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The Dungeness crab (Metacarcinus magister) fishery is one of the highest value fisheries
in the US Pacific Northwest, but its catch size fluctuates widely across years. Although
the underlying causes of this wide variability are not well understood, the abundance
of M. magister megalopae has been linked to recruitment into the adult fishery
4 years later. These pelagic megalopae are exposed to a range of ocean conditions
during their dispersal period, which may drive their occurrence patterns. Environmental
exposure history has been found to be important for some pelagic organisms, so we
hypothesized that inclusion of recent environmental exposure history would improve our
ability to predict inter-annual variability in M. magister megalopae occurrence patterns
compared to using “in situ” conditions alone. We combined 8 years of local observations
of M. magister megalopae and regional simulations of ocean conditions to model
megalopae occurrence using a generalized linear model (GLM) framework. The modeled
ocean conditions were extracted from JISAO’s Seasonal Coastal Ocean Prediction of
the Ecosystem (J-SCOPE), a high-resolution coupled physical-biogeochemical model.
The analysis included variables from J-SCOPE identified in the literature as important
for larval crab occurrence: temperature, salinity, dissolved oxygen concentration, nitrate
concentration, phytoplankton concentration, pH, aragonite, and calcite saturation state.
GLMs were developed with either in situ ocean conditions or environmental exposure
histories generated using particle tracking experiments. We found that inclusion of
exposure history improved the ability of the GLMs to predict megalopae occurrence
98% of the time. Of the six swimming behaviors used to simulate megalopae dispersal,
five behaviors generated GLMs with superior fits to the observations, so a biological
ensemble of these models was constructed. When the biological ensemble was used for
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forecasting, the model showed skill in predicting megalopae occurrence (AUC = 0.94).
Our results highlight the importance of including exposure history in larval occurrence
modeling and help provide a method for predicting pelagic megalopae occurrence.
This work is a step toward developing a forecast product to support management of
the fishery.

Keywords: Metacarcinus magister, megalopae, particle tracking, simulated larval behaviors, exposure history,
habitat modeling, J-SCOPE, GLM

INTRODUCTION

The Dungeness crab fishery is one of the most economically
important fisheries on the US West Coast, totaling over $200M
in 2017 (Pacific States Marine Fisheries Commission, 2019).
However, this fishery experiences wide inter-annual fluctuations
in catch size. For example, in Washington and Oregon, the lowest
commercial crab catches were reported in the early 1980s (<1300
metric tons in Washington; <2300 metric tons in Oregon), and
record high catches, nearly 10-fold higher, were reported in the
2004–2005 season (>11,300 metric tons in Washington; >15,000
metric tons in Oregon), with moderate variability observed
even across consecutive years.1, 2 Variable catch rates have
been accompanied by large swings in ex-vessel landing values,
e.g. from $33.9M in the 2013–2014 season to $74.2M in the
2017–2018 season in Oregon. These large fluctuations have the
potential to affect management strategies, fishermen’s livelihoods,
and local economies (Botsford et al., 1983; Methot, 1986). Due to
consistently high fishing effort, it is thought that variable annual
catch rates reflect changes in adult Dungeness crab population
sizes. The precise causes of this variability are not completely
understood but have long been a subject of research (Methot and
Botsford, 1982; Botsford and Hobbs, 1995; Higgins et al., 1997).

One factor that has been linked to variability in the
Metacarcinus magister fishery is the abundance of the final
pelagic larval stage, the megalopal stage, 4 years prior (Shanks
and Roegner, 2007; Shanks et al., 2010; Shanks, 2013). Shanks
(2013) reported a significant, parabolic relationship between
megalopae abundance in coastal habitats and recruitment into
the adult M. magister fishery four years later: recruitment into the
fishery was maximized at intermediate megalopae abundances,
and otherwise was limited either by population levels (low
abundance) or density-dependent effects (high abundance).

Abundance of M. magister megalopae is influenced by ocean
conditions on small and large scales. For example, survival
and condition of M. magister larvae have been shown to be
negatively impacted by exposure to low pH (Descoteaux, 2014;
Miller et al., 2016); steep calcite saturation state gradients
(Bednaršek et al., 2020); extreme temperatures (Wild, 1980;
Pauley et al., 1989; Sulkin et al., 1996); low salinities (Reed,
1969; Brown and Terwilliger, 1999); low oxygen conditions
(Bancroft, 2015; Gossner, 2018); and poor-quality or scarce food
(Bigford, 1977; Harms and Seeger, 1989; Sulkin et al., 1998;
Casper, 2013). Additionally, megalopae abundance has been

1https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/landings.asp
2https://wdfw.wa.gov/fishing/commercial/crab/coastal/about

significantly correlated with large-scale oceanographic features,
such as the phase of the Pacific Decadal Oscillation (PDO;
Shanks, 2013), wind-induced currents (Hobbs et al., 1992), and
the timing of the spring transition of the California Current
(Shanks and Roegner, 2007). The spring transition marks the
onset of seasonal upwelling, which is a primary driver of ocean
variability in this region.

Every summer the coastline of the Pacific Northwest
experiences a shift in wind direction that promotes upwelling
of “corrosive” deep water, which is low in oxygen, pH, and
calcium carbonate saturation states, to habitat on the continental
shelf (Huyer et al., 1979; Feely et al., 2008, 2016; Hickey and
Banas, 2008). Though these winds vary in intensity and duration,
hypoxia (O2 < 1.4 ml l−1; 61 µmol kg−1; 62 mmol m−3) has
increasingly developed over portions of the continental shelf in
recent years, with occasional severe hypoxia (O2 ∼ 0.5 ml l−1;
22 µmol kg−1; 22 µmol kg−1) occurring in M. magister habitat
(Grantham et al., 2004; Chan et al., 2008; Connolly et al., 2010).
Low pH conditions, sometimes as low as 7.6, and other carbonate
chemistry parameters (e.g. delta calcite, pCO2, aragonite and
calcite saturation states), accompany this low oxygen water,
providing an additional stress to organisms (Feely et al., 2008,
2012, 2016; Harris et al., 2013; Busch and McElhany, 2016;
Hodgson et al., 2016; Miller et al., 2016; Siedlecki et al., 2016;
Bednaršek et al., 2017, 2020).

Summer upwelling conditions have been simulated by an
experimental ocean model, JISAO’s Seasonal Coastal Ocean
Prediction of the Ecosystem (J-SCOPE; Siedlecki et al., 2016).
J-SCOPE is a high-resolution (1.5 km horizontal resolution;
40 vertical layers), Regional Ocean Modeling System (ROMS)-
based, biogeochemical model for Washington and Oregon shelf
waters.3 J-SCOPE has demonstrated measurable skill for ocean
conditions on seasonal timescales (Siedlecki et al., 2016), and
environmental variables from this model have been used to
predict habitat for sardines (Sardinops sagax; Kaplan et al.,
2016) and hake (Merluccius productus; Malick et al., in prep).
Additionally, by pairing the J-SCOPE model system with a
particle tracking model and simulated behaviors, environmental
exposure history has been shown to influence pteropod survival
(Bednaršek et al., 2017). When run in hindcast-mode, J-SCOPE
simulates realistic historical ocean conditions and benefits from
physical forcing (e.g. boundary conditions, atmospheric forcing,
rivers, and tides) that is data-assimilated. These hindcasts,
spanning years 2009–2017, output variables specifically relevant
to M. magister megalopae, and are used in this study.

3http://www.nanoos.org/products/j-scope/home.php
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With the right combination of prognostic ocean conditions,
M. magister megalopae occurrence and habitat could be forecast
over a large spatial scale and variable conditions, supplementing
field surveys of megalopae (Shanks et al., 2010) and improving
forecasting for management applications. Current management
relies on pre-season monitoring of crab conditions and real-
time catch rates. By incorporating the megalopal stage into
management, Dungeness crab fisheries managers in Washington
and Oregon would benefit from an ocean model-based tool
that would forecast catch with a lead time of >4 years,
a timescale that is useful for coordinating state, tribal, and
federal managers to develop realistic long-term management
strategies, and for fishermen to anticipate changes in the resource
(Hobday et al., 2016).

Our aim is to develop a statistical model driven by
modeled ocean conditions to predict megalopae occurrence.
We tested the hypothesis that occurrence of M. magister
megalopae is affected by exposure to both concurrent and
recent environmental conditions that are predictable on seasonal
timescales. We propose that exposure history may influence
megalopae occurrence patterns because prior exposure to
lethal or sub-optimal environmental conditions would either
increase megalopae mortality or potentially spur avoidance
behaviors (which have been observed during settlement,
e.g. Sobota and Dinnel, 2000), ultimately resulting in a
decreased probability of occurrence. Thus, we investigated
whether inclusion of recent exposure history would improve
our ability to model megalopae occurrence over using only
environmental conditions concurrent with sampling. Hence,
simulated ocean conditions over an 8 year period were used
to model the occurrence of megalopae within generalized
linear models (GLMs) that included two distinct suites
of predictor variables: (1) “in situ” GLMs were developed
with physical and biogeochemical variables extracted from
the ocean model at the times and locations concurrent
with megalopae sampling and (2) “exposure history” GLMs
included physical and biogeochemical variables extracted along
simulated megalopae trajectories from six distinct dispersal
experiments. We found that exposure history did improve
our ability to model megalopae occurrence, and we assembled
a “biological ensemble” of GLMs to generate a superior
forecast for megalopae occurrence. An ancillary outcome
of this study was the identification of ocean conditions
that may influence spatial heterogeneity of M. magister
megalopae, identified as the environmental variables that
were included as predictors in the occurrence GLMs. The
framework developed in this study could be applied to other
pelagic species to assess the influence of exposure history
on their habitat.

MATERIALS AND METHODS

Our methods rely on a range of interdisciplinary tools and
procedures. We provide a flow chart to clarify the order of
operations and linkages therein for the methods and results in
this paper (Figure 1).

Metacarcinus magister Megalopae
Collection
Metacarcinus magister larvae were collected on surveys
conducted by NOAA Northwest Fisheries Science Center
(NOAA/NWFSC) as part of a larger study of juvenile salmonids
and associated nekton (Morgan et al., 2019) at 37 unique stations
off of the Washington and Oregon coasts from 2009 to 2017
(Table 1 and Supplementary Table 1). Surveys were conducted
during the daytime in late May and/or June for approximately
week-long periods. Larvae were collected using a 0.6 m bongo net
with 335 µm mesh size. Plankton nets were towed obliquely by
letting out 60 m of cable and immediately retrieving it at a rate of
30 m/min while being towed at two knots. Thus, nets were fished
from a maximum depth of 20–30 m to the surface, spanning
a large portion of the expected depth habitat of megalopae
(see details below). Samples were immediately preserved in
5% buffered formalin/seawater solution and returned to the
laboratory for analysis. In the laboratory, plankton samples were
rinsed and then sorted based on larval developmental stage and
enumerated. For more details on field and laboratory methods,
see Morgan et al. (2005). For this study, we modeled megalopae
occurrence, characterized as presence or absence of megalopae at
each sampling station.

Modeled Ocean Conditions
J-SCOPE Historical Ocean Simulations
Historical ocean simulations (i.e. hindcasts) were used in lieu
of empirical measurements because they provide spatially and
temporally continuous ocean conditions. We have conducted
extensive model evaluation with ocean observations for all
the variables considered here (see Siedlecki et al., 2016, and
results below). Modeled environmental variables, obtained
from the J-SCOPE ocean model (Siedlecki et al., 2016),
were used to develop the GLMs to predict megalopae
occurrence. Environmental conditions were extracted from
historical ocean simulations for 2009–2016 corresponding to
either the megalopae collection times and locations (in situ GLM)
or along backtracking particle trajectories (exposure history
GLMs; more details below). Historical ocean simulations for 2017
were reserved for GLM performance testing.

J-SCOPE Variable Skill Assessment
Validation of J-SCOPE’s historical ocean simulations was
performed for a wider range of environmental variables than
in previous work (e.g. Siedlecki et al., 2015, 2016; Year in
Review webpages at http://www.nanoos.org/products/j-scope/).
Additionally, assessments were performed for distinct depth
intervals (Table 2) to investigate the skill of particular ocean
conditions as they were experienced by in situ or exposure
history particles, since the skill of these predictor variables may
be relevant to the subsequent performance of the megalopae
occurrence GLMs. To accomplish this, empirical observations
were matched temporally and spatially to modeled variables.

Ocean Observational Data
Observational data were compiled from regional moorings
and surveys conducted from 2009 to 2017 (Figure 2 and
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FIGURE 1 | Flowchart summarizing the main methods and results of this paper, including validation of predictor variables skill (gray); development of in situ (blue)
and exposure history (red) generalized linear models (GLMs); comparison of in situ and exposure history GLMs (purple); assembly of the biological ensemble (yellow);
and forecasting of megalopae occurrence and habitat (green). Start and end nodes are in ovals, process steps are in boxes, and decision points are in diamonds.
Table SX refers to Supplementary Tables (1–9). AICc = Akaike information criterion corrected for small sample size; AUC = area under the receiver operating
characteristic (ROC) curve; EH = exposure history; GLM = generalized linear model; J-SCOPE = JISAO’s Seasonal Coastal Ocean Prediction of the Ecosystem.

Supplementary Table 2). CTD-based measurements of
temperature, salinity, oxygen, and phytoplankton (measured as
fluorescence) were made ∼1–2 times per month from 2009 to
2017 at seven stations across the continental shelf and slope along
the Newport Hydrographic Line (NHL; 44.6517◦N). Surface
nitrate data were also collected along the NHL. NOAA/NWFSC
Groundfish bottom trawl surveys measured bottom temperature
on the continental shelf and slope from 2009 to 2014. Nitrate was
also measured at surface and sub-surface locations during the

NOAA/NWFSC Northern California Current survey in 2011. In
addition to megalopae sampling conducted by NOAA/NWFSC
Juvenile Salmon surveys, nitrate was measured at 3 m depth at
37 stations off the Washington and Oregon coasts from 2009 to
2014. Temperature and oxygen were observed at surface and sub-
surface locations∼1–2 times per month from 2009 to 2017 at the
Cape Elizabeth mooring in the Olympic Coast National Marine
Sanctuary (OCNMS). Temperature, oxygen, salinity, nutrients
(i.e. nitrate, phosphate, and silicate), dissolved inorganic carbon
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TABLE 1 | Megalopae sampling survey information, including sampling date,
number of stations where megalopae were present and absent, and total number
of stations sampled (see Figure 4A for map; see Supplementary Table 1 for
sampling location information).

Survey Year Sampling
dates

Megalopae
present (# Stns)

Megalopae
absent (# Stns)

Total # Stns
sampled

1 2009 5/23–5/28 15 15 30

2 2009 6/24–6/30 11 23 34

3 2010 5/21–5/27 17 12 29

4 2010 6/22–6/28 5 31 36

5 2011 5/21–5/26 13 16 29

6 2011 6/21–6/27 9 26 35

7 2012 5/30–6/3 5 20 25

8 2012 6/22–6/28 11 24 35

9 2013 6/21–6/27 13 23 36

10 2014 6/21–6/27 18 17 35

11 2015 6/22–6/28 5 28 33

12 2016 6/23–6/29 5 27 32

13 2017 6/22–6/28 5 28 33

Sampling was conducted with a bongo net fished from a maximum depth of 30 m
to the ocean surface. Surveys from 2009 to 2016 were used in generalized linear
model development, while the 2017 survey was reserved for out-of-sample model
performance testing.

TABLE 2 | Environmental condition extractions for in situ (row 1) and particle
tracking (rows 2–7) experiments, including (when relevant) where environmental
conditions were extracted, the behavior simulated for particles, the depth at which
particles were initialized, and the core depth habitat.

Experiment Environmental
exposure
extractions

Particle
behavior

Start
depth (m)

Core
depth

habitat (m)

In situ Sampling station
locations

N/A N/A 0–30

EH-DVM30 Particle tracking 0–30 m DVM 30 0–30

EH-DVM60 Particle tracking 0–60 m DVM 60 0–60

EH-S1 Particle tracking Surface-following 1 0–5

EH-P1 Particle tracking Passive 1 40–50

EH-P30 Particle tracking Passive 30 55–70

EH-D15P Particle tracking 0–30 m DVM for
15 days, then

passive

30 0–30

EH = exposure history simulation; DVM = diel vertical migration behavior;
S = surface-following behavior; P = passive behavior.

(DIC), and total alkalinity (TA) were measured at surface and
sub-surface locations on Pacific Coast Ocean Observing System
(PaCOOS) annual surveys in 2009 and 2010. Temperature,
oxygen, salinity, nutrients, phytoplankton, DIC, and TA were
also measured at surface and sub-surface locations on West
Coast Ocean Acidification (WCOA) surveys conducted in 2011,
2012, 2013, and 2016. For all surveys with temperature, salinity,
phosphate, silicate, DIC, and TA measurements, values of pH (at
in situ temperature, salinity, and pressure, on the total scale) and
aragonite (�ar) and calcite saturation states (�ca) were calculated
in CO2SYS (Pelletier et al., 2007), using carbonate dissociation
constants from Lueker et al. (2000), salinity to boron ratios
from Uppström (1974), bisulfate equilibrium constants from

Dickson (1990), and the “seacarb” option for fluoride (i.e. Perez
and Fraga, 1987 when 33 > T > 10 [◦C] and 40 > S > 10 [PSU],
otherwise Dickson and Riley, 1979). Additionally, empirical
relationships using the proxy variables oxygen and temperature
were developed to estimate carbonate chemistry variables for the
region encompassed by the model domain based on calibration
data sets collected on all WCOA surveys following the methods
described in Alin et al. (2012; Eqs. 1–3):

pH = 7.2587+ 0.0021314×O+ 0.018633× T (1)

�ar = 0.990759+ 0.04372× (T− Tr)+ 0.0043285× (O− Or)

+ 0.0006399× (T− Tr)× (O− Or) (2)

�ca = −20.343+ 1.8719× T+ 0.0082364×O+ 69.047÷ T

− 0.046982× T2 (3)

where Tr = 8.1903 and Or = 144.441 are reference values
based on the calibration data set, and T = temperature (◦C)
and O = oxygen (µmol kg−1) are modeled or observed
values. These equations were applied at sites where both
temperature and oxygen data were available. For phytoplankton
observations (measured as either fluorescence or chlorophyll),
units were converted following the methods of Davis et al.
(2014) prior to comparison with the modeled phytoplankton
variable (mmol m−3).

Statistical Skill Calculations
Observations and modeled data were paired within a given
depth interval (Table 2), and two statistics were calculated
to assess model variable skill: (1) the Pearson correlation
coefficient (r), ranging from −1 (negative correlation)
to 1 (positive correlation), indicates the degree of linear
correlation between the observed and modeled variables;
and (2) normalized root-mean-square error (NRMSE)
estimates the magnitude of the difference between the
observed and modeled variables, with the sign indicating
the direction of model bias (positive sign indicates model
overestimate; negative sign indicates model underestimate; see
Supplementary Equations 1, 2).

Variable Selection for Habitat Models
In situ Variables
To assemble a suite of potential predictor variables for developing
the GLM, we selected physical and biogeochemical variables
identified in the biological literature as important for the
development and survival of M. magister megalopae or a closely
related organism, and that exist or can be derived from the
J-SCOPE historical ocean simulations. We omitted synthetic
or summary variables, such as the PDO or upwelling indices,
despite their reported correlations with megalopae abundance
(Hobbs et al., 1992; Shanks and Roegner, 2007; Shanks, 2013)
because we strive for a mechanistic understanding of how
fundamental ocean conditions characterize megalopae habitat—
e.g. is it the cooler water temperatures, lower oxygen levels, or
more acidified conditions of the upwelled waters that influence
habitat? Thus, a total of eight potential predictor variables were
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FIGURE 2 | Empirical observation sampling locations used to assess the skill
of J-SCOPE modeled ocean variables. Survey and mooring symbols
correspond to the figure legend, with tiny black dots representing groundfish
survey locations. The Grays Harbor Line and the Newport Line, two common
hydrographic transects, are plotted for reference. The 200 and 500 m isobaths
are indicated by light brown contours, and depths shallower than 50 m are
shaded light brown. Land is shaded gray. NHL = Newport Hydrographic Line;
NCC = Northern California Current; OCNMS = Olympic Coast National Marine
Sanctuary; PaCOOS = Pacific Coast Ocean Observing System;
WCOA = West Coast Ocean Acidification. See Supplementary Table 2 for
additional information on sampling dates, depths, and measured parameters.

considered for inclusion in our statistical models: temperature,
salinity, dissolved oxygen concentration, nitrate concentration,
phytoplankton concentration, pH, aragonite saturation state
(�ar), and calcite saturation state (�ca). Temperature was chosen
because it is thought to influence M. magister larval development
duration (Moloney et al., 1994; Sulkin and McKeen, 1996; Sulkin
et al., 1996) and to be an indicator of advective processes (Ferrari
and Ferreira, 2011). Due to the high abundance of M. magister
megalopae observed within Columbia River plume fronts,
salinity was selected as there is substantial salinity variability
within the plume (Morgan et al., 2005), and M. magister larvae
are reportedly sensitive to changes in salinity (Pauley et al., 1989).

Dissolved oxygen was selected because M. magister megalopae
and juveniles experience negative metabolic effects and high
mortality rates, respectively, in hypoxic conditions (Bancroft,
2015; Gossner, 2018). In addition to temperature, nitrate
concentration is a strong indicator of upwelling, indicating
both nutrient sources for primary productivity and offshore
Ekman transport (Hales et al., 2005; Palacios et al., 2013).
Phytoplankton concentration was selected as an indicator of
cross-shelf and alongshore currents and retentive features, and
as a proxy for food availability (Largier et al., 2006; Kudela
et al., 2008). pH was included because Miller et al. (2016)
found that exposure of M. magister larvae to low pH conditions
increased mortality and slowed development rates. We selected
�ca as a potential predictor because the M. magister megalopae
exoskeleton contains calcite (Bednaršek et al., 2020; Boßelmann
et al., 2007; Neues et al., 2007). Although �ar may not directly
affect the condition of the megalopal exoskeleton, we chose to
include this variable as a potential predictor because of the
impacts it has on the pelagic food web that may influence
megalopae development and survival (Riebesell et al., 2000;
Fabry et al., 2008).

Five variables (temperature, salinity, dissolved oxygen
concentration, nitrate concentration, and phytoplankton
concentration) were extracted directly from the J-SCOPE
historical ocean simulations at the stations where megalopae
were sampled, and then averaged over the upper 30 m of the
water column, the sampling depth of the megalopae collections.
The remaining three variables (pH, �ar, �ca) were calculated
with empirically derived formulae that used dissolved oxygen
concentration and temperature at the station locations from the
J-SCOPE historical ocean simulations (see equations above);
these were then averaged over the surface 30 m.

Exposure History Variables
Simulated megalopae dispersal
To test our hypothesis that recent environmental exposure
history is important in determining megalopae occurrence, we
used particle tracking to simulate virtual megalopae dispersal.
Since megalopal stage duration is approximately 30 days for
temperatures in this region (Poole, 1966; Ebert et al., 1983) and
physical uncertainty in the particle trajectories due to unresolved
vertical and horizontal advection and diffusion becomes large
over approximately the same time span (sensitivity analyses not
shown), particles were tracked backward in time for a period
limited to 30 days. Future studies may incorporate earlier larval
developmental stages (e.g. zoeae) or run full lifecycle individual-
based models, but the current study focuses on whether the
environmental exposure over the course of the 30 days prior
to megalopae collection can be used to improve megalopae
occurrence modeling. Thus, we simulated megalopae dispersal
with an offline particle tracking model, the Larval TRANSport
Lagrangian model (LTRANSv2b; North et al., 2008, 2011; Schlag
and North, 2012), driven by external physical forcing, random
displacement, and directed swimming behaviors as prescribed
by the user. To account for stochasticity, 100 particles were
initialized at each of the 37 sampling stations on the last
day of each survey (Table 1). Ocean velocities from J-SCOPE
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hourly historical ocean simulations were “reversed” (i.e. negated)
to force particle advection backward in time, and particle
behavior was imposed.

Although researchers have used observations of the horizontal
and vertical distribution of larvae to infer swimming behavior,
these behaviors have not been precisely characterized. Thus,
six particle back-tracking experiments were run to simulate the
depth habitats occupied and the range of behaviors potentially
exhibited by M. magister megalopae in the 30 days prior to
collection (Table 2). In the first two simulations, particles
exhibited diel vertical migration (DVM) behavior to daytime
depths of either 30 m (“EH-DVM30”) or 60 m (“EH-DVM60”),
per depth variations reported in the literature (Hobbs and
Botsford, 1992). These behaviors simulated active swimming
down to the maximum depth at dawn, maintaining that
depth throughout the day (∼16 h), swimming up to the
water’s surface at dusk, and maintaining the near surface
habitat for the remainder of the night (∼8 h; swimming
speed = 10 cm/s; Fernandez et al., 1994; Rasmuson, 2013;
Rasmuson and Shanks, 2014). In the third simulation, particles
sustained a near-surface habitat by constantly swimming upward
(“EH-S1”) to mimic anecdotal reports of surface aggregations
of megalopae in swarms or attached to flotsam (Lough, 1976;
Shenker, 1988). Although DVM and surface-following behaviors
are most commonly reported in the biological literature for
megalopae, we ran two additional simulations that allowed
particles to disperse passively (i.e. no swimming behavior) after
being initialized either at the surface (“EH-P1”) or at 30 m
depth (“EH-P30”), which represent the vertical limits of the
plankton collection tows. Passive behavior was simulated for two
reasons: (1) because the collected organisms were identified to
developmental stage (i.e. megalopae) but their precise age was
unknown, organisms that had recently molted from the last
zoeal stage would have exhibited reduced swimming abilities
commensurate with the earlier life stage (Jacoby, 1982) for
potentially a large portion of the back-tracking period, which
would be more closely approximated by passive dispersal; and
(2) to investigate the effects of behavior on environmental
exposure history, passive dispersal served as a null model for
comparison with the active behaviors. The passive dispersal
simulations included a backward random walk in the vertical
direction, whose magnitude was calculated at each time step
based on the stored local value of vertical diffusion calculated
by the J-SCOPE historical ocean simulation. Finally, to account
for megalopae who may have molted from the final zoeal
stage mid-way through the 30-day period prior to collection,
we simulated a behavior for which the particle exhibited
DVM (0–30 m depth) for the first 15 days of the back-
tracking simulation, followed by passive dispersal for the
second half of the simulation (“EH-D15P”). For all behaviors,
simulated dispersal trajectories were updated every 60 s, and
particle locations and ambient environmental conditions were
recorded hourly.

Prior to calculating exposure history for the particle tracks,
we removed records of particles that had exited the model
boundaries, which included particles located in the Columbia
River and Salish Sea, due to a lack of confidence in the

biogeochemical modeling in those areas (i.e. particles located
at longitude > −123.9◦E or < −126.5◦E or latitude > 49.5◦N
or < 43.5◦N; 12.2% of exposure history records). Additionally, we
removed any particle exposure data that had unrealistic negative
values due to extrapolation errors when a particle was located
either at the ocean surface or just above the seafloor (0.29% of
exposure history records).

Exposure history variable calculations
Two types of exposure history statistics were calculated
for each particle and then averaged across all particles
(N = 100) initialized at each station. (1) Average environmental
conditions for all variables (temperature, salinity, dissolved
oxygen concentration, nitrate concentration, phytoplankton
concentration, pH, �ar, and �ca) were calculated by extracting
the ambient environmental field from the J-SCOPE historical
ocean simulations along the particle trajectory and then averaging
over the entire 30-day simulation. (2) Severity indices (“SI”),
which are a combined metric of the intensity and duration of
exposure to stressful conditions, were calculated for a subset
of environmental variables (oxygen, pH, �ar, and �ca) by
multiplying the duration of time (in days) and magnitude
beyond an environmental threshold that a particle was exposed
to a stressful condition, and then summed over the 30-day
backtracking simulation (Hauri et al., 2013; Bednaršek et al.,
2017; Supplementary Equations 3, 4). Environmental thresholds
for the severity indices were defined as oxygen < 1.4 ml l−1

(O2 < 62 mmol m−3; 61 µmol kg−1; i.e. hypoxia), pH < 7.75
(Feely et al., 2008, 2016; Hodgson et al., 2016; Miller et al., 2016),
�ar < 1 (i.e. physical threshold for aragonite dissolution), and
�ca < 1 (i.e. physical threshold for calcite dissolution).

Developing a Habitat Model for
Megalopae
GLM Development
A GLM was used to identify the modeled environmental variables
that best explain the temporal and spatial heterogeneity in
M. magister megalopae occurrence in coastal Washington and
Oregon waters. Although life stage processes and population
dynamics are assumed to be non-linear, linear models are often
used to approximate these processes in fisheries science (e.g.
Ricker, 1973; Austin and Cunningham, 1981; Guisan et al.,
2002; Venables and Dichmont, 2004), and GLMs have been used
successfully to predict probability of occurrence for a wide range
of species (Brotons et al., 2004; MacLeod et al., 2008; Krigsman
et al., 2012; Froehlich et al., 2015). A GLM is a statistical model
that relates a combination of predictor variables (i.e., modeled
ocean variables) to a response variable (i.e. megalopae occurrence
characterized as presence or absence at each sampling station).
Because our response variable had a binomial distribution (i.e.
megalopae were either “present” or “absent”), we used a logit link
function (Eq. 4; Fisher, 1954),

f (µ) = log
(

µ

1− µ

)
(4)
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where
µ =

eXb

1+ eXb
(5)

where Xb is a linear combination of predictor variables (Eq. 5).
To examine the hypothesis that exposure history is an

important driver of megalopae occurrence, a suite of potential
GLMs were developed using environmental variables from one of
two types of experiments (Table 2): (1) “in situ” ocean conditions
extracted from the model at the times and locations where
megalopae were sampled; and (2) exposure history statistics for
ocean conditions were extracted along particle trajectories from
six distinct particle behavior simulations. We included modeled
variables from all 12 surveys (2009–2016; i.e. the “calibration
survey period”) during GLM development. The automated GLM
forward and backward stepwise function in Matlab (R2018b;
stepwiseglm) was used to evaluate all possible combinations of
the suite of predictor variables (eight variables for the in situ
models; 12 variables for the exposure history models), and to
add and/or remove variables until the best GLM with the lowest
Akaike information criterion corrected (AICc) score for small
sample size was derived (Burnham and Anderson, 2002). Non-
significant and/or potentially collinear predictors were retained
in GLMs if their removal resulted in an increased AICc score,
indicating that they contributed to model fit despite their
lack of statistical significance and/or independence from other
predictors in the model. AICc scores attempt to balance the
inclusion of additional predictor variables that improve model fit
but result in increased model complexity by imposing a penalty
for variable inclusion to prevent over-fitting and subsequent
declines in model prediction performance (Wilks, 1995). AICc
scores were used to compare GLMs developed using in situ and
exposure history experiments.

To investigate the impacts of year effects due to inter-annual
variation in environmental conditions in the northeast Pacific
Ocean (e.g. El Nino-Southern Oscillation and an anomalous
“marine heatwave” in 2014–2016; Bond et al., 2015; Fisher
et al., 2015; Thompson et al., 2018) and variability in J-SCOPE
model skill (e.g. Year in Review pages at http://www.nanoos.org/
products/j-scope/) on GLM model development, we conducted
a modified sliding window analysis to develop additional GLMs.
Here, we modified the calibration survey period to include only
10 of the 12 surveys available between 2009 and 2016 during
GLM development, i.e. all combinations of 10 out of 12 surveys
[mathematically, C(12,10)] were used to develop an additional 66
GLMs for the in situ and exposure history experiments, following
the methods described above.

Biological Ensemble Assembly
Since the primary aim of this study was to generate the best model
for forecasting inter-annual megalopae occurrence patterns, we
relied on a model performance metric, the in-sample AUC value,
to identify high-performance GLMs across experiments (i.e.
in situ or exposure history behaviors). The in-sample AUC value
[“area under the receiver operating characteristic (ROC) curve,”
see Fielding and Bell, 1997] measures model performance on the
data used to develop the model. AUC is calculated by comparing
the GLM output probability to the observed presence/absence

for megalopae at each station. AUC ranges from 0 to 1, with
AUC < 0.5 indicating no model skill, and 0.5 < AUC ≤ 1
indicating skill above random chance.

Due to the high performance of several individual GLMs
across exposure history experiments, we selected multiple GLMs
to form a “biological ensemble” to represent a range of simulated
megalopae behaviors for forecasting applications (see below).
We used a criterion of in-sample AUC ≥ 0.64 to identify a
cluster of top-performing GLMs to include in the biological
ensemble. Each member GLM was weighted equally. To evaluate
potential collinearity of variables in the final biological ensemble,
correlation coefficients were calculated for predictor variables in
each member GLM.

Applying the Habitat Model
Biological Ensemble Performance Evaluation
To quantify the biological ensemble’s ability to forecast
megalopae occurrence, the ensemble was used to predict
megalopae occurrence for the out-of-sample 2017 survey. Each
member GLM of the biological ensemble was individually
evaluated for 2017, and then the forecasted megalopae occurrence
probabilities were averaged across the member GLMs to obtain
the biological ensemble forecast for 2017. Specifically, particle
simulations using J-SCOPE modeled ocean conditions for 2017
were conducted for each behavior represented by the GLMs in
the biological ensemble. Exposure histories for each behavior
were incorporated into the relevant member GLM to generate
five independent forecasts of megalopae occurrence probabilities
for each sampling site. These five sets of probabilities were then
averaged (with equal weighting of each member GLM) to forecast
megalopae occurrence probabilities for the biological ensemble as
a whole. Ultimately, an AUC value was calculated by comparing
the biological ensemble’s forecasted megalopae probabilities to
megalopae occurrence observed on the 2017 survey.

Habitat Forecasting
Finally, megalopae habitat throughout the J-SCOPE model
domain was forecast for 2017 using the biological ensemble.
Habitat prediction simulations were run for each behavior
represented by the GLMs in the biological ensemble, using
particles initialized over a grid throughout the x/y domain of the
J-SCOPE ocean model. As described above, the particle exposure
histories were incorporated into the individual GLMs comprising
the ensemble, and then those output probabilities of megalopae
occurrence were averaged across the member GLMs to generate
a spatially comprehensive forecast of megalopae habitat for the
biological ensemble for 2017.

RESULTS

Generalized linear models predicting megalopae occurrence
based on the experiments outlined in Table 2 were constructed
using modeled ocean conditions from either in situ megalopae
sampling locations or exposure history simulations based
on particle tracking experiments with unique behavior and
initialization depth. Comparing these GLMs allowed us to
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TABLE 3 | Skill assessment of J-SCOPE historical ocean simulation variables that will be considered as potential predictor variables during megalopae occurrence GLM
development.

Experiment Depth
habitat (m)

Temperature
(◦C)

Salinity Oxygen
(mmol m−3)

Nitrate
(mmol m−3)

Phytoplankton
(mmol m−3)

pH �ar �ca

In situ/EH-DVM30/EH-D15P 0–30 0.88 0.76 0.71 0.61 0.10 0.71 0.75 0.78

0.58 −0.66 0.79 1.01 1.56 −0.77 −0.70 0.67

(8391) (8391) (8189) (860) (8105) (7516) (7516) (7516)

EH-DVM60 0–60 0.91 0.79 0.75 0.62 0.09 0.75 0.77 0.80

0.51 −0.63 0.82 1.19 −1.30 0.78 0.73 0.68

(14832) (14832) (14482) (906) (14398) (13287) (13287) (13287)

EH-S1 0–5 0.82 0.74 0.50 0.62 0.50 0.56 0.72 0.76

0.76 −0.70 −0.92 −0.84 2.71 −0.88 −0.72 −0.69

(1335) (1335) (1302) (625) (1255) (1195) (1195) (1195)

EH-P1 40–50 0.87 0.66 0.71 0.75 0.04 0.72 0.73 0.77

−0.59 −0.85 −0.94 2.63 −1.14 −0.90 −0.84 −0.77

(2403) (2403) (2348) (33) (2353) (2165) (2165) (2165)

EH-P30 55–70 0.89 0.61 0.54 N/A 0.09 0.58 0.56 0.72

−0.51 −0.92 −1.25 −1.57 −1.13 −1.13 −0.88

(2729) (2729) (2665) (0) (2689) (2409) (2409) (2409)

Environmental variables were validated in May and June from 2009 to 2017 and binned by megalopae depth habitat, corresponding to distinct exposure history particle
dispersal simulations or “in situ” habitat (0–30 m). Variable skill was assessed by computing statistical comparisons of modeled and observed values at the time and
location where observations were collected. Within each box, Pearson’s correlation coefficient (r) is on top, the normalized root-mean-square error (NRMSE) where the
sign indicates the direction of bias of the model (see Supplementary Equations 1, 2) is in the middle, and the number of observations (n) used for model validation is
shown parenthetically at the bottom. Shading indicates significant skill of the J-SCOPE modeled variable: blue indicates r > 0.5; green indicates −1 < NRMSE < 1. See
Table 2 for details of in situ and exposure history behaviors.

investigate the hypothesis that exposure history is important for
characterizing megalopae occurrence. Because these GLMs are
built from modeled ocean variables, we begin by reporting skill
assessments for these variables to understand their influence on
GLM fit and performance.

J-SCOPE Variable Skill Assessment
Environmental variables from J-SCOPE historical ocean
simulations performed well (as indicated by r and NRMSE;
Table 3) within the depth habitats dictated by the simulated
megalopae behaviors (Table 2) and during the time period when
particle dispersal was simulated (May–June). All but one of the
variables (phytoplankton) had a significant correlation with
the observations at all depth habitats (r > 0.5), and variable
performance generally improved with depth. Phytoplankton
did not perform as well as the other variables, except near
the ocean surface (0–5 m). Year-round model validation
showed similar patterns as seen in the May–June validations
(Supplementary Table 3).

Environmental Exposure of Megalopae
The exposure histories generated by the particle tracking
experiments were driven predominantly by the particle depth
habitats, which were determined by particle behavior and
initialization depth (Figures 3–5; ANOVA results shown in
Supplementary Table 4). On average, particles exhibiting
passive dispersal initialized at 30 m depth (EH-P30) inhabited
significantly deeper waters (mean particle depth = 47.1 ± 13.3 m
(mean ± std); Figure 3 and Supplementary Table 4)
and originated farther offshore (mean particle ending
isobath = 572 ± 455 m; Figure 4) than particles in any

other experiment. The properties of the simulated ocean
conditions that these particles were exposed to were ultimately
different because of their unique depth habitat (Figure 5
and Supplementary Table 4). Exposure histories for these
passive particles were characterized by significantly lower
temperature, dissolved oxygen concentration, phytoplankton
concentration, pH, �ar, and �ca, and significantly higher salinity
and nitrate concentrations than particles in other exposure
history simulations. Consequently, particles in this experiment
were exposed to the most severe hypoxic stress and corrosive
waters [severity index (SI) for oxygen = 2.14± 3.23 hypoxia-days;
SI pH = 1.88 ± 1.45 days with pH < 7.75; SI �ar = 2.90 ± 2.37
undersaturation-days; SI �ca = 1.69 ± 2.13 undersaturation-
days). In contrast, the surface-following particles (EH-S1)
had a tightly constrained depth habitat within ∼5 m of the
ocean surface (mean particle depth = 2.39 ± 0.04 m), which
was significantly shallower than any of the other experiments
(Figure 3). Their exposure histories were characterized by
significantly higher temperature, oxygen, phytoplankton, pH,
�ar, and �ca, and significantly lower salinity and nitrate
concentrations (Figure 5 and Supplementary Table 4). Thus,
these surface-following particles experienced minimal exposure
to hypoxic and corrosive waters (SI Oxygen = 0.02 ± 0.06
hypoxia-days; SI pH = 0.07 ± 0.15 days below 7.75 pH; SI
�ar = 0.10 ± 0.20 undersaturation-days; SI �ca = 0.002 ± 0.004
undersaturation-days). Particles in other experiments were
exposed to intermediate environmental conditions at
intermediate depth habitats. Passive particles initialized at
the surface (EH-P1; mean particle depth = 20.4 ± 20.7 m) had
exposure histories most similar to particles in the 30 m DVM
experiment (EH-DVM30; mean particle depth = 20.3 ± 1.2 m)
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FIGURE 3 | Average depth and variability over time was driven by simulated particle behavior and initialization depth. Particles exhibiting DVM behaviors were tightly
constrained between 30 m (EH-DVM30; A) or 60 m depths (EH-DVM60; B) and the surface. (C) Passive particles initialized at 1 m (EH-P1) and at 30 m depths
(EH-P30) originated from deeper depths and traveled up in the water column over time, while surface-following particles (EH-S1) experienced a tightly constrained
depth habitat near the surface. (D) These particles spent the first 15 days of the simulation exhibiting DVM between the surface and 30 m depth, and then they
transitioned to passive dispersal (EH-D15P).

and the experiment where particles transitioned from DVM to
passive dispersal (EH-D15P; mean particle depth = 20.7± 7.3 m).
Passive dispersal particles initialized at 30 m (EH-P30; mean
particle depth = 47.1 ± 13.3 m) experienced conditions most
similar to the 60 m DVM particles (EH-DVM60; mean particle
depth = 30.8 ± 2.4 m). In situ extracted conditions were most
similar to those experienced by passively dispersing particles
initialized at the surface (EH-P1).

GLM Comparisons: In situ Versus
Exposure History
Inclusion of environmental exposure history during GLM
development improved our ability to predict megalopae
occurrence. The in situ GLM had the worst model fit (i.e. highest
AICc score) and worst in-sample model performance (i.e. lowest
AUC) compared to the exposure history models (Table 4; see
additional statistics in Supplementary Table 5). Sliding window
analyses that were used to evaluate the influence of individual
surveys on GLM fit and performance (Supplementary Table 6)
provided further support that, independent of the calibration
survey period used to develop the GLM, the in situ model was

out-performed by the exposure history models in 65 out of 66
cases (98% of cases).

Among the exposure history GLMs, model fit and in-
sample performance were affected by the type of simulated
behavior and the depth at which the particles were initialized
(Table 4 and Supplementary Table 6). Simulations that included
passive dispersal (EH-P1, EH-D15P, and EH-P30) had the
best model fit (i.e. lowest AICc scores), followed by DVM
behaviors (EH-DVM30 and EH-DVM60), and then the surface-
following behavior (EH-S1). These rankings of model fit based
on simulated behavior were supported by the sliding window
analyses as well (Supplementary Table 6). In-sample model
performance, however, showed a different pattern of GLM
rankings. When all surveys from 2009 to 2016 were used for
GLM development, in-sample AUC indicated highest model
performance for the EH-P1 GLM, followed by EH-D15P,
EH-DVM60, EH-S1, EH-DVM30, and finally EH-P30 GLMs
(Table 4). The sliding window analysis showed similar results,
such that the EH-P1, EH-D15P, and EH-DVM60 GLMs generally
had the highest performance, but on average, the EH-DVM30
and EH-P30 GLMs performed better than the EH-S1 GLMs
(Supplementary Tables 6, 7).
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FIGURE 4 | Particle start (A) and average back-tracked origination locations (B–G) after 30-day simulated backtracking for particle exposure history simulations
(2009–2017) that varied by behavior and initialization depth: DVM behavior from the surface to 30 m (EH-DVM30; B) and 60 m depths (EH-DVM60; C); the
surface-following behavior (EH-S1; D); passive particles initialized at 1 m (EH-P1; E) and at 30 m depths (EH-P30; F); and DVM transitioning to passive dispersal at
day 15 (EH-D15P; G; see Table 2 for details about exposure history experiments). Particles were initialized at the same 37 sampling stations. Back-tracked
origination locations were averaged for all 100 particles initialized at each station, which sometimes resulted in the average origination location being on land; these
particles were moved to the nearest shoreline. Initialization locations are uniquely colored for improved resolution of differing dispersal patterns across the spatial
domain. Land is shaded gray, and the 200 m isobath is shown for reference.

FIGURE 5 | In situ conditions and particle tracking exposure histories differed among years and among simulations with different particle behaviors and initialization
depths. These box and whisker plots show the interquartile range (bounds of the box) with a horizontal line at the median, ends of the vertical lines at the fifth and
95th percentiles, and outliers represented by dots. Averages were calculated across all particles within an in situ extraction or particle tracking simulation, and
statistics were calculated across survey averages to show variability over time (2009–2017; see Supplementary Table 4 for ANOVA results).

The GLMs contained different significant predictors
depending on whether or not exposure history was included, and
which particle tracking behavior was simulated (Table 4). The

predictors included in the GLMs calibrated with all surveys from
2009 to 2016 were oxygen (three occurrences), salinity (two),
nitrate (two), SI for �ca (one), phytoplankton (one), SI for �ar
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TABLE 4 | Predictor variables [significant predictors in bold (p < 0.05)] and their
direction of correlation to megalopae occurrence for generalized linear models
(GLMs) developed using surveys from 2009 to 2016 (see Supplementary
Table 5 for additional statistics and Supplementary Tables 6, 7 for results from
the sliding window analysis).

Experiment Predictor variables (bold p < 0.05) 1AICc In-sample AUC

In situ −N 11.8 0.602

EH-DVM30 +O 4.7 0.644

EH-DVM60 +S, +O 5.3 0.650

EH-S1 −T, −N, −SI �ca 7.9 0.645

EH-P1 +S, +O 0.0 0.658

EH-P30 +P, −SI �ar 1.9 0.625

EH-D15P +pH 1.7 0.657

Metrics for relative model fit (1AICc; low values are superior) and in-sample model
performance (AUC; high values are superior) are shown. N = nitrate; O = oxygen;
P = phytoplankton; S = salinity; T = temperature; SI �ar = severity index for
aragonite saturation state; and SI �ca = severity index for calcite saturation state.
See Table 2 for details about in situ and exposure history experiments.

(one), temperature (one), and pH (one). Although the sliding
window analysis indicated that the calibration survey period used
to develop the GLM had some influence on which predictors
were included in the GLMs (Supplementary Tables 6, 8), the
relative frequency of the most common predictors was similar to
that observed in the GLMs developed using all surveys: oxygen
(194 occurrences), salinity (161), nitrate (146), �ca (76), SI for
�ca (66), phytoplankton (60), �ar (38), SI for �ar (36), and
temperature (35; Supplementary Table 8).

Biological Ensemble Formation
Due to the overall high performance of several GLMs and slight
variations in their relative performance when different calibration
survey periods were used (Supplementary Table 6), we decided
to select multiple models to generate a biological ensemble
that we expect to be more robust to interannual variability
than any single model (Table 5). The biological ensemble is
comprised of five GLMs with the highest overall in-sample model
performance (i.e. AUC ≥ 0.64) from the following exposure
history behaviors: 30 m DVM (EH-DVM30), 60 m DVM (EH-
DVM60), surface-following (EH-S1), passive dispersal initialized
at 1 m depth (EH-P1), and DVM transitioning to passive
dispersal (EH-D15P). For the biological ensemble, megalopae
abundance was positively correlated with salinity, oxygen, and
pH, and negatively correlated with temperature, nitrate, and
the SI for �ca. Correlation coefficients calculated for pairwise
comparisons of predictor variables within a single GLM indicated
low dependency among variables (Supplementary Table 9).

Habitat Model Performance and
Predictions
When model performance was tested for the biological
ensemble using the out-of-sample 2017 survey, the ensemble
performed better than random (AUC > 0.5), indicating skill in
predicting megalopae occurrence (Table 5). Each member of the
biological ensemble performed better than random (AUC > 0.5;
Supplementary Figure 1), and the ensemble as a whole

TABLE 5 | A biological ensemble of GLMs [significant predictors in bold
(p < 0.05)] assembled from models with strong in-sample performance (AUC
(2009–2016) ≥ 0.64; see Table 4 for all models considered).

Experiment Equation (bold p < 0.05) 2017 AUC

EH-DVM30 −3.01 + 0.109∗O 0.814

EH-DVM60 −6.42 + 0.132∗S + 0.00988∗O 0.936

EH-S1 1.77 − 0.157∗T − 0.0994∗N − 79.5∗(SI �ca) 0.757

EH-P1 −11.0 + 0.248∗S + 0.0111∗O 0.914

EH-D15P −34.9 + 4.32∗pH 0.779

Biological ensemble: 0.943

Out-of-sample model performance was evaluated for the 2017 survey for each
model individually, and for the biological ensemble as a whole when probabilities
from all five models were averaged to predict megalopae occurrence. O = oxygen
(mmol m−3); S = salinity; T = temperature (◦C); N = nitrate (mmol m−3); and SI
�ca = severity index for calcite saturation state (undersaturation-days). See Table 2
for details about exposure history experiments.

performed better than any individual member (AUC = 0.94).
An AUC value of 0.94 means that for 94% of the stations where
megalopae were found to be present, the model predicted a higher
probability of megalopae occurrence than for randomly sampled
stations where megalopae were observed to be absent.

Finally, when we simulated dispersal of megalopae initialized
throughout the J-SCOPE model domain, and applied their
environmental exposure histories within the biological ensemble,
we were able to generate a spatially explicit habitat model for
Washington and Oregon (Figure 6). Over this larger domain,
the biological ensemble predicted relatively high probabilities
of megalopae occurrence seaward of the continental shelf
break. Additionally, megalopae occurrence probabilities tended
to increase with latitude. Markedly low probabilities of megalopae
occurrence were predicted near the mouth of the Columbia River
and near the Strait of Juan de Fuca.

DISCUSSION

Importance of Exposure History
Model fit and performance (indicated by AICc and AUC,
respectively) improved when megalopae exposure history was
used to develop the GLM compared to the in situ GLM, regardless
of the type of particle behavior used to simulate megalopae
dispersal. This suggests that prior environmental exposure is
important to include in addition to in situ conditions when
predicting megalopae occurrence. While behavior affected the
exposure history of the particles, the type of behavior did not
influence the GLM performance as much as the decision to
include exposure history itself. A biological ensemble of five top
performing exposure history GLMs was created to capture the
range of behaviors that best predicted megalopae occurrence.
Within the biological ensemble, megalopae occurrence was
positively correlated with dissolved oxygen concentration,
salinity, and pH, and negatively correlated with temperature,
nitrate concentration, and the SI for �ca. These predictor
variables suggest that megalopae are less common in nutrient-
rich environments, potentially generated by upwelling of deep
waters that are corrosive and hypoxic, or inflow from terrestrial
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FIGURE 6 | Biological ensemble model forecast for the out-of-sample 2017
survey. (A) Comparison of ensemble-predicted and observed megalopae
occurrence at 33 stations. Markers located at the megalopae sampling
stations are filled (see color bar) according to the probability of megalopae
occurrence as predicted by the biological ensemble (see Table 5). The outline
color and orientation of the triangle indicates whether megalopae were
observed to be present (orange, upward-pointing triangles) or absent (blue,
downward-pointing triangles) at that station. (B) Probability of megalopae
occurrence throughout the J-SCOPE x, y model domain forecasted by the
biological ensemble (see color bar). Land is shaded gray, and the 200 m
isobath is shown.

sources, such as the Columbia River or the Strait of Juan de Fuca,
characterized by warmer temperatures and low salinities (Fiedler
and Laurs, 1990; Davis et al., 2014).

Below, we discuss in more detail (1) why a biological ensemble
was assembled to encompass the range of potential behaviors
exhibited by M. magister megalopae, (2) how the predictor
variables in the biological ensemble generate a picture of the
preferred habitat for M. magister megalopae, and (3) what the
limitations of this work are and how they can be addressed
in future studies.

Multiple Behaviors in the Biological
Ensemble
The biological ensemble consists of the top performing GLMs
which represent the breadth of possible behaviors that forecast
megalopae occurrence most skillfully (Table 5). Due to the
uncertainty of the precise age of the megalopae at collection,

potential life history changes over the 30 days prior to
collection may explain why passive, DVM, and surface-following
behavior models produced GLMs with strong model fit and
performance (Tables 4, 5). M. magister larvae may spend as
few as ∼7 days or as many as ∼33 days in the megalopal
stage (Poole, 1966; Ebert et al., 1983; Sulkin et al., 1996),
so our 30-day backtracking experiments may have spanned a
period when larvae had reduced swimming abilities as zoeae
(Jacoby, 1982), or our DVM behaviors may have overestimated
their swimming speeds (Hobbs and Botsford, 1992). Including
a GLM with a combination of passive and DVM behavior
(EH-D15P) only increased the performance of the ensemble
as a whole. Additionally, the surface-following model (EH-
S1) may have simulated reported phenomena of megalopae
attaching to flotsam or forming swarms near the water’s surface
during the daytime (Lough, 1976; Shenker, 1988; Roegner et al.,
2003). Thus, we hypothesize that realistic megalopae behaviors
may be more accurately represented through a combination of
passive, DVM, and surface-following simulations compared to
any one behavior alone.

Modeled Megalopae Habitat Conditions
The biological ensemble, when used to forecast megalopae habitat
for the entire J-SCOPE domain and compared to the out-of-
sample 2017 survey, performed very well (Table 5 and Figure 6).
This spatially explicit model showed increasing probabilities of
megalopae occurrence seaward of the continental shelf break.
This modeled habitat pattern aligns with reports from the
literature that M. magister larvae disperse offshore during early
development before traveling back to the continental shelf to
settle (Johnson et al., 1986; Pauley et al., 1989; Hobbs et al., 1992;
Morgan and Fisher, 2010). On regional scales, low probabilities
for megalopae occurrence were predicted near the mouth of the
Columbia River, in the Strait of Juan de Fuca, and for near-
shore areas in Oregon. Finally, high variability in megalopae
occurrence was predicted on kilometer scales. The predictor
variables identified in the biological ensemble may provide
insight into the environmental conditions that create suitable
(and unsuitable) habitat for M. magister megalopae.

The biological ensemble member GLMs can be divided into
two depth habitat groups characterized by unique predictor
variables. Four of the five models in the biological ensemble
were defined by megalopae swimming behaviors that resulted
in intermediate depth habitats, in which a small portion of
dispersal time was spent at the ocean surface and the majority of
time was spent at depth (EH-DVM30, EH-DVM60, EH-P1, and
EH-D15P; Tables 2, 5 and Figure 3). In these GLMs, megalopae
occurrence was positively correlated with oxygen concentration
and/or salinity, or pH. These predictor variables may indicate
that megalopae in mid-water depth habitats are sensitive to low
oxygen or low pH conditions characteristic of upwelled waters
and/or low salinities indicative of terrestrial sources, such as
the Columbia River plume or the Strait of Juan de Fuca waters.
Preferences for environments characterized by high oxygen, pH,
and salinity are generally consistent with the habitat requirements
for M. magister described in the literature (e.g. Reed, 1969;
Sulkin and McKeen, 1989; Brown and Terwilliger, 1999;
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Curtis and McGaw, 2012; Descoteaux, 2014; Miller et al., 2016;
Gossner, 2018). For example, negative impacts, such as increased
mortality, decreased growth, and increased respiration rates, have
been demonstrated when M. magister megalopae and juveniles
are exposed to hypoxic conditions (Bancroft, 2015; Gossner,
2018). Prior laboratory experiments have also shown increased
mortality of M. magister zoeae and megalopae when exposed
to low salinity conditions (Reed, 1969; Brown and Terwilliger,
1999), and avoidance of adult crabs to low salinity conditions,
except when starved (Curtis and McGaw, 2012). The positive
correlation between pH and megalopae occurrence is consistent
with reports that M. magister larvae are negatively impacted by
exposure to low pH (Descoteaux, 2014; Miller et al., 2016).

In contrast to the intermediate depth habitat models discussed
above, the fourth member GLM of the biological ensemble
corresponds to megalopae occurrence in near-surface habitats
(i.e. the surface-following behavior model, EH-S1). In surface
waters, where oxygen concentrations and salinity are relatively
consistent across temporal and spatial domains (Figure 5),
alternative predictors were identified to characterize preferred
habitat, such as minimal exposure to calcite-undersaturated
conditions, relatively cool temperatures, and low nutrient
concentrations (Table 5). These habitat preferences again may
signal avoidance of upwelled waters, characterized by low �ca and
rich in nutrients, or terrestrial inputs, with warm temperatures
and high nutrient concentrations. The negative correlation
between SI for �ca and megalopae occurrence is supported
by recent work by Bednaršek et al. (2020) which showed
that M. magister megalopae may experience external carapace
dissolution due to prolonged exposure to more severe calcite
saturation state gradients. Several studies have also highlighted
the importance of temperature on larval development and
survival in M. magister (Sulkin and McKeen, 1989; Sulkin
and McKeen, 1996; Sulkin et al., 1996; Brown and Terwilliger,
1999), and our results indicate a preference for relatively cool
temperatures in shallow habitats where thermal stress may
be more common than at depth (Figure 5). If megalopae
occurrence is linked to exposure history via a mortality
mechanism, then our results may suggest that megalopae
experience lethal temperatures in shallow habitats over the 30-
day particle tracking simulations. To our knowledge, no studies
have investigated the direct effects of nitrate concentrations
on megalopae survival or development. We propose that
low nutrient concentrations may indirectly define megalopae
habitat by serving as a proxy for preferred downwelling
regimes (Hales et al., 2005; Palacios et al., 2013) outside of
freshwater plumes, or may indicate the presence of food sources
(such as phytoplankton and zooplankton), causing a draw-
down of nutrients.

A novel approach taken by this study was to evaluate
the skill of modeled variables within the specific depth range
and season relevant to our study species. Since the skill
of the ocean variables influences the skill of the GLMs
to predict megalopae occurrence, and ultimately to model
preferred habitat, differences in variable skill may help explain
differences in predictive power of GLMs developed with
exposure histories from unique behavior simulations. Overall,

our model validation showed that ocean variable skill generally
improved with depth (Table 3), consistent with prior work
by Siedlecki et al. (2016), but variables with strong skill in
surface waters also generated GLMs capable of good model
performance (e.g. EH-S1 GLM in Table 5). Notably, the 0–
30 m DVM exposure history experiment (EH-DVM30), the
DVM transitioning to passive behavior (EH-D15P), and the
in situ model all used ocean variables within ∼0–30 m depth
range, and thus the J-SCOPE variable skill was similar for
all GLMs, yet both exposure history GLMs had better fit
(lower AICc) and higher predictive skill (higher AUC) than the
in situ GLMs (Table 4 and Supplementary Tables 6, 7). This
finding further supports our conclusion that exposure to recent
environmental conditions is important to include in modeling
megalopae occurrence.

Model Limitations and Future Work
In this study, the suite of potential predictor variables was
limited to (1) variables that were included in the J-SCOPE
historical ocean simulations, (2) variables whose skill could
be assessed using observational data, and (3) variables, or
threshold values for severity indices, identified in the published
literature as being important for M. magister megalopae or related
species. For example, only microzooplankton concentration is
modeled in J-SCOPE, a class of zooplankton which is not the
main food source for brachyuran crab larvae (Bigford, 1977;
Harms and Seeger, 1989; Sulkin et al., 1998; Casper, 2013),
so we omitted this variable from consideration. Regarding the
severity indices, we used thresholds to characterize stressful
conditions that may not be biologically relevant for M. magister
megalopae, due to limited availability of published scientific
studies (see discussions in Hettinger et al., 2012; Waldbusser
et al., 2015). Given the importance of temperature and
salinity on modeling megalopae occurrence, severity indices for
these conditions could also be developed if critical thresholds
were identified.

Here, we assembled the five best-performing GLMs into a
biological ensemble with equal weighting of its members, due
to a lack of information about realistic larval behaviors in wild
populations. Future in situ behavioral studies of M. magister late-
stage zoeae and early-stage megalopae would help shape realistic
larval behavior in particle tracking simulations and inform the
relative weighting of member GLMs in the biological ensemble.

Application of the biological ensemble for modeling
megalopae habitat is best applied during the temporal and spatial
window of the megalopae observations used in this study—
namely, late May (2009–2012) and late June (2009–2017) over
the continental shelves of Washington and Oregon. Since marine
conditions typically become more stressful as the upwelling
season evolves, beginning in ∼mid-April (Austin and Barth,
2002; Hales et al., 2006; Hauri et al., 2015), our model may
weight exposure to more stressful conditions more heavily given
the relative under-representation of the earlier (May) sampling
period in recent years. Additionally, because all megalopae
sampling stations were located over the continental shelf, but we
applied the biological ensemble to forecast habitat over the entire
J-SCOPE model domain, evaluation of the model’s prediction
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of high-quality megalopae habitat in offshore areas would be
essential to utilizing the predicted habitat fields offshore.

Finally, this study laid the groundwork for future forecasting
of megalopae abundance. To model more complex dynamics,
such as abundance, we will apply either generalized linear
mixed models (GLMMs), delta-GLMs, or generalized additive
models (GAMs), which have relaxed constraints on the types
of relationships allowed between the predictor and response
variables (Guisan et al., 2002; Venables and Dichmont, 2004;
Brodie et al., 2019). Additionally, we will rely on J-SCOPE
seasonal forecasts to predict megalopae abundance on seasonal
timescales. Since megalopae abundance is correlated with
recruitment into the M. magister fishery 4 years later (Shanks
and Roegner, 2007; Shanks et al., 2010; Shanks, 2013), improved
forecasts of megalopae abundance, generated without arduous
field sampling, would extend the management time horizon from
seasonal to more than 4 years in advance, potentially promoting
increased long-term planning and stability in the fishery (Hobday
et al., 2016; Tommasi et al., 2017).

CONCLUSION

Inclusion of environmental exposure history improved our
ability to predict megalopae occurrence. Ultimately, a biological
ensemble was generated from GLMs developed with multiple
behaviors to encompass biologically relevant variations in
megalopae dispersal. This biological ensemble showed superior
predictive performance (high AUC) relative to individual GLMs.
The biological ensemble identified positive correlations between
megalopae occurrence and oxygen concentration, salinity,
and pH, and negative correlations with temperature, nitrate
concentration, and the SI for �ca. When considered together,
these variables indicate that megalopae habitat is characterized
by downwelling conditions seaward of terrestrial inputs, such as
Columbia River plume or the Strait of Juan de Fuca waters.
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