in marine oxygenation. As observations only cover the last
ca. 60 years, we lack information about longer-term variability and trends in ocean oxygenation
and associated drivers (Kamykowski and Zentara, 1990; Schmidtko et al., 2017; Oschlies et al.,
2018).

2) To understand and predict the response of global biogeochemical cycles to deoxygenation. In
particular, how lower oxygen conditions affect community respiration, the nitrogen (Zehr, 2009;
Lam and Kuypers, 2011) and phosphorus cycles (Conley et al., 2002; Watson et al., 2017) across
the estuarine-shelves-ocean continuum, including feed-backs on the climate system.

3) To evaluate and mitigate the threat posed by deoxygenation on valuable marine goods and
services (Cooley, 2012) and on marine biodiversity (Vaquer-Sunyer and Duarte, 2008).

Open ocean (Paulmier and Ruiz-Pino, 2009) and coastal (Diaz and Rosenberg, 2008; Rabalais
et al., 2009) deoxygenation differ in terms of temporal scale, morphology, driving processes,
and implications. However, we gathered contributions related to both typologies in order to
highlight interactions, differences and similarities, and to promote a common concern on marine
deoxygenation so as to raise public awareness and facilitate mitigation strategies (Levin and
Breitburg, 2015).

We provide below an overview of the contributions collected in this Research Topic, as well as
emerging points of attention.
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CONTRIBUTIONS

Variability and Driving Processes
The variability in morphological expressions of low oxygen
marine conditions is addressed at time scales from millenia to
days, and described in relation with driving processes.

Long-term variability of Oxygen Minimum Zones (OMZ)
in upwelling systems is addressed by Cardich et al. for the
Peruvian system and by Choumiline et al. in the Californian
system. Paleo-oceanographic and instrumental records indicate
contraction and expansion periods for the Peruvian OMZ
through the last 170 years, with a slight modern oxygenation
trends (1960–2010) (Cardich et al.). The authors attribute
centennial scales of variation to subsurface ventilation, and
decadal scales to changes in local productivity. Using sediment
core proxy records, Choumiline et al. highlight that expansions
of the Californian OMZ during the last millennium coincide
with increased productivity and upwelling during cold intervals.
OMZ contractions are depicted between those intervals, pointing
toward subsurface circulation and solar insolation as lead drivers
of OMZ extent at a centennial scale. No evidence for recent
warming effect on the OMZ extent could be depicted for the
Californian area.

Long term redox history is crucial, as the closest analog
for future climate and oceanographic change. However,
methodological challenges remain regarding the processing of
paleo proxies. Venturelli et al. question oxygenation proxies
based on benthic foraminiferal assemblages, by collecting
modern assemblages across spatial oxygenation gradients. A
dominance of sediment-dwelling taxa over epifaunal taxa is
generally considered to indicate low oxygen conditions. Here,
the authors evidence that heterogeneous benthic habitat (e.g.,
grain size) also affects the distribution of benthic foraminifera,
and thereby question the use of epifaunal foraminifera presence
as an evidence for bottom oxygenated conditions.

On a closer time frame, Trucco-Pignata et al., detail the
perturbation of an OMZ located in the tropical Pacific off
central Mexico in response to 2015-2016 El-Nino, and describe
associated changes in the carbonate system. The authors describe
the role of mesoscale activity in driving the transitional regimes
before and after the perturbation.

Terrestrial and atmospheric nutrient loads as drivers of coastal
and shelves deoxygenation are addressed by Große et al.. As a tool
to develop mitigation strategies, the authors propose a modeling
approach to map the relative contributions of specific oxygen
consumption terms. Targeting N-fueled oxygen consumption
in the North Sea, they indicate an important contribution of
Atlantic nitrogen inflow, and highlight the role of European
rivers (∼30–40%) in fueling O2 consumption in the southern

North Sea. The authors conclude that reducing riverine N
inputs would adequately mitigate low O2 levels in the southern

North Sea.
Two manuscripts address microbial respiration as a lead

biogeochemical term of the oxygen budget. Robinson review

those processes involving or involved in variations of microbial
respiration rates, which are seldom accounted for within
ocean models. Mechanisms contributing to deoxygenation

are reviewed, as well as common techniques for measuring
respiration rates and measured ranges in different parts of
the ocean. The authors describe recent advances in the field
and discuss the combined effect of decreasing oxygen and
increasing carbon dioxide concentrations on respiration rates.
Torres-Beltrán et al. report outcomes from the Scientific
Committee on Oceanographic Research (SCOR)Working Group
144 “Microbial Community Responses to Ocean Deoxygenation”
workshop (Vancouver, July 2014), aiming at standardizing
process rate and multi-omic data collection in marine low-
oxygen environment. In particular, large differences in recovered
microbial groups were identified for identical samplings
following different experimental protocols, to an extent that
might alter inferred metabolic rates. The authors call for
standardized techniques facilitating cross-scale comparisons and
accurate assessment of in situmicrobial activity.

Impacts
Further contributions aimed at characterizing the
impacts of marine deoxygenation on biogeochemical and
biological systems.

Impacts on the carbonate system were addressed by
Hernandez-Ayon et al. and Trucco-Pignata et al. From a cruise
across the Peruvian OMZ, Hernandez-Ayon et al. highlight
that oxygenation conditions altered the carbonate system so
as to affect air-sea CO2 exchanges estimates, and that the
variability and spatial heterogeneity in oxygen conditions
hampered clear estimates of in situ based carbon budget for
the area.

Michiels et al. address deoxygenation impacts on the nitrogen
cycle. They quantify pelagic denitrification and anammox in a
permanently anoxic fjord (British Columbia), during and before
a water renewal cycle, and set those measurements in relation
with microbial communities. Denitrification accounted for two
thirds of nitrogen removal, and experienced peaks related with
outbursts of an Arcobacter taxa.

Deoxygenation impacts on different life forms are discussed
for pelagic (Roman et al.; Limburg and Casini; Steckbauer et al.),
and benthic (Sato et al.) communities, as well as for the whole
benthic-pelagic ecosystem in the Namibian coast (Currie et al.).

Roman et al. review the indices used to quantify hypoxic
stress on zooplankton and fish populations, both from metabolic
and ecological perspectives. The authors analyze a metric
(Oxygen Stress Level) integrating oxygen demand in relation
to oxygen availability for a coastal copepod and compare the
prediction of oxygen stress to actual copepod distributions in
low-oxygen areas.

Limburg and Casini use otolith proxies to reconstruct
exposure of Baltic Cod to hypoxic conditions within different
periods. The authors demonstrate how cod otolith can be used
to inform retrospectively about exposure to hypoxia, growth and
metabolic status, thereby reflecting the worsening situation for
cod in the Baltic.

Steckbauer et al. investigate how co-occurence of short-term
hypoxia and acidification affects European seabass juveniles,
aiming at the synergistic stress that fish populations will have
to face in tomorrow’s ocean. Results suggest that recovery from
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acidification takes longer than from short-term hypoxia, by
affecting the sensorial and behavioral capacities of fish.

The combined impacts of low oxygen and low pH
environment are also addressed by Sato et al. for the benthic
fragile sea urchin. Although this urchin might be tolerant to
foreseen evolution of oxygen and pH, differences measured
across oxygen and pH gradients in critical morphological traits
for reproduction and vulnerability indicate that the ecology and
fitness of this dominant echinoid might be challenged on the
California margin.

Finally, Currie et al. document the Namibian coastal waters
as an ecosystem having evolutionarily adapted to cope with
perennial anoxia and toxic hydrogen sulfide. This adaptation
includes promoting sulfide-oxidizing bacteria as enablers of local
detoxified habitat niches and food supply to a specific food-web.

PERSPECTIVES

This collection thus extends, non-exhaustively, on important
aspects of the marine deoxygenation challenge: from coastal to
open ocean frameworks, and from drivers to impacts. A number
of overarching gaps emerge:

• Improvement of experimental design is required to isolate
multi-stress impacts at different biological levels (i.e.,
individual metabolism, ecological functions, species

interactions) while remaining consistent within realistic
natural conditions.

• Driving mechanisms operating over a large range of
temporal scales should be embedded within studies aiming at
quantifying deoxygenation impacts on biogeochemical cycles,
in particular for climatic assessment.

• Metabolic rates and microbial respiration
require a strong focus in terms of sampling
programs, standardized experimental protocols, and
model formulation.
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