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The aquaculture industry of southern Africa faces environmental threats from harmful

algal blooms (HABs), which have the potential to cause devastating economic losses

(Pitcher et al., 2019). Satellite earth observation offers a systematic and cost effective

method for operational monitoring of HABs over large areas. Whilst the chlorophyll-a

concentration ([Chl-a]) product, often used as a proxy for phytoplankton biomass, can

be used to indicate high biomass blooms (elevated biomass against a background

signal of 5–10 mgChl m−3), there is a clear need for value-added products that not

only alert on bloom presence, but also on the bloom type and persistence. This study

demonstrates the identification of different phytoplankton communities that can feasibly

be identified in bloom concentrations from space, relevant to the aquaculture industry

of South Africa. In terms of water-leaving reflectance, 76 % of the variance in the red

and NIR spectral region is significantly positively correlated to phytoplankton abundance,

[Chl-a], and the maximum line height (MLH) (defined as the height of the maximum

reflectance peak above a baseline between 665 and 753 nm). The MLH is related

to dominant phytoplankton types derived from phytoplankton count data, in order to

identify thresholds which represent blooms that pose a high hypoxia and/or toxicity risk;

whilst 0.0016 < MLH < 0.003 represent low to moderate concern mixed assemblage

blooms, MLH > 0.003 has a strong likelihood of indicating high biomass dinoflagellate

or Pseudo-nitzschia blooms. These techniques are routinely used by the aquaculture

industry in South Africa for decision support and risk mitigation. The high biomass

nature of the South African regional waters provide strong assemblage-related spectral

variability, which can be exploitedwith the spectral bands of OLCI andMERIS. Application

to these sensors not only ensures future monitoring capability, but also allows the creation

of a historical risk climatology that can guide the site selection of industries sensitive to

the presence of HABs, such as aquaculture facilities and desalination plants.
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1. INTRODUCTION

Aquaculture is a burgeoning industry in South Africa and plays a
vital role in the country’s blue economy. The marine aquaculture
sector centers around mussel Mytilus galloprovincialis, Pacific
oyster Crassostrea gigas and abalone Haliotis midae farming
(DAFF, 2017), with most facilities situated along the west
coast in close proximity to the productive Benguela current
upwelling system.

Mostmussel and oyster farms utilize in-water culturemethods
such as rafts and cages (DAFF, 2017) located in Saldanha
Bay (Figure 1). Abalone are farmed commercially along the
west and southwest coasts of the country, with the majority
of abalone operations situated near Walker Bay; the most
common production methods utilize land-based flow-through
systems (Urban-Econ Development Economists, 2018) which
necessitates a close proximity to the ocean to allow large volumes
of sea-water to be pumped up to the farm for optimal water
exchange, temperature control, and removal of metabolic waste.

The global marine aquaculture sector faces environmental
threats from harmful algal blooms (HABs), with impacts from
these events amounting to approximately 8 $billion/yr (Brown
et al., 2019). Within the South African aquaculture industry
the HAB-related risk factors and mitigation strategies differs
within the various sub-sectors. Whilst the herbivorous abalone
are at risk of physical damage and paralysis attributed to some
dinoflagellate species (e.g., Pitcher et al., 2019), the filter-feeders
(i.e., mussels and oysters) are vulnerable to growth arrest (Pitcher
and Calder, 2000) and the accumulation of biotoxins which
affects their safety of consumption and can cause poisoning
syndromes in humans. On a larger environmental scale, some
non-toxic dinoflagellate blooms can result in marine mortalities
and anoxia following the collapse of blooms with very high
biomass (e.g., Ndhlovu et al., 2017).

Routine management and risk assessment at aquaculture
facilities includes monitoring the flesh of mussels and oysters
for specific biotoxins and regular phytoplankton counts of water
samples. Counts include total abundance counts and HAB
species monitoring focusing on toxic dinoflagellates known to
cause paralytic shellfish poisoning (PSP) (e.g., Alexandrium spp.)
and diarrhetic shellfish poisoning (DSP) (e.g., Dinophysis spp.),
diatoms known to cause amnesic shellfish poisoning (ASP) (e.g.,
some Pseudo-nitzschia spp.), as well as dinoflagellates known to
produce yessotoxins (e.g., Lingulodinium polyedrum).

HABs have the potential to cause devastating economic losses
in the aquaculture and fisheries industries. The Saldanha Bay
mussel aquaculture industry was first affected in 1994 due to
PSP (Pitcher et al., 1994), while the presence of brown tides in
1997–1999 resulted in reduced growth rates of the filter feeding
bivalves and 80 % reduction in monthly sales (Probyn et al.,
2001); in 2015 farms were closed 13 times due to the presence
of bio-toxins in shellfish flesh above acceptable regulatory limits
(DAFF, 2017). Dinoflagellate blooms have previously impacted
wild and farmed abalone (Pitcher et al., 2001; Botes et al., 2003)
in South Africa, even leading to mortalities of wild adult abalone
(Horstman et al., 1991); abalone have been known to contain
paralytic shellfish toxins following some dinoflagellate blooms

FIGURE 1 | Map showing the west coast aquaculture facilities, with important

bays and towns for reference. The location of the sampling station off

Lamberts Bay is indicated by a green diamond. Abalone farms are shown as

blue dots and mussel farms are shown in red (adapted from DAFF, 2017).

(Harwood et al., 2014; Hallegraeff and Bolch, 2016). HABs can
also pose a threat to the physical condition of sardines and
associated fisheries (Van der Lingen et al., 2016). The decay of
high biomass dinoflagellate blooms have often lead to marine
mortalities andmass rock-lobster strandings in the St Helena Bay
region (e.g., Pitcher et al., 2011, 2014) with losses valued up to 50
million US dollars in some cases (Ndhlovu et al., 2017).

Ocean color remote sensing provides a cost-effective and
valuable tool in the detection and monitoring of various types
of phytoplankton blooms (see references in Blondeau-Patissier
et al., 2014). The most common method, using the concentration
of Chlorophyll a ([Chl-a]) as a proxy for biomass, has often
been used to define blooms as anomalous [Chl-a] above a pre-
determined threshold (e.g., Stumpf et al., 2003). [Chl-a] has
traditionally been used to detect phytoplankton blooms and
HABs in the southern Benguela (Bernard et al., 2014; Smith
and Bernard, 2018) where concentrations in the coastal waters
are known to vary from <1 mg m−3 in newly upwelled water
(Barlow, 1982) to well over 100 mg m−3 in bloom conditions
(Pitcher andWeeks, 2006). Although [Chl-a] is routinely derived
from satellite reflectance using regionally optimized algorithms
(e.g., Smith and Bernard, 2018), it does not provide direct
information about inherent phytoplankton-related risk.
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The optical environment off the west coast of South
Africa can be described as phytoplankton dominated, with
other constituents (e.g., colored dissolved organic matter
and suspended inorganic material) contributing relatively
little to the water-leaving reflectance signal (Bernard et al.,
2009). The blue-green water-leaving reflectance signal generally
dominates in low biomass open ocean environments, which
is considered to be [Chl-a] < 1 mg m−3 in the context
of this study. As the phytoplankton biomass increases, the
reflectance signal is increasingly affected by a combination
of the peaks of Chl-a absorption near 465 and 665 nm, the
Chl-a fluorescence peak near 685 nm, as well as increased
phytoplankton-related backscattering and the absorption of
water; these effects result in the shift of the dominant
reflectance signal to the red-NIR spectral region at Chlorophyll
a concentrations ([Chl-a]) of approximately >15 mg m−3

(Robertson Lain et al., 2014).
It should be noted that the term “bloom” and “HAB”

should be considered within a specific ecological and
environmental context; some HABs can be toxic at low
biomass or do not manifest as high [Chl-a], and there are
generally no set abundance values to define when a HAB
species is considered to be a “bloom” (Glibert et al., 2018).
When contextualized within the highly productive waters
of the southern Benguela, a phytoplankton “bloom” needs
to be identifiable against a background biomass signal of
approximately [Chl-a] of 5 to 10 mg m−3 (Demarcq et al.,
2003); since a variety of different phytoplankton types
commonly reach [Chl-a] of 20–50 mg m−3 and above
(Bernard et al., 2014), a detection technique focusing on
the red/NIR was deemed most appropriate for regional harmful
bloom identification.

Spectral band difference algorithms are often used to relate the
reflectance peak in the red/NIR to phytoplankton biomass, the
most well-known version of which is arguably the fluorescence
line height (FLH) (Letelier and Abbott, 1996; Gower et al.,
1999); FLH provides a quantification of the height of the Chl-
a fluorescence peak above a baseline formed by the Chl-a
absorption trough near 665 and a NIR wavelength (usually
near 750 nm). Several studies have used a variant of this line
height detection method, whether on its own or in combination
with other optical properties (e.g., backscattering) or true color
imagery, for the detection of HABs in coastal waters using ocean
color remote sensing (Gower et al., 2005; Ryan et al., 2008;
Matthews et al., 2012; Al Shehhi et al., 2013; Ghanea et al., 2016).

This study aims to relate spectral features of water-leaving
reflectance in the red-NIR directly to phytoplankton types of
particular concern to the marine aquaculture industry of South
Africa. We focus on application to reflectance data from the
MEdium Resolution Imaging Spectrometer (MERIS) and the
Ocean and Land Colour Imager (OLCI), as both sensors have
good spectral covarage in the red-NIR region and high (300
m) spatial resolution. The objective is to determine probabilistic
ecosystem-contextualized identifiers for waters dominated by
either dinoflagellates or the diatom Pseudo-nitzschia (PN)
as these are high risk HAB types that offer distinct ocean
color signals.

2. MATERIALS AND METHODS

In situ water samples were collected at a station in St Helena Bay
approximately 4 km off of Lambert’s bay (32.0845oS 18.2691oE)
in late summer (between February and April) of 2004–2008.
Chlorophyll a concentration was measured by fluorometric
analysis (Holm-Hansen et al., 1965) using 90% acetone with
the use of a Turner Designs 10-AU Fluorometer according to
accepted protocols (Knap et al., 1996; Mueller et al., 2003).
Phytoplankton samples were taken at the surface, fixed in
buffered formalin to a concentration of 0.5%, and counted
using the Utermöhl method (Hasle, 1978). Count data were
grouped into diatoms, dinoflagellates, flagellates, cilliates, and
coccolithophores; PN was treated separately, in an attempt to
determine unique spectral characteristics. A >50 % abundance
threshold was used as the primary simplistic phytoplankton
population metric.

In-water radiometric measurements were made with a
hyperspectral Tethered Satlantic Radiometric Buoy (TSRB);
further details on measurements, processing, and uncertainties
can be found in Smith and Bernard (2018). The in situ
radiometric data (N = 68) were resampled to MERIS/OLCI
wavelength bands centered at 665, 681.25, 708.75, and 753.75 nm.

A line height (or spectral band difference) algorithm, similar
to the fluorescence line height (Gower et al., 1999), with a
baseline formed by the water-leaving reflectance (ρw) between
665 and 753 nm was applied to all spectra. In the case of the
hyperspectral in situ data the remote sensing reflectance (Rrs)
were converted to ρw by multiplying spectra by π (Antoine and
Morel, 2005) prior to application of the line height algorithms.
The line heights at both 681 (LH681) and 709 nm (LH709) were
calculated as follows:

LH(λ) = ρw(λ)−ρw(665)−[(ρw(753)−ρw(665))×(
λ − 665

753− 665
)]

(1)
The maximum line height (MLH) was calculated as follows:

MLH = max[LH681, LH709] (2)

The reflectance peak at 681 nm is generally associated with Chl-a
fluorescence emission; however, at higher biomass this peak shifts
to longer wavelengths due to the combined effects of increased
phytoplankton absorption and backscattering, as well as pure
water absorption. The ratio of LH709 to LH681, also known
as the line height ratio (LHR) (Tao et al., 2011), provides an
indication of this red shift, and was calculated as follows:

LHR =

LH709

LH681
(3)

Principal component analysis (PCA) was applied as an
exploratory data analysis step in order to assess the variance
structure within the dataset. This analysis technique reduces
the dimensionality of a dataset by breaking it down into a set
of geometrically independent (orthogonal) modes of oscillation
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which represent all the variability in the data (Craig et al., 2012).
PCA was performed on the resampled and standardized (i.e.,
removing the mean and scaling to unit variance) reflectance data
using eigenvalue decomposition of the data covariance matrix.
The scores of the first three principal components (modes) of
variance were use in correlation analysis with the following
variables: [Chl-a], MLH, LHR, the percentage compositions by
abundance of diatoms, PN, dinoflagellates, flagellates, cilliates,
coccolithophores, and the total cell counts for each sample.
The authors note that although PN is a diatom it was assessed
separately in an attempt to find an unique identification criteria
given that is the only potentially toxic diatom genus appearing in
the Benguela.

Satellite data from the Ocean and Land Colour Imager
(OLCI) on board Sentinel-3A (processing baseline 2.23; IPF
version 06.11) were obtained from the Copernicus online data
access website (https://coda.eumetsat.int/) while data from
the 3rd reprocessing for the Medium Resolution Imaging
Spectrometer (MERIS) were obtained from the MERIS catalog
and inventory (MERCI) website. In the case of both sensors the
bright pixel (atmospheric) correction (Moore and Lavender,
2011) is universally applied over the coastal waters of the
southern Benguela. The water-leaving reflectance (ρw) from
the Level 2 data files were used in all calculations. The flags
that were applied to maintain the quality of the data during
the phytoplankton type detection algorithm application to
MERIS data included “CLOUD,” “LAND,” uncorrected sun glint
(“HIGLINT”), and reflectance confidence flags (“PCD1_13”);
for OLCI data these included land and cloud flags (“LAND,”
“CLOUD,” “CLOUD_AMBIGUOUS,” “CLOUD_MARGIN”)
missing, invalid or transmission errors (“INVALID,” “SUSPECT,”
and “COSMETIC”), suspect atmospheric correction and
saturated pixels (“AC_FAIL,” “SATURATED”), and unreliable
sun glint correction flags (“RISKGLINT”).

3. RESULTS

The first three principal components accounted for 98.8 %
of the total variance in the red-NIR region of the remote
sensing reflectance (Rrs) dataset (Figure 2). The first mode,
which accounts for 76% of the total variance within the
dataset, represents an amplitude effect with a significant positive
correlation to MLH, total cell count, [Chl-a] and LHR; this
indicates that the biomass drives the magnitude of the Rrs
spectra in the red-NIR. The second mode indicates significant
yet opposing spectral responses between Rrs(665) and Rrs(709)
to variations in [Chl-a], LHR, MLH, and total cell counts.
Mode two also had a significant positive correlation to the
percentage coccolithophores in the sample; the highly scattering
nature of these cells tend to increase the magnitude of the
reflectance in the green, which in turn can partially mask some
of the Chl-a absorption near 665 nm. The third mode, although
contributing to a relatively small percentage of the total variance,
is significantly negatively and positively related to the percentage
composition of PN and dinoflagellates respectively; increases
in the percentage of PN and dinoflagellates in water samples

respectively are associated with increases in the LH681 and
LH709, respectively, indicating a potential approach for the
optical distinction of these two phytoplankton types.

Figure 3 shows the statistics of the MLH, LHR, and [Chl-
a] associated with the dominance (i.e., >50 %) of diatoms,
PN, and dinoflagellates respectively; only samples with total cell
concentration over 106 cells L−1 were included in order to
capture scenarios of likely phytoplankton bloom conditions. As
the sample sizes were quite small, the Kruskal-Wallis H Test was
used to compare the distributions of the three samples (diatom,
PN, and dinoflagellates) for each variable (MLH, LHR, and [Chl-
a]); this test found no significant differences between any of
the samples. Bloom conditions dominated by diatoms tend to
have a MLH < 0.0038; thus there is a high probability that
conditions with MLH > 0.0038 is either PN or dinoflagellate
dominated. For all three phytoplankton types approximately 75
% of the bloom samples had MLH > 0.0019; this was chosen as
the lower threshold for mixed bloom conditions. Approximately
half of the PN and 25 % of the diatom bloom samples had
a MLH > 0.0027; this was chosen as the lower threshold for
mixed bloom conditions that have a slightly higher potential
for harm. All bloom conditions dominated by diatoms and PN
displayed a LHR under 0.6; thus it is very likely that LHR > 0.6
would be dinoflagellate dominated. Similarly, valid samples of
blooms dominated by either PN or other diatoms had maximum
[Chl-a] under approximately 30 mg m−3. Therefore, it is very
likely that a bloom with [Chl-a]>30 mg m−3 is dinoflagellate
dominated; Bernard et al. (2014) also defined the lower end of the
probabilistic range of dinoflagellate dominance as [Chl-a] above
30 mg m−3. It should be noted that dinoflagellate dominance is
entirely possible at lower [Chl-a] and/or LHR<0.6, but would
most likely be associated with low total cell concentrations and
related risk.

Some of the key values indicated above are used as
baseline thresholds for a reflectance classification framework
to determining phytoplankton types, which is presented in
Table 2. An LHR > 0.6 is used as a probabilistic dinoflagellate
identifier, while the MLH of 0.0019, 0.0027, and 0.0038 is used
to represent increasing likelihood and potential severity of either
dinoflagellates or PN blooms. Figure 4 shows the total cell counts
and [Chl-a] that roughly corresponds to these in situ MLH
thresholds; when using the regression lines of these figures there
is a 63 % chance that a MLH of 0.0038 relates to total cell
counts of approximately 6.4 million cells L−1, and a 70% chance
of it relating to [Chl-a] of approximately 23 mg m−3. A small
sample (N = 19) of coincident MERIS reflectance data were
available to enable the comparison of satellite-derived MLH to
in situ total cell counts and [Chl-a] (Figure 5); the coefficient of
determination decreased from 0.63 to 0.52 for total cell counts,
but increased from 0.70 to 0.74 for [Chl-a]. The thresholds for
MLHwere adjusted using the [Chl-a] associated with the original
threshold values in Figure 3 and the new regression equation
between satelliteMLH and in situ [Chl-a]; the adjusted thresholds
are shown in bold in Table 2, and are used for all satellite
image classification.

Assessing the performance of algorithms designed to classify
satellite data into discrete groups can be challenging, particularly

Frontiers in Marine Science | www.frontiersin.org 4 February 2020 | Volume 7 | Article 61

https://coda.eumetsat.int/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Smith and Bernard HAB Identification for Aquaculture-Related Risk

FIGURE 2 | Results from the principal component analysis of the in situ reflectance between 665 and 754 nm (N = 68). In the left panel the gray lines indicate

individual Rrs samples, while the colored lines show the loadings of the top three modes of variability in the Rrs dataset. In the right panel the bars are color-coded

according to the corresponding modes of variance to show the correlation with [Chl-a], maximum line height, line height ratio, percentage composition of diatoms,

Pseudo-nitzschia, dinoflagellates, flagellates, cilliates, and coccolithophores, as well as the total cell counts per sample. The gray horizontal lines indicate the 95 %

significance level.

FIGURE 3 | Boxplots of the MLH, LHR, and [Chl-a] for samples with total cell concentration over 106 cells L−1. Each column represents the statistics associated with

the dominance (i.e., >50 % composition as relative abundance to the total cell count) of a given phytoplankton type, i.e., diatoms, Pseudo-nitzschia, and

dinoflagellates. The horizontal lines of the boxes represent the 25th, 50th (median), and 75th percentiles, whereas the whiskers represent the valid minimum and

maximum; outliers are indicated as diamonds. The colored dashed horizontal lines indicate the thresholds used in the initial probabilistic phytoplankton community

classification.

when sample sizes are small, and often requires indicators other
than the standard metrics (e.g., bias, RMSD) used for ocean
color product validation (Melin et al., 2019); in these cases
confusion/contingency/error matrices can be more useful (e.g.,
Carvalho et al., 2011; Wang and Hu, 2017). In the present
study the performance of the satellite classification algorithm
was assessed (in terms of correctly identifying pixels as either
“bloom” or “non-bloom”) using Figure 5D as a reference;
three confusion matrices (depicted in Table 1) were created to

represent classification results of samples with in situ [Chl-a]
above approximately 8.9, 14.2, and 22.1 mg m−3, corresponding
to MLH above the thresholds of 0.0016, 0.0022, and 0.003,
respectively. Note that for the purpose of this assessment it is
assumed that all samples above the specified [Chl-a] are true
“blooms”. The classification accuracy is lowest (64%) at the low
[Chl-a], with the satellite-derived classification indicating some
false negatives; classification accuracy increases with increasing
[Chl-a], with the highest accuracy obtained at [Chl-a] > 22.1 mg
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FIGURE 4 | Linear regression analysis between maximum line height and total cell counts (left) and between maximum line height and [Chl-a] (right); all data were

log-transformed before analysis. The black line represents the regression line with the corresponding equation, coefficient of determination (R2) and the sample size

(N). Samples with more than 50% Pseudo-nitzschia, diatoms, or dinoflagellates are shown in red, green, and blue, respectively. The shaded areas represent cell

counts and [Chl-a] associated with MLH below 0.0019, 0.0027, and 0.0038, respectively.

m−3. These results are based on very small sample sizes and are
only used to provide an indication of the classification algorithm’s
operational limits.

Several studies have noted that the line height algorithms
operating in the red/NIR can be affected by high concentrations
of suspended sediment or atmospheric dust, producing apparent
reflectance peaks in this spectral region (e.g., Zhao et al., 2015)
or masking the reflectance peak signal (e.g., McKee et al.,
2007; Gilerson et al., 2008). For the purposes of this study
the area under the baseline of the MLH, i.e., the integral of
the water-leaving reflectance values between the 665 and 753
nm wavebands, was used as a quality control measure for
highly scattering (possibly inorganic) substances. The maximum
MLH baseline integral of both the in situ and satellite-derived
reflectance datasets was 0.5; thus for satellite application the
classification algorithm was not applied to pixels where the
integral was > 0.5 (i.e., these pixels are displayed as unclassified).

4. DISCUSSION

4.1. HABs in the Southern Benguela
The southern Benguela is a wind-driven, pulsed upwelling
system forced by equatorward winds from the south Atlantic
high pressure system, and modulated by low-pressure systems
moving eastwards past the southern tip of Africa; these
conditions supports elevated phytoplankton biomass over the
wide continental shelf (Verheye et al., 2016) dominated by
primarily large celled diatoms (Hutchings et al., 2012) that thrive
in the nutrient-rich turbulent environment of upwelling systems
(Sathyendranath et al., 2014). Succession within the system
generally follows known conceptual frameworks (Margalef,

1987) where diatoms dominate during turbulent upwelling
phases, followed by a shift to dinoflagellate dominance during
quiescent periods. A decrease in upwelling-favorable winds
toward the end of austral summer (between January and
May) are usually associated with more frequent dinoflagellate-
dominance in the near-shore waters of the southern Benguela
during the latter stages of the upwelling season (Pitcher
and Calder, 2000). HABs within the southern Benguela are
largely attributable to dinoflagellates (Pitcher and Weeks,
2006). Although the prevalence of PN has been established
in both the northern (Louw et al., 2016) and the southern
(Fawcett et al., 2007) Benguela, there are no recorded
impacts to the aquaculture industry (Pitcher et al., 2014).
The type of harm caused by HABs within upwelling systems
are diverse, with the impact attributed to organism type,
concentrations they occur in, and whether toxins are present
(Pitcher et al., 2017).

Whilst HABs were considered to be relatively scarce along
the southern coastline of South Africa prior to 1997 (Pitcher
and Calder, 2000), several extensive dinoflagellate blooms,
some consisting of previously unobserved species, have notably
impacted the region in recent years (Pitcher et al., 2014); these
events included Gonyaulax polygramma blooms that negatively
affected physical condition of the regional sardine stock in 2011
(Van der Lingen et al., 2016), and blooms of Lingulodinium
polyedrum impacting hundreds of kilometers along the south
coast during 2013/2014 (Pitcher et al., 2014). Most notably
for the aquaculture industry was the bloom co-dominated by
Lingulodinium polyedrum and Gonyaulax spinifera at the end of
2016 which lead to the mortalities of over 250 tons of farmed
abalone by February 2017 (Pitcher et al., 2019).
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FIGURE 5 | (A–D) Linear regression analysis between maximum line height and in situ total cell counts (top) and between maximum line height and [Chl-a] (bottom);

all data were log-transformed before analysis. The black line represents the regression line with the corresponding equation, coefficient of determination (R2) and the

sample size (N). The shaded areas represent cell counts and [Chl-a] associated with MLH below 0.0016, 0.0022, and 0.003, respectively. Samples with more than

50% Pseudo-nitzschia, diatoms, or dinoflagellates are shown in red, green, and blue, respectively in the left panels. Right-hand panels show the classification of these

samples using the satellite derived MLH and LHR. Please refer to Table 2 for a detailed color key.

The occurrence and frequency of HABs are thought to be
increasing worldwide, and within the context of a changing
climate the global distribution and occurrence of different
HAB species are likely to change in the future (Glibert and
Burford, 2017). Pitcher et al. (2017) noted the continuously
changeable nature of the species that constitute HABs in
upwelling systems, and the inherently diverse threats posed
to industries and humans relying on these systems. These
concepts support the notion that the southern Benguela
aquaculture industries requires adaptable and robust HAB
monitoring strategies to safeguard the economic viability of
these facilities.

4.2. Probabilistic Phytoplankton
Community Classification (PPCC)
Algorithm Functioning and Suitability
There are a multitude of methods to obtain information on
phytoplankton functional types from remotely sensed ocean
color data (see Sathyendranath et al., 2014), however many of
these techniques were designed for oligotrophic andmesotrophic
waters and/or operate in the blue-green spectral region. At lower
biomass levels the spectral features in the blue-green wavelengths
are potentially more useful for distinguish certain HABs from
non-harmful blooms and other water types from an ocean color
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TABLE 1 | Confusion matrices describing the performance of the satellite

classification model in terms of correctly identifying satellite-derived pixels as

either “bloom” or “non-bloom.”

Example 1 Satellite

prediction

Non-bloom Bloom

In situ Non-bloom TN = 0 FP = 0

measurement Bloom FN = 0 TP = 4

Classification

accuracy

=100%

Example 2 Satellite

prediction

Non-bloom Bloom

In situ Non-bloom TN = 0 FP = 0

measurement Bloom FN = 2 TP = 6

Classification

accuracy

=75%

Example 3 Satellite

prediction

Non-bloom Bloom

In situ Non-bloom TN = 0 FP = 0

measurement Bloom FN = 5 TP = 9

Classification

accuracy

=64%

Examples 1, 2, and 3 represent samples with in situ [Chl-a] above 22.1, 14.2, and 8.9 mg

m−3 respectively as depicted in Figure 5D. TP, TN, FP, and FN represent conditions of

true positive (i.e., correctly classified as a bloom), true negative (i.e., correctly classified

as non-bloom), false positive and false negative classification, respectively. Classification

accuracy is calculated as (TP + TN) / (TP + TN + FP + FN).

perspective (e.g., Cannizzaro et al., 2008; Kurekin et al., 2014;
Tao et al., 2015); particularly the phytoplankton backscaterring-
driven signal in the 520–600 nm range has shown potential for
phytoplankton functional type applications (Lain and Bernard,
2018). However, at the relatively high concentration of biomass
that regularly occurs in the southern Benguela, the largest spectral
signal is often found in the red/NIR.

It was shown in Figure 2 that the variability in the red-NIR
is largely driven by total phytoplankton biomass, and has the
greatest correlation with theMLH. The position of the reflectance
peak in the red/NIR, indicated in this study by the LHR, together
with the MLH, provides some information on the phytoplankton
communities present in the water. Diatoms have developed
rapid photo-protective capability in response to the dynamic
light levels of a high-mixing upwelling environment, which can
manifest as elevated fluorescence (Lavaud et al., 2002); it appears
as though PN might have additional spectrally-based advantage
linked to its fluorescence quantum yield (Brunet et al., 2014). As
a result, also impacted by differences in IOPs, the fluorescence
peak remains evident even at relatively high concentrations,
meaning that the fluorescence signal (LH681) exceeds the
phytoplankton backscattering-related signal (LH709), producing
lower LHR values.

TABLE 2 | The framework for probabilistic phytoplankton community classification

(PPCC), based on thresholds of maximum line height (MLH) and line height ratio

(LHR).

MLH LHR<0.6 LHR>0.6

> 0.0016 (0.0019) Mixed assemblage diatoms,

low concern [pink]

Dinoflagellate dominated

[green]

> 0.0022 (0.0027) Mixed assemblage diatoms,

moderate concern [blue]

Dinoflagellate dominated

[green]

> 0.003 (0.0038) High likelihood of

Pseudo-nitzschia dominance

[yellow]

High likelihood of

dinoflagellate dominance, very

high biomass [red]

MLH thresholds based on in situ regression analysis are shown in brackets, and the

adjusted values for application to satellite data are shown in bold text. The colors in square

brackets represent the color-key used during PPCC algorithm application.

For application to the MERIS and OLCI sensors, the
traditional FLH utilizes wavebands centered at 665, 681, and 709
nm, while the Maximum Chlorophyll Index (MCI) uses 681,
709, and 753 nm (Gower et al., 2005). This relatively narrow
positioning of the baseline and signal bands limits the application
of the FLH to low-moderate biomass waters, whereas the MCI
only functions in high biomass waters (i.e., [Chl-a] >20 mg m−3

when the red-shift, associated with increasing phytoplankton
biomass, produces a discernible reflectance peak in the red/NIR).
Zhao et al. (2015) found that using a wide baseline modified FLH
provided improved results compared to either the traditional
FLH or MCI for qualitatively distinguish HABs from other
blooms in the Arabian Gulf. The wide baseline and the dominant
peak selectionmethod are similar in functioning to themaximum
peak-height (MPH) algorithm (Matthews et al., 2012) and the
adaptive reflectance peak height (ARPH) algorithm (Ryan et al.,
2014), which are both used in the operational quantification of
different phytoplankton populations in eutrophic waters.

The generally weaker positive correlation between total cell
counts, dominant phytoplankton types, and the reflectance-
based signal in the red-NIR indicates that this relationship
is not straight-forward, and that care should be taken when
attempting to quantify phytoplankton abundance from remotely
sensed information. Although not directly related to probabilistic
phytoplankton community information, accurate [Chl-a] can
provide a valuable supplementary indication on phytoplankton-
related risk.

4.3. Phytoplankton Community
Identification Using Remote Sensing
Both MERIS and OLCI offer good spectral resolution in the
red/NIR region as well as high spatial resolution (300 m) which
is often necessary at the small spatial scale and near coastal
aquaculture applications. With two satellites in orbit (Sentinel
3A and 3B), the OLCI sensor provides near daily coverage. In
the generally eutrophic conditions of the southern Benguela it
is useful to avoid the blue-green spectral region when using
satellite-derived reflectance data, where the uncertainty resulting
from aerosol extrapolation can be more extreme than in the red-
NIR. The use of thresholds based on line height algorithms and
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FIGURE 6 | Satellite products derived from full resolution S3A-OLCI for the

25th of February 2019. The top panel shows [Chl-a], whilst the bottom panel

shows the probabilistic phytoplankton community classification (PPCC);

classes include dinoflagellate (red) and Pseudo-nitzschia (yellow) dominated

waters, as well as high (green) and moderate (blue) biomass mixed

assemblages. Please refer to Table 2 for a detailed PPCC color key. The

locations of two of the primary water intake pipes for abalone farms in the area

are indicated by blue diamonds.

ratios, instead of absolute reflectance values, also mitigates the
potential spectral offsets and errors that might result from the
atmospheric correction process. MERIS and OLCI utilize the
bright pixel correction (Moore and Lavender, 2011) in addition
to the standard atmospheric correction, which was universally
applied across the satellite images. This atmospheric correction
is considered generally appropriate for the southern Benguela
(Bernard et al., 2014), as it is capable of adjusting for non-zero
reflectance in the NIR.

Although the algorithm was validated with MERIS matchup
data, the similar radiometric heritage between sensors means
that this classification scheme is applicable to OLCI (example
image shown in Figure 7), ensuring utility of this classification
technique for the next 20 years, whilst also being application
to ten years of archive MERIS data. In the current study we
demonstrate the application of the PPCC to MERIS and OLCI
images representing two different HAB events.

Yessotoxin producing blooms of Lingulodinium polyedrum
and Gonyaulax spinifera impacted the Walker Bay abalone
industry in December 2016 to February 2017 (Pitcher et al.,
2019). A similar dinoflagellate bloom was recorded in the

Walker Bay area during February of 2019, which persisted
until May 2019; during the stages of the bloom depicted
in Figure 6, cell concentrations of over 2 million cells L−1

(dominated by Gonyaulax spinifera) were measured at some of
the aquaculture farm intake pipes (personal communication with
farm managers). The probabilistic classification clearly shows
the spatial extent and associated patches of this dinoflagellate
bloom; the [Chl-a] map shows good spatial coherence with the
classification while providing an indication of bloom intensity.

The probabilistic classification method was applied to four
MERIS images (Figure 7) that coincided with the March 2006
field campaign where a Pseudo-nitzschia bloom was sampled
off Lambert’s Bay (Fawcett et al., 2007). The PPCC correctly
identified the presence of PN at the sampling station on the 12th
of March, where [Chl-a] of 57.1 mg m−3 and PN concentrations
of 8 million cells L−1 were measured in situ. Although the highest
number of PN cells were measured on the 18th of March, the
PPCC indicated only a high biomass mixed assemblage; this
could potentially be due to the relatively lower in situ [Chl-a]
(compared to the 12th of March), producing a poorer optical
signal in the red/NIR. Both the 15th and 22nd ofMarch coincided
with decreased phytoplankton counts and [Chl-a], which were
similarly reflected in the unclassified pixels over the sampling
site. It is clear that the highest chance of successful classification
is achieved under conditions of the highest biomass (i.e., on the
12th of March). Special precaution is also advised for regions
classified as “high biomass mixed assemblages,” as they could
likely contain high concentrations of PN.

4.4. Algorithm Limitations
This study is based on a relatively small in situ dataset (N = 68)
with only a limited number of samples that included coincident
radiometric measurements and phytoplankton counts; however,
it did comprise a wide range of phytoplankton types and biomass
concentrations enabling a first order determination of ecosystem-
contextualized thresholds. Although these thresholds are based
upon statistical indicators, the algorithm is not specifically
meant to be a quantitative translation between MLH and cell
counts or [Chl-a]. The aim was to provide simple intuitive
map-based indication of probabilistic phytoplankton-related risk
to the aquaculture industry of southern Africa. If/when more
data become available these classification methods and detection
accuracy could potentially be refined further.

The application of the PPCC to coincident satellite reflectance
demonstrated that there was the highest likelihood of correct
classification of phytoplankton community dominance at [Chl-
a] > 23 mg m−3. Although it is possible that HAB identification
could be more straight-forward at lower biomass levels under
mono-specific bloom conditions, it is unlikely for any one
species of phytoplankton to out-compete others under nutrient-
rich upwelling conditions. DSP toxin producing species of the
genus Dinophysis, usually D. acuminata or D. fortii, often form
small components of blooms dominated by other dinoflagellates
in the southern Benguela (Pitcher and Calder, 2000); these
species also pose different threat levels to shellfish cultivation,
as mussels are more susceptible to the accumulation of DSP
toxins (Pitcher et al., 2011). Conversely it is also possible for
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FIGURE 7 | The top panels show the satellite-derived probabilistic phytoplankton community classification (PPCC) from MERIS for the 12th, 15th, 18th, and 22nd of

March 2006, with the location of the Lambert’s Bay sampling station indicated by a diamond; classes include high biomass dinoflagellate blooms (red), dinoflagellate

dominated blooms of moderate biomass (green), Pseudo-nitzschia (yellow) dominated waters, as well as high (blue) and low (pink) biomass mixed assemblages.

Please refer to Table 2 for a detailed PPCC color key. The lower panel provides the phytoplankton count data at the Lambert’s Bay station for the 2006 sampling

period (adapted from Fawcett et al., 2007), with available in situ [Chl-a] overlayed.

some very high biomass dinoflagellate blooms to not result in any
harmful impacts.

It should be noted that in situ and in vitro techniques far
outweigh current remote sensing capabilities when it comes to
phytoplankton identification at the species level. The strength of
using remote sensing for HAB detection lies in the repeatability
of measurements over the same location at higher spatial scales
than is attainable by in situ methods. The utility of ocean
color remote sensing for in HAB monitoring is most powerful
when informed by coincident in situ information such as
species-level phytoplankton identification and abundance, and
toxicity. Remote sensing should ideally be utilized as part of
a larger multi-scale monitoring approach: where a bloom has
been identified as harmful, the PPCC method can aid in the
continued monitoring of the bloom’s spatial extent, trajectory,

and possible intensification or dissipation, thereby supporting
decision making and risk mitigation processes at environmental
and aquaculture management level.

The successful application of the algorithm to remote
sensing data is dependent on the appropriate and successfully
applied atmospheric correction and the resultant reflectance
product quality. The algorithm functions in the red/NIR
where the problems associated with aerosol correction
are generally less than in the blue-green wavelengths. Line
height algorithms are also generally less affected by absolute
magnitude changes than ratios. Caution is advised when
interpreting the Chl-a fluorescence signal from phytoplankton
for quantitative determination of phytoplankton biomass,
as the fluorescence efficiency of phytoplankton can be
affected by various factors including taxonomy, physiology,
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nutrient availability, light history, and temperature (Babin
et al., 1996). Increased backscattering across the red/NIR,
as might be caused by inorganic matter, could dampen the
effect of the red/NIR reflectance peaks by increasing the
reflectance of the baseline; studies have demonstrated that
the FLH signal could be masked by non-algal materials
in turbid waters (McKee et al., 2007; Gilerson et al.,
2008).

4.5. Concluding Remarks and Future
Outlook
This study represents a spectral classification scheme, applicable
to both in situ and satellite reflectance, for the detection
of phytoplankton communities relevant to the aquaculture
industry of South Africa. Although the classification is
primarily qualitative, it is based on species-related optical
signatures and abundance data, and provides more direct
risk-related information for aquaculture management than
traditional maps of [Chl-a]. Future models could potentially
incorporate environmental and/or nutrient information within
the phytoplankton risk probability, as changes in these variables
have been linked with bloom toxicity (e.g., Torres Palenzuela
et al., 2019).

Whilst the classification system was contextualized for the
southern Benguela, its utility is potentially appropriate to similar
upwelling systems; for instance the northern Benguela is also
known to experience frequent occurrences of toxic dinoflagellates
(Dijerenge, 2015) and PN blooms (Louw et al., 2016), which
could negatively impact regional marine aquaculture in Namibia.
Following several years of severe drought in the western
Cape province, there has been a rise in the number of
planned desalination plants in the region; these facilities require
appropriate phytoplankton monitoring practices, as both toxic
and non-toxic algae can impact operations by clogging pre-
treatment filters, causing saltwater reverse osmosis membrane

fouling, and affecting the taste and odor of the water (Al Shehhi
et al., 2017; Anderson et al., 2017). The PPCC could potentially
be applied to 10 years of MERIS data and recent OLCI data to
produce probability maps (e.g., Ryan et al., 2008) which could be
used to guide future aquaculture and desalination site selection.

The routine high spatial information provided by the PPCC,
used together with corroborative in situ phytoplankton cell
counts, provides a powerful combination for operational HAB
monitoring and daily decision support within the aquaculture
industry. It is important that the limitations and strengths of the
classifier be clearly delineated to users to ensure the appropriate
level of response and mitigation, allowing different industries to
use the information as they see fit.
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