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Characterization of uncertainty (variance) in ecosystem projections under climate
change is still rare despite its importance for informing decision-making and prioritizing
research. We developed an ensemble modeling framework to evaluate the relative
importance of different uncertainty sources for food web projections of the eastern
Bering Sea (EBS). Specifically, dynamically downscaled projections from Earth System
Models (ESM) under different greenhouse gas emission scenarios (GHG) were used to
force a multispecies size spectrum model (MSSM) of the EBS food web. In addition to
ESM and GHG uncertainty, we incorporated uncertainty from different plausible fisheries
management scenarios reflecting shifts in the total allowable catch of flatfish and gadids
and different assumptions regarding temperature-dependencies on biological rates in
the MSSM. Relative to historical averages (1994–2014), end-of-century (2080–2100
average) ensemble projections of community spawner stock biomass, catches, and
mean body size (±standard deviation) decreased by 36% (±21%), 61% (±27%), and
38% (±25%), respectively. Long-term trends were, on average, also negative for the
majority of species, but the level of trend consistency between ensemble projections
was low for most species. Projection uncertainty for model outputs from ∼2020
to 2040 was driven by inter-annual climate variability for 85% of species and the
community as a whole. Thereafter, structural uncertainty (different ESMs, temperature-
dependency assumptions) dominated projection uncertainty. Fishery management and
GHG emissions scenarios contributed little (<10%) to projection uncertainty, with the
exception of catches for a subset of flatfishes which were dominated by fishery
management scenarios. Long-term outcomes were improved in most cases under a
moderate “mitigation” relative to a high “business-as-usual” GHG emissions scenario
and we show how inclusion of temperature-dependencies on processes related to body
growth and intrinsic (non-predation) natural mortality can strongly influence projections
in potentially non-additive ways. Narrowing the spread of long-term projections in future
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ensemble simulations will depend primarily on whether the set of ESMs and food web
models considered behave more or less similarly to one another relative to the present
models sets. Further model skill assessment and data integration are needed to aid in
the reduction and quantification of uncertainties if we are to advance predictive ecology.

Keywords: uncertainty partitioning, predictive ecology, Arrhenius factor, body size, size-based food web,
cumulative effects, commonality analysis

INTRODUCTION

Anthropogenic climate change is expected to have significant
impacts on ocean biogeochemistry, primary and secondary
production, and the distribution and productivity of higher
trophic level species (Doney et al., 2012; Mora et al., 2013; Pecl
et al., 2017). Given the complexity and large spatiotemporal
scales at which marine ecosystems operate, modeling approaches
are necessary for inferring possible outcomes and tradeoffs due
to climate change. For large marine ecosystems, models of
varying complexity have been used to project potential impacts
on community structure, size composition, and fishery catches,
and to evaluate management strategies under climate change
(e.g. Niiranen et al., 2013; Barange et al., 2014; Marshall et al.,
2017). However, efforts to quantify uncertainty in climate-forced
ecological projections have lagged, which limits their utility for
informing ecosystem approaches to management and decision-
making (Payne et al., 2015; Cheung et al., 2016).

Ensemble modeling enables representation of multiple
sources of uncertainty. The approach entails developing a set
of models, with each model member representing different
working hypotheses or alternative formulations of uncertain
processes. For instance, regional studies have evaluated structural
uncertainty using model ensembles that consist of different
formulations of species interactions (Gårdmark et al., 2013) or
biogeochemical processes (MacKenzie et al., 2012; Meier et al.,
2012; Niiranen et al., 2013). However, climate-forced ecological
projections also depend on assumptions regarding future socio-
economic policies, markets, or technological developments
that result in different greenhouse gas (GHG) emissions
scenarios (Payne et al., 2015; Cheung et al., 2016). For specific
marine ecosystems, scenario uncertainty could also encompass
implementations of different policies, for instance, that impact
fisheries regulations or coastal land use patterns. The distribution
of projected outcomes conveys the level of confidence conditional
on the set of alternative future scenarios and the model ensemble.
Moreover, the uncertainty can be partitioned according to source
which helps characterize their relative influence on the projection
spread and informs where gains in precision may be made,
for instance, through model refinement, additional research and
observations, or advances in theory (Hawkins and Sutton, 2009;
Cheung et al., 2016). Ensemble modeling is now widely used
in weather and climate forecasting (e.g. Murphy et al., 2004;
Berliner and Kim, 2008), but remains underutilized with respect
to climate-driven ecosystem projections (Cheung et al., 2016).

Mechanistic food web models offer a powerful framework for
exploring potential tradeoffs and uncertainties under different
environmental or management scenarios (Persson et al., 2014).

In marine and freshwater ecosystems, predation interactions are
strongly size-structured and size-based food web models offer a
relatively simple way to capture key aspects of system dynamics
(Kerr and Dickie, 2001; Andersen et al., 2016; Guiet et al., 2016;
Blanchard et al., 2017). Size spectra depict the abundance of
individuals as a continuous function of body mass, and the
first dynamic size spectrum models were developed to explain
regularities observed in the scaling of abundance with body
mass in lake and ocean ecosystems [reviewed in Blanchard et al.
(2017)]. In size spectra models, system dynamics emerge from
rules regarding the prey size preference of predators and the
allocation of ingested energy toward maintenance costs, growth,
and reproduction. The models are effective at capturing large-
scale patterns in fisheries production despite their simplicity, and
can be forced with Earth System Model (ESM) outputs to project
future community size structure and bulk fisheries production
(Blanchard et al., 2012; Woodworth-Jefcoats et al., 2013; Barange
et al., 2014; Lefort et al., 2015). Recent extensions to the modeling
framework, however, permit explicit representation of multiple
interacting species and their fisheries (Andersen et al., 2016;
Blanchard et al., 2017). Species can be distinguished according to
life history and prey size and species preference and predation,
growth, and reproduction are represented at the individual-
level using a dynamic energy budget framework (Hartvig et al.,
2011; Blanchard et al., 2014; Andersen et al., 2016). This latter
feature makes multispecies size spectrum models (MSSMs)
strong candidates for evaluating climate impacts because the
hypothesized effects of climate variables (e.g. temperature) on
animal energy budgets can be modeled in a more mechanistic
fashion and scaled up to the population and community levels
(Maury and Poggiale, 2013; Lefort et al., 2015; Guiet et al., 2016;
Woodworth-Jefcoats et al., 2019).

Here, we evaluated future climate impacts on the eastern
Bering Sea (EBS) food web using an MSSM and ensemble
modeling approach (Figure 1). The EBS is a highly productive,
semi-enclosed subpolar sea that overlays a broad continental
shelf (average width∼500 km). Although physical and biological
conditions in the EBS are characterized by high interannual
variation (Stabeno et al., 2001), climate change is expected to
have multiple impacts. Warmer conditions are expected to reduce
the southern spatial extent and duration of seasonal sea ice
cover, advance the spring transition, and increase water column
stratification, which may negatively impact phytoplankton,
zooplankton, and benthic production (Hermann et al., 2013,
2016, 2019). Among global-scale simulation studies of climate
change impacts, projections for the EBS are inconsistent and
include forecasts of increased total catch potential (Cheung et al.,
2010), negligible shifts in pelagic fish biomass (Lefort et al., 2015),
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FIGURE 1 | Overview of modeling framework that links outputs from three model levels (A–C) to generate future projections of the eastern Bering Sea food web
while incorporating different sources of uncertainty. (A) Multiple Earth System Models (ESMs) were forced under low (RCP 4.5), medium (SRES A1B), and high (RCP
8.5) future greenhouse gas emissions (GHG) scenarios. The ESM projections, in turn, were dynamically downscaled using (B) a regional biophysical model.
Projections of temperature and plankton and benthos biomass were used to force (C) a multispecies size spectrum model. Structural uncertainty in projections arise
from variability in model forcing parameters related to the different ESMs and hypotheses regarding temperature-dependences on body growth and mortality rates.
Scenario uncertainty arises from different future GHG emission and fishery management scenarios that differ with respect to allocation of total allowable catch
between flatfish and gadid stocks.

and moderate reductions in total fish biomass (Lotze et al., 2018).
However, out of practical necessity these studies lack taxonomic
detail, make simplifying assumptions regarding growth potential
and trophic structure, and are forced with ESM projections with
coarse spatial resolution. To better understand the implications of
climate change for higher trophic level species and their fisheries
in the EBS, the interdisciplinary Alaska Climate Integrated
Modeling project (ACLIM) was initiated by the NOAA Alaska
Fisheries Science Center (Hollowed et al., 2019). As a component
of ACLIM, capacity to dynamically downscale ESM projections
to the EBS was expanded (Hermann et al., 2019) and an MSSM
was developed for and calibrated to the EBS (Reum et al., 2019).

In this study, we built upon these advances and produced
ensemble projections of the EBS food web that incorporated
multiple sources of uncertainty (Figure 1). Specifically, we
included two sources of structural uncertainty (Figure 1). First,
down-scaled climate projections for the EBS differ across ESMs
(Hermann et al., 2019). We therefore used downscaled climate
projections from multiple ESMs. Second, we addressed structural
uncertainty related to possible temperature-dependences in
biological rates. Temperature influences metabolism, which
may impact multiple processes including physiological rates
that affect body growth (Kooijman, 2000; Brown et al., 2004)
as well as “intrinsic” or non-predation natural mortality (i.e.
disease, senescence rates; Munch and Salinas, 2009; Keil et al.,
2015). Previous size-based studies have included temperature-
dependencies on both body growth-related and intrinsic natural

mortality rates (Blanchard et al., 2012; Woodworth-Jefcoats
et al., 2013; Lefort et al., 2015), but biological rates can exhibit
different scaling relationships with temperature (e.g. Englund
et al., 2011; Brown et al., 2004; Rall et al., 2012) and it remains
unclear to what degree these two processes influence emergent
features of the food web. To account for this uncertainty, we
considered multiple MSSM variants that differed with regard to
how temperature affects key biological rates (Figure 1). We also
included two sources of scenario uncertainty. The first relates to
different scenarios of future GHG emissions (Payne et al., 2015;
Cheung et al., 2016). The second corresponds to different fisheries
management scenarios that, relative to status quo, prioritize
fishing on different components of the EBS food web and reflect
trade-offs fishery managers are confronted with in setting total
allowable catches for each stock (Figure 1; Hollowed et al., 2019).

Our main objectives were to: (1) develop ensemble projections
of fish and invertebrate community composition and size
structure and partition projection uncertainties according to
source over various time horizons and (2) evaluate how
different sources of uncertainty interact. For the latter objective,
we specifically sought to clarify how policy and decision-
making at regional and intergovernmental scales interact
by comparing catches and community composition under
alternative fishery management scenarios and either business-
as-usual or mitigation GHG emissions scenarios. Further,
we evaluated how temperature-dependencies operating on
individual-level processes related to body growth and intrinsic
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natural mortality influenced emergent community- and species-
level projections and whether their combined effects were
additive or not (e.g. Crain et al., 2008; Kaplan et al., 2013).

MATERIALS AND METHODS

Overview of Modeling Approach
Our modeling framework included three components, each
of which supplied outputs that flowed unidirectionally to
the next component (Figure 1). The first component (A)
consisted of IPCC-class ESMs forced using various GHG
emission scenarios based on IPCC Representative Concentration
Pathways (R). In the second component (B), ESM projections
were dynamically downscaled to the EBS. Specifically, the
ESM projections provided boundary conditions for a 10 km
spatial resolution regional biophysical model (Hermann et al.,
2016, 2019). In the third component (C), a MSSM was forced
using dynamically downscaled temperatures and values for
phytoplankton, zooplankton, and benthos standing stock from B.
Four versions of the MSSM were used in the ensemble to evaluate
alternative assumptions regarding temperature-dependencies on
biological processes. Aspects of structural uncertainty were
accounted for at the ESM and MSSM components (Figure 1),
and the model ensemble consisted of all possible combinations
of ESMs and MSSMs. Next, we provide an overview of the
climate downscaling approach and MSSM implementation.
Additional details of the MSSM equations, parameterization, and
calibration are available in Reum et al. (2019) and Supplementary
Appendix I; details regarding the biophysical model are available
in Hermann et al. (2016) and Hermann et al. (2019).

A and B: Earth System Models and
Dynamic Downscaling of Climate
Due to the computational demands of dynamically downscaling
regional climate projections, we assembled an “ensemble of
opportunity” (e.g. Tebaldi and Knutti, 2007) that consisted of two
sets of previously published downscaled projections from ESMs
and GHG emissions scenarios used in the Intergovernmental
Panel on Climate Change Assessment Reports (IPCC AR4 and
AR5) and archived by the Coupled Model Inter-comparison
Project (CMIP) (Hermann et al., 2016, 2019).

The first set of ESMs included downscaled projections
from three ESMs. These included the Coupled Global Climate
Model, T47 grid (CGCM3-t4) from the Canadian Centre for
Climate Modeling and Analysis, the Hamburg Atmosphere-
Ocean Coupled Circulation Model (ECHO-G), and the Model
for Interdisciplinary Research on Climate, medium-resolution
version (MIROC3.2-Medres; Hermann et al., 2016). We refer
to these ESMs as CGCM, ECHO, and MIROC, respectively. All
ESM outputs from this set were archived by CMIP3 (Meehl et al.,
2007). Projections were obtained through 2040 for IPCC Special
Report on Emissions Scenarios (SRES) A1B, which corresponds
to a future scenario with moderate GHG abatement (Hermann
et al., 2016; Table 1).

The second set of ESMs included: MIROC, the Community
Earth System Model (CESM), and the Geophysical Fluid

Dynamic Laboratory ESM2M model (GFDL-ESM2M, herein
simply GFDL; Table 1). These ESMs were archived by CMIP5 and
span CMIP5 member variability (Taylor et al., 2012). Under this
set of ESMs, downscaling of projections were performed through
2100 when possible for IPCC Representative Concentration
Pathways (RCPs) 4.5 and 8.5, which correspond to futures with
moderate and “business as usual” GHG emissions, respectively
(Hermann et al., 2019; Table 1). ESMs in both sets were originally
selected based on performance for the Bering Sea under present
conditions and the availability of physical and biogeochemical
output (Hermann et al., 2016, 2019).

ESM projections were dynamically downscaled using a
biophysical model for the EBS (Hermann et al., 2019). Briefly,
daily atmospheric and monthly oceanic outputs from the ESMs
were interpolated in space and time for use in the surface forcing
and boundary conditions for the regional model (Hermann et al.,
2013). The model was implemented at∼10 km spatial resolution
with ten vertical layers and spans the entire Bering Sea (Hermann
et al., 2013). The biological component of the model consists of
a Nutrient-Phytoplankton-Zooplankton model (NPZ) developed
by Gibson and Spitz (2011) with modifications by Hermann et al.
(2016). Biological groups in the biophysical model include small
phytoplankton, large phytoplankton, microzooplankton, small
copepods, large copepods, krill (euphausiids), jellyfish, and slow
and fast sinking detritus, benthic detritus, and benthic infauna.
In addition to the ESM projections, a hindcast simulation for the
EBS was generated for year 1970–2015 using historical reanalysis
atmospheric forcing and ocean lateral boundary conditions
(Hermann et al., 2016).

C: Multispecies Size Spectrum Model
The MSSM is based on source code for the R package “mizer”
(Scott et al., 2014), as modified by Reum et al. (2019) and
with additional updates (Supplementary Appendix I). The
MSSM captures predator-prey interactions between fish and
crab species and includes a submodel to represent the catch
allocation process for EBS fisheries. In total, the model includes

TABLE 1 | Overview of the temporal extent of projections from Earth System
Models (ESMs) that were used to generate ensemble predictions of the eastern
Bering Sea food web.

GHG emissions scenario

EMS SRES A1B RCP 4.5 RCP 8.5

CCCMA 2040

ECHOG 2040

MIROC 2040 2100 2100

GFDL 2100 2100

CESM 2080 2100

CESMbio 2100

GFDLbio 2100

Projections were available for GHG emissions Special Report on Emissions
Scenarios (SRES) A1B and Representative Concentration Pathways (RCPs) 4.5
and 8.5. SRES A1B and RCP 4.5 correspond to moderate and strong mitigation,
respectively. RCP 8.5 corresponds to an unmitigated future greenhouse gas
emissions scenario. All climate projections start in 2007.
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nine fish species, three crab species, and three fish functional
groups (Supplementary Table 1). The included species support
economically significant fisheries or are important prey items
for other predators in the EBS, and combined, accounted for
∼95% of the community biomass based on estimates from
annual bottom trawl surveys. The species are able to feed on
each other, as well as two background spectra that represent
additional pelagic and benthic prey resources. Predator species
in the MSSMs are distinguished by several traits including
maturation and maximum sizes, feeding and growth rates, and
preferences for prey species and sizes (Supplementary Table 1).
Additional details of the core model structure and prey selection
parameterizations are available in Reum et al. (2019).

The submodel describing catch allocation in the EBS was
incorporated into the MSSM to represent fishery management
scenarios (Supplementary Appendix I). The aggregate total
allowable catch (TAC) for several finfish and a few invertebrate
fisheries is capped at 2 million metric tons for the larger
Bering Sea-Aleutian Islands fisheries management zone
(Livingston et al., 2011). Given this constraint, the North
Pacific Fishery Management Council (a regional body that
provides management recommendations for fisheries within the
United States Economic Exclusive Zone surrounding Alaska)
sets TACs by species based on stock assessment estimates of
acceptable biological catch (ABC) and consideration of other
factors such as market capacity, bycatch constraints, and fleet
interests. A model describing TAC allocation for EBS fisheries,
and that specifically used historical Council and fishery data
to translate ABC to TAC and TAC to catches was adapted
to generate catch predictions for each species depending on
the fishery scenario (Supplementary Appendix I). ABCs
were calculated for each species, based on current sloped
harvest control rules that are intended to provide conservative
catch recommendations, and the submodel returned realized
catches that were used to calculate fishing mortality rates
and total mortality calculations. The fishery submodel and ABC
calculations are described further in Supplementary Appendix I.

At the MSSM level we sought to incorporate uncertainty
into ensemble projections related to assumptions regarding
temperature-dependencies on biological rates and, specifically,
to evaluate the individual and interactive effects of temperature-
dependencies on rates that influence body growth and intrinsic
natural mortality. To do so, four MSSM variants were developed
(Figure 1). The “baseline” model (M1) lacked temperature effects
altogether, but background pelagic and benthic spectra were
forced using downscaled projections from the biophysical model
(Figure 1). The remaining models shared the same structure and
forcings as M1, but differed in regard to whether temperature-
dependencies were applied to the two categories of rates.
The body growth category included maximum consumption,
prey encounter, and metabolism rates and the intrinsic natural
mortality category consisted solely of the intrinsic natural
mortality rate which represents all mortality not explicitly
captured by predation or fisheries in the model (Andersen et al.,
2016). In mizer, intrinsic natural mortality is constant across
body mass classes within species and calculated as an allometric
function of species maximum body size (Scott et al., 2014) such

that smaller species experience higher intrinsic natural mortality
rates relative to larger species (Hartvig et al., 2011). The three
additional MSSM variants (Figure 1) included temperature-
dependencies in body growth-related rates (M2), intrinsic natural
mortality rates (M3), and both body growth-related and intrinsic
natural mortality rates (M4).

In models M2-4, Arrhenius temperature-dependent
correction factors (Brown et al., 2004) were applied to
biological rates. Originally intended for describing temperature
effects on chemical reaction rates, the Arrhenius function
is also appropriate for approximating temperature effects
on metabolism and other biological rates at the individual,
population, and community levels over environmentally
plausible temperature ranges (Kooijman, 2000; Brown et al.,
2004). For a given rate τ, the Arrhenius-corrected value at
temperature T (in Kelvin) was obtained following Eq. (1):

τ(T) = τ(Tref )e
E
k

(
1

Tref
−

1
T

)
(1)

where E is the activation energy of heterotrophic metabolism
(0.63 eV), k is the Boltzmann constant, 8.62 × 10−5 eV K−1,
and Tref is the reference temperature (Brown et al., 2004).
Temperature forcing was based on downscaled depth-averaged
temperature projections that were averaged spatially and within
3 month intervals starting in January, in accordance with the time
step of the MSSM. A seasonal Tref was therefore used and was
obtained from averaging downscaled hindcast of depth-averaged
temperatures over the model calibration period (1982–1991). All
downscaled time series of temperature, benthos, and pelagic prey
used in projections were bias-corrected relative to mean seasonal
differences with the hindcast for the overlapping period 2002–
2014 (Supplementary Figure 1). Details of the bias-correction
calculation are presented in Supplementary Appendix I.

We calibrated the MSSM using a multistep process that
included the estimation of parameters that scale species
abundances and tuning of prey species preferences. The model
was calibrated to time-averaged estimates of SSBs, catches, and
diets from the 1980s (1982–1991; Supplementary Appendix I).
Additional post-calibration modifications were made to the
baseline natural (non-predation) mortality rates of several species
to improve correspondence between projected SSBs and stock
assessment estimates and ensure that predators exhibited levels
of density-dependent recruitment that were commensurate with
levels implied by time series of recruitment and SSB from stock
assessments (Supplementary Appendix I). To validate the final
calibrated models, all four variants of the MSSM were forced
with historical fishing mortality rates (Fs) and hindcast time
series of temperature and benthic and pelagic resource spectra
from 1982 to 2014. Four validation criteria were evaluated:
(1) correspondence of diet projections to data from outside
the calibration time period (2005–2014); (2) correspondence
between observed and predicted weight-at-age relationships; (3)
overlap in the 95% confidence intervals for long-term linear
trends between projected and observed SSBs; and (4) continued
persistence of stocks when the models were projected forward
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assuming average historical climate conditions and status quo
fisheries management from 2014 through 2100.

We focused on matches between long-term trends rather
than simple correlation because population dynamics are partly
controlled by stochastic recruitment events and these processes
are not represented in the current class of MSSMs. This issue
extends to other types of marine food web models where
emphasis in model tuning has commonly been placed on
matching averages and trends (e.g. Kaplan and Marshall, 2016).
The last criteria was based on the observation that no finfish
stocks have been overfished in the EBS and that the healthy
status of EBS stocks is attributable in part to current (status quo)
management practices (Livingston et al., 2011). We provide a
thorough overview of the calibration and validation procedure
in Supplementary Appendix I. The final post-calibrated MSSMs
(all four variants) met the validation criteria and produced long-
term trends that were similar to those from stock assessments
(Supplementary Appendix I).

Fishery Management Scenarios
We evaluated three fishery management scenarios based on
current policies for setting total allowable catch (TAC). This
procedure is essential because the Bering Sea-Aleutian Islands
ecosystem cap requires that individual species TACs be reduced
so that the sum of all species is at or below the 2 million
metric ton ecosystem cap (Hollowed et al., 2019). We considered
scenarios in which: (1) TAC was allocated based on recent
historical patterns (“status quo”); (2) pollock and Pacific cod
TAC is increased up to 10% relative to status quo at the cost of
lower flatfish TAC, and (3) flatfish TAC was increased up to 10%
relative to status quo at the cost of lower pollock and Pacific cod
TAC. For brevity, we herein refer to the scenarios as the “status
quo,” “gadid,” and “flatfish” scenarios, respectively. The gadid and
flatfish scenarios have been developed through examinations of
historical fishing data and extensive conversations with members
of the North Pacific Fishery Management Council and other
stakeholders about the key decisions in the TAC-setting process.
The scenarios represent realistic shifts in management and
harvest behavior along what managers have identified as a
key axis of decision-making. The shift could be motivated by
combinations of economic factors, more stringent bycatch limits
in different fisheries, or technological improvements that reduce
the cost of bycatch avoidance.

Ensemble Projections
In total, seven ESMs were included in the model ensemble,
and projections of these models under multiple GHG emissions
scenarios were obtained, resulting in 11 unique ESM and GHG
emission scenario projections that were downscaled to the EBS
(Table 1). In turn, each unique downscaled projection was used
to force M1-4 under the three catch allocation scenarios, resulting
in 11 · 4 · 3 = 132 ensemble projections. All simulations were
initiated in 1982 and forced with historical fishing mortality
rates through 2014 (e.g. Blanchard et al., 2014) and thereafter
downscaled bias-corrected projections of plankton and benthos
prey (M1-4) and depth-averaged temperatures (M2-4). Catches

and fishing mortality rates after 2014 were obtained from the
catch allocation submodel.

Partitioning Uncertainty
We partitioned uncertainty (variance) in the ensemble
projections into five distinct factors that were categorized
as scenario (GHG and fishery management) and structural
(ESM and MSSM) uncertainty and internal variability. Internal
variability in climate projections on annual to decadal time scales
includes phenomena such as the El Nino Southern Oscillation
(ENSO), Pacific Decadal Oscillation (PDO), or North Atlantic
Oscillation (NAO). In addition, internal variability can emerge
within biological systems at similar time scales due to predator-
prey cycles or other density-dependent growth, recruitment or
mortality processes (Cheung et al., 2016). Internal variability
is emergent in many types of complex systems, and outcomes
are typically sensitive to initial starting conditions. If multiple
realizations based on different starting conditions are available,
the variance component associated with internal variability at a
given time slice can be estimated along with other uncertainty
sources using Analysis of Variance (ANOVA) models (e.g. Yip
et al., 2011; Bosshard et al., 2013). However, similar to other
climate and ecosystem simulation studies (e.g. Hawkins and
Sutton, 2009; Gårdmark et al., 2013), our ensemble projections
lacked multiple realizations that differ in initial conditions only.
Instead, we used an alternative approach based on Hawkins and
Sutton (2009) and Cheung et al. (2016).

First, the raw projection outputs y for each ESM m, MSSM
variant v, GHG scenario g, fishing scenario f, and year t are
written as:

y
(
m, v, g, f , t

)
= z

(
m, v, g, f , t

)
+ µref

(
m, v, g, f

)
+ ε(m, v, g, f , t) (2)

where a reference level (invariant in time) for each unique
ensemble member is denoted by µref , the long-term trend with
y is represented by a smooth spline function z, and the regression
residual error (due to internal variability) is ε. For each ensemble
realization, the reference level is the 1995–2014 mean state. The
variance of y (Vy) is described as a function of time t following
Eq. (3):

Vy(t) = Vz(t)+ Vε (3)

The estimate of internal variability is the variance (Vε) of the
residual regression error ε(m,v,r,f,t):

Vε =
1

NmNvNgNfT

Nm∑
m=1

Nv∑
v=1

Ng∑
g=1

Nf∑
f=1

T∑
t=1

[ε
(
m, v, g, f , t

)
]
2 (4)

and is considered to have constant variance over time. In their
original formulation, Hawkins and Sutton (2009) assumed Vε

was constant across the complete projection time span. We
instead calculate a Vε for each of three time blocks (2015–
2040, 2041–2080, and 2081–2100) to account for changes in
the representation of different ESMs and GHG scenarios in the
ensemble projections (Table 1).
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Vz , the variance associated with z(m,v,g,f,t), is calculated as:

Vz(t) =
1

NmNvNgNf

Nm∑
m=1

Nv∑
v=1

Ng∑
g=1

Nf∑
f=1

[z (·, ·, ·, ·, t)

− z
(
m, v, g, f , t

)
]
2 (5)

where z (·, ·, ·, ·, t) is the overall mean at time-step t of the
smooth spline trends; therefore, it measures the spread of
ensemble simulations trends around the ensemble mean trend.

We used commonality analysis (Whittaker, 1984; Ray-
Mukherjee et al., 2014) to decompose Vz into components that
were uniquely and jointly associated with the four structural and
scenario factors at time-step t. The approach entails performing
multiple regression on the response variable (z), estimating the
proportion of variance “explained” (R2) by the four factors,
and decomposing R2 into unique and shared components (Ray-
Mukherjee et al., 2014). The method proceeds as follows. For
factor x1, the proportion of variance uniquely explained by x1
is obtained by first regressing z on the full set of factors (x1,
x2, x3, and x4) and the proportion of variance explained by
the model (R2

1,2,3,4) is calculated. Note, only main effects are
included in the regression model. A second regression model
is then applied, but excluding x1. The proportion of variance
uniquely explained by x1 (R2

1|2,3,4) is obtained by subtracting
R2

2,3,4 from R2
1,2,3,4. Variance jointly explained by x1 and the

remaining factors is found by regressing z on x1, obtaining the
corresponding explained variance (R2

1), and subtracting R2
1|2,3,4

from R2
1 .

The absence of replicates (multiple realizations based on
different initial conditions) meant that a fully saturated regression
model with second, third and fourth order interaction terms
would have zero degrees of freedom and no residual error.
Consequently, we ascribed the “unexplained variance” associated
with a model consisting only of main effect terms (that is, 1 –
R2

1,2,3,4) to variance associated with higher order interactions. We
calculated the total variance associated with interaction terms for
comparative purposes, but did not decompose it further since
these components can be minor relative to those associated with
the main effects and difficult to reliably estimate when replication
at the lowest levels is limited (e.g. Yip et al., 2011).

We partitioned uncertainty in projections of catch, SSB, and
mean weight for the community in aggregate and for individual
species. We grouped species according to similarities in the
decomposition of their catch, SSB, and mean weight projection
uncertainties over time using a hierarchical cluster analysis which
was based on a Euclidean distance matrix of the partitioned
uncertainties and using Ward’s minimum variance criteria. For
a given species, year, and variable, the partitioned uncertainties
were expressed as proportions of the total uncertainty.

Interactions Between Fishery
Management and GHG Mitigation
Scenarios
We evaluated 2090 (mean for years 2081–2100) ensemble
projections of abundance size spectra and catches, SSBs, and

mean body weights to identify (1) differences between fishing
scenarios in a warmer future (RCP 8.5) and (2) potential
improvement in outcomes if GHG mitigation (RCP 4.5) is
pursued. Specifically, we calculated average changes in 2090
projections relative to historical (1995–2014) levels for each
fishing scenario under RCP 8.5. The effect of GHG mitigation was
calculated as the difference in 2090 outcomes under scenario RCP
4.5 from those under RCP 8.5.

We characterized the reliability of ensemble projections in
terms of the level of agreement in projecting positive or negative
changes in relative values (e.g. Meehl et al., 2007; Bopp et al.,
2013; Bryndum-Buchholz et al., 2019). Percent sign agreement
(SA) was calculated as:

SA = 100× |P − N| /n (6)

where P and N are the total number of positive and negative
projections, respectively, and n is the total number of projections
in the ensemble. If 50% of the ensemble projections are positive
and 50% are negative the resulting SA is zero because every
positive projection is matched by an opposing negative projection
and vice versa. We focused on SA to emphasize qualitative
differences in long-term ensemble projections. We considered
SA of projections “high” and “low” when values were ≥80 and
<80%, respectively.

Temperature Effects
We compared 2090 projections of relative change in abundance
size spectra, catches, SSB, and mean body size under the
different temperature models (M1-4). To simplify comparisons,
the calculation was limited to projections made under the status
quo fishing scenario and RCP 8.5 which included the largest
changes in temperature. The ensemble mean and SA were
calculated for each model output.

In addition, we calculated the cumulative effects of the
temperature-dependency assumptions. Previous studies of
cumulative ecological impacts have proposed methods for
classifying interactions between stressors as synergistic, additive,
or antagonistic (e.g. Crain et al., 2008; Griffith et al., 2011).
However, if the individual effects of two “treatments” have
opposing signs, assigning the interaction of the two treatments
into these categories is not straightforward (Kaplan et al., 2013).
Instead, we calculated whether the sum of the individual effects of
temperature assumptions represented in M2 and M3 were above,
below or similar to outcomes predicted under the combined
model, M4 (Kaplan et al., 2013). The deviation (d1,2) of the
interaction from the value expected if the individual effects were
additive was obtained following (Kaplan et al., 2013):

d1,2 = YAB + YCT − YA − YB (7)

where YAB is the ensemble mean value (catch, SSB, or mean
weight) predicted under M4 (the subscript AB denotes both
“treatments” are included), YCT is the ensemble mean value
predicted under M1 (the “control”), and YA and YB are the
ensemble mean values under M2 and M3. All Y values are
expressed as a percentage of the control value (YCT is always
100%). We considered values of d1,2 from −5 to 5% as additive,
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and values below and above the range non-additive negative and
non-additive positive, respectively (Kaplan et al. (2013).

RESULTS

Community Ensemble Projections and
Uncertainty
Projected changes in aggregate community catch, SSB, and
mean body weight for the full ensemble trended negatively
on average through the end of the century (see Figure 2A).
Projected model outputs through 2060 spanned both positive
and negative values but thereafter projected values were
solely negative, that is, SA was 100% (Figure 2A; Table 2).
Projection uncertainties for aggregate catch, SSB, and mean
body mass were dominated by internal variability through
∼2040 (Figure 2A) but at longer time horizons (2040–
2100) structural uncertainties (i.e. ESM and temperature-
dependencies) dominated (Figure 2A). For catches, temperature-
dependencies composed the largest uncertainty source whereas
ESM was the greatest source of uncertainty for SSB and mean
body weight (Figure 2A).

These general patterns were also evidenced by the larger
spread of projected values when averaged according to ESM
and MSSM variants as opposed to the GHG emission or
fishery management scenario (Figure 2B). Future catches were
substantially lower (∼30%) when body growth-related rates
depended on temperature (M2 and M4 vs M1 and M3;
Figure 2B). For SSB and mean body weight, the spread of
projected values averaged according to ESMs were larger, and
projected values under MIROC (the ESM with the warmest
projections; Supplementary Figure 1) were considerably lower
than under the remaining models (Figure 2B).

Although GHG scenarios accounted for only a small
proportion of ensemble projection uncertainty over time
(Figure 2A), average catches and SSB after 2060 were somewhat
higher under mitigation scenario RCP 4.5 relative to the business-
as-usual RCP 8.5 (Figure 2B). Among the fishery scenarios,
total catches under the flatfish scenario were consistently higher
than under the two alternatives after 2060, but differences for
SSB and mean body weight among fishing scenarios were small
(Figure 2B). In general, uncertainty due to interactions among
the various sources of uncertainty increased over time and was
larger in magnitude to the proportion directly associated with
scenario uncertainty by the end of the century (both GHG and
fishery; Figure 2A). Uncertainty explained by multiple sources
(overlap) was minor (<1%, Figure 2B) for all variables.

Species Ensemble Projections and
Uncertainty
Average full ensemble projections of relative change in SSB,
catches, and mean body sizes for 2090 were negative for 66, 33,
and 86% of species, respectively (Table 2), and for the majority of
species, projections were more uncertain (as measured by SDs)
than those for the aggregate community (Table 2). Overall, SDs
ranged from 7 to 138% among model outputs (Table 2). Across
model outputs, SA for projections were high for only four to five

species and only pollock, the species with the largest biomass, had
an SA value of 100% for all three model outputs (Table 2).

Species clustered into three groups based on similarity in
the decomposition of projection uncertainty (Figure 3A). For
the first group (yellowfin sole, Alaska plaice, other flatfish, and
Alaska skate), internal variability and fishing scenario accounted
for ∼10 to 50% of uncertainty in model outputs through 2040,
but thereafter projection uncertainty was increasingly dominated
by temperature assumptions (Figure 3B). Fishing scenario was
the dominant source of uncertainty for catch projections in the
second group (flathead sole and arrowtooth flounder) over time,
but structural uncertainty sources (both ESMs and temperature
assumptions) were important (>25%) after ∼2060 for SSB and
mean body size (Figure 3B). For the third group, projection
uncertainties were initially dominated by internal variability
(∼50 to 75%), but after 2040, structural uncertainties became
increasingly important (Figure 3B). For all groups and model
outputs, uncertainty related to interactions between variables
increased over time, and accounted for between ∼5 and 20% of
uncertainty; GHG scenario uncertainty was a relatively minor
contributor to uncertainty (<10%) for all groups and model
outputs (Figure 3B).

Fishery Management and GHG
Emissions
Overall, the largest differences in 2090 projections across fishery
management scenarios included catches for flatfishes (flathead
sole, other flatfish), which were ∼25 to 50% higher under the
flatfish (F3) relative to status quo (F1) and gadid scenarios (F2)
(Figure 4A). Reductions in total community catch were also
∼25% less severe under F3 relative to F1 and F3 (Figure 4A). For
the remaining species, differences between model scenarios were
smaller (Figure 4A).

Across all fishing management scenarios, SSB reductions were
projected for the aggregate community and for 11 of the 15
species (Figure 4A). Reductions of∼25% or more were projected
for 6 species (flathead sole, Northern rock sole, walleye pollock,
tanner and snow crab, and Alaska skate) with high SA. Smaller
reductions (less than ∼25%) with low SA were projected for
other species (yellowfin sole, Pacific halibut, red king crab,
foragefish, and sculpin; Figure 4A). Both increases and decreases
were projected across fishery management scenarios for the
remaining species, with the notable exception of arrowtooth
flounder which was projected to increase ∼50% across all fishery
management scenarios (Figure 4A). These general patterns were
similar to those observed for mean body weight for most species
(Figure 4A), and were reflected in relative changes in abundance
size spectra (Figure 5A). For each fishing scenario, reductions in
abundance were projected across most body masses except for
the interval dominated by arrowtooth flounder (∼103.7–104.0 g;
Figure 5A).

Under the GHG mitigation RCP 4.5 scenario, projections of
SSB increased relative to RCP 8.5 across fishery scenarios for
the aggregate community and 11 individual species (Figure 4B).
The level of increase for individual species ranged up to
∼50% (sculpin) but for most species and model outputs, the
increase was closer to ∼25%. Species that decreased in terms
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FIGURE 2 | (A) Projections of total catches of EBS predator species, spawning stock biomass (SSB), and community mean body mass relative to 2014 levels. Black
solid line corresponds to ensemble mean. Dotted lines indicate the minimum and maximum projections from the ensemble. Projection trends are overlaid on area
plots that indicate the proportion of total variance in ensemble projections explained by scenario [greenhouse gas emissions (GHG) and fishing] and structural [Earth
system model (ESM) and temperature effect] uncertainty and internal variability. The proportions explained by interactions between factors, and variance mutually
explained by multiple factors (overlap) are also indicated. The vertical white lines demarcate time periods that differ with respect to the number of ESM members. For
(B), solid colored lines correspond to projection averages within levels of the uncertainty source. For reference, maximum and minimum ensemble projections are
noted (dotted lines).

TABLE 2 | Mean ensemble projections of average (2081–2100) relative SSB, catches and average body size for eastern Bering Sea food web members.

SSB Catches Mean body size

Species
group

Species Relative value
(% change)

SD (%) SA (%) Relative value
(% change)

SD (%) SA (%) Relative value
(% change)

SD (%) SA (%)

Flatfish Arrowtooth flounder 99.9 46.3 88 45.5 17.5 100 71.8 27.8 100

Flathead sole −33.7 26.0 75 19.4 26.6 58 −29.3 22.2 67

Pacific halibut −8.2 31.1 0 8.9 35.0 0 −17.0 14.6 0

Northern rocksole −16.7 25.9 36 7.5 21.1 29 −24.1 26.1 50

Other flatfish 17.4 44.9 46 101.7 26.8 100 −6.5 22.6 17

Alaska Plaice 23.5 55.9 29 35.1 42.2 63 3.3 32.9 13

Yellowfin sole −16.9 36.4 21 −0.1 55.4 13 −17.1 20.3 46

Gadids Pacific cod −21.5 34.5 50 −20.2 34.2 21 −17.0 14.5 71

Walleye pollock −74.1 22.3 100 −70.5 28.7 100 −65.8 15.8 100

Crabs Tanner crab −3.6 41.7 8 138.2 125.0 63 −6.4 24.6 4

Red king crab 19.7 6.9 100 15.3 14.6 83 6.1 10.7 50

Snow crab −20.8 21.4 63 −29.1 33.4 50 −24.2 17.0 83

Other Alaska skate −47.5 11.0 100 −25.8 11.4 100 −11.2 9.2 75

Foragefish −20.8 32.9 38 – – – −19.7 23.7 38

Sculpin 4.5 64.3 0 −9.1 28.5 21 −14.6 38.3 13

Community −36.1 21.6 100 −61.0 27.5 100 −38.0 15.4 100

Ensemble projections include members forced by output from ESMs under RCP 4.5 and 8.5. Projections are relative to 1994–2014 levels. The standard deviation of
relative values and the% sign agreement (SA) of the ensemble projections are indicated.
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FIGURE 3 | (A) Dendrogram of species similarity (Euclidean distance) based on relative importance of different uncertainty sources to catches, SSB, and mean
weight ensemble projections. Three clusters were identified (labeled 1–3). (B) Area plots indicate the proportion of uncertainty associated with each source averaged
across species within the three clusters. Species name abbreviations in panel (B): N. Northern; AT, arrowtooth.

of SSB, included red king crab, Alaska plaice, and Alaska skate
and reductions were <12.5% (Figure 4B). Overall, community
abundance levels of individuals under RCP 4.5 increased ∼10 to
40% across size classes (Figure 5B). Patterns of net change in
mean body weight and catches for most species were similar to
those for SSB between scenarios (Figure 4B).

Temperature Sensitivity
At the community level, model outputs from MSSM variants that
included temperature-dependencies on body growth (M2 and
M4) were ∼25% lower than those that did not (Figure 6). This
general pattern also extended to the abundance size spectra: in
size classes >102 g reductions in abundance were consistently
largest under M2 and M4 (Figure 7A). For individual species,
model outputs under M4 (body growth and intrinsic natural
mortality) where usually lower than those projected under M1
(status quo), but the difference in model outputs between M1
and M2 and M3 was variable across species (Figure 6). Roughly
a third of species exhibited cumulative temperature effects that
were additive, a third that were positive non-additive, and a third
that were negative non-additive for each model output (Figure 6).
A mixture of cumulative responses was also observed for the
abundance size spectrum: positive responses were observed
for body sizes near ∼101.8 and ∼104 and negative responses
dominated from between∼102 and 103.8 g (Figure 7B).

DISCUSSION

Our ensemble projections for the EBS food web lead to at least
four significant insights. First, we show that aggregate community
SSB, catches, and mean body weight (which are weighted toward
pollock and which declines overtime), are likely to decrease by
2090 but ensemble projections for the majority of individual
species were a mixture of increasing and decreasing trends.
Second, structural uncertainty (both ESM and temperature-
dependencies) dominated long-term (2060–2100) projections for
many aggregate and species-level variables, which contrasts with
global climate model ensemble projections of physical variables.
In those studies, GHG emissions scenarios typically dominate
end-of-century projection uncertainty (e.g. Hawkins and Sutton,
2009). Third, we show that temperature-dependencies on
individual-level processes can impact emergent community-
and species-level variables in complex and often non-additive
ways. This highlights a critical aspect of structural uncertainty
in climate-driven food web projections and the importance
of frameworks such as MSSMs for scaling temperature-
dependencies in individual-level processes to populations
and communities. Last, while contributing less to long-term
projection uncertainty, the moderate GHG mitigation scenario
RCP4.5 also decreased the severity of projected long-term
reductions in SSB, catches, and mean body weight for the
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FIGURE 4 | (A) Projected percent change in catches, SSB, and body weight by 2090 (mean 2080–2100) relative to historical (mean 1995–2014) levels assuming a
“business-as-usual” GHG emissions scenario (RCP 8.5) and three scenarios of TAC setting preferences by fisheries management: status quo (F1), gadid (F2), and
flatfish (F3). Dark and light symbol colors denote ensemble projections with high (≥80%) and low (<80%) sign agreement, respectively. (B) Percent difference
between 2090 ensemble projections under GHG mitigation scenario RCP 4.5 and RCP 8.5. Species names abbreviations: AT, arrowtooth; A.K., Alaska; N., Northern.

majority of species relative to the business-as-usual emissions
scenario across the different fisheries management scenarios.
These outcomes demonstrate how policies and decision-making
related to global GHG emissions may filter down to impact the
trajectory of regional systems.

The results suggest future reductions in EBS benthic and
pelagic prey resource spectra will decrease aggregate community
biomass and fisheries yield. Overall, pollock composes ∼60%
of the total fish biomass in the EBS and drove reductions in
aggregate community biomass, catches, and mean body weight.
Generally considered a forage species, pollock feed primarily
on pelagic resource spectra prey and as they grow fish and

benthic invertebrates comprise larger proportions of their diet.
In downscaled projections, average pelagic and benthic resource
spectrum prey densities decline ∼25% and 35% and 18 and 29%
under RCP 4.5 and 8.5, respectively, by 2090. This largely caused
the reductions in pollock productivity and aggregate community
variables across fishery management scenarios. Interestingly,
the negative trend is similar to projections from EBS pollock
studies that estimated environmental stock-recruit relationships
and forced recruitment with sea surface temperature projections
using both single-species (Ianelli et al., 2011; Mueter et al., 2011)
and age-structured multispecies models (Holsman et al., 2016;
Ianelli et al., 2016; Spencer et al., 2016). The agreement in
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FIGURE 5 | (A) Mean size spectra in 2090 (mean 2080–2100) relative to historical levels (mean 1995–2014) under each fishing scenario. All projections are under
RCP 8.5. (B) Change in size spectra under GHG mitigation scenario RCP 4.5 relative to business as usual RCP 8.5 in 2090.

FIGURE 6 | Mean projected changes in 2090 catches, SSB, and mean body size under RCP 8.5 and assuming status quo fishing for MSSM variants that assume
the following temperature-dependencies on biological rates: none (M1), body growth-related rates (M2), intrinsic natural mortality (M3), and intrinsic natural mortality
and body growth-related (M4). Changes are relative to historical average conditions (1995 to 2014). For each species and variable, the cumulative effects (d1,2) of
natural mortality and body growth-related temperature-dependencies are provided as the difference from outcomes derived from the assumption that cumulative
effects are additive (triangle symbol).

pollock trends across the different regional modeling studies is
encouraging in terms of establishing confidence in projections,
and contrasts with inconsistent total fish biomass projections
from global-scale simulation studies (Cheung et al., 2010;
Lefort et al., 2015; Lotze et al., 2018). That said, the directions
of long-term trends in the ensemble were mixed for most

other species and, with a few exceptions (e.g. Wilderbuer et al.,
2002; Hollowed et al., 2009; Szuwalski and Punt, 2012), other
regional projection studies are unavailable for these species. The
ambiguity indicates heightened caution is warranted in drawing
conclusions regarding the absolute value of potential net effects
of climate change on the majority of EBS species using only
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FIGURE 7 | (A) Mean size spectra in 2090 relative to historical levels under each MSSM variant. All projections are under RCP 8.5 and assuming status quo fishing.
(B) Difference in the cumulative effects of natural mortality and body growth-related temperature dependency assumptions from an additive effect (d1,2) on
abundance at each size class. Red and blue points correspond to values larger and less than 5% of the additive effect, respectively.

the present model ensemble and that considerable room for
improvement exists.

Our analysis of projection uncertainty provides descriptive
summaries of key sources of variation, clustered species with
similar sensitivities, and provides a basis for setting research
priorities for refining ensemble projections (Evans et al., 2015;
Cheung et al., 2016). Importantly, we show that structural
uncertainties dominate intermediate- and long-term ensemble
projections and, for the majority of species, ESMs were the largest
uncertainty source. ESM climate projections are more variable
for high latitude seas relative to other locations in part due
to seasonal sea-ice cover dynamics that strongly impact other
physical properties and the seasonal production cycle (Hawkins
and Sutton, 2009). The number of ESMs used in the current study
is small, but were selected to span CMIP5 member variability
for EBS projections (Hermann et al., 2019). Decreasing this
uncertainty source may be possible by applying more stringent
EBS-specific validation criteria to further limit the ESM suite
(Stock et al., 2011). Alternatively, including a larger set of
IPCC-class ESMs in the ensemble could also help characterize
the central tendency and spread of projections. Methods for
expanding the number of ESMs in the ensemble, such as the
development of statistical models to generate predictions of
downscaled forcing variables based on relationships estimated
from smaller subsets of dynamically downscaled ESMs, may
prove valuable in this regard (e.g. Hermann et al., 2019).

The strong influence of temperature-dependencies on model
outputs reinforces findings from sensitivity analyses performed
on other size-based food web models (Maury et al., 2007)
and highlights an important consideration when interpreting
climate-driven projections from food web models forced with
only primary production (e.g. Brown et al., 2010; Howell et al.,
2013). At the community-level, temperature-dependencies on
both categories of biological rates lowered catches, SSB, mean
body weight, and abundance across size classes, but the level of
decrease was highly variable across species and model outputs,

in part because each species relies on different prey and is
vulnerable to different predators. Consequently, the indirect
effects of temperature that propagate through the food web
may oppose or amplify direct temperature effects depending
on the species and result in net outcomes that are difficult
to anticipate. This complexity is exemplified in part by the
mixture of additive, non-additive negative, and non-additive
positive cumulative effects observed across body size intervals
in the size spectrum and for individual species and model
outputs. Ultimately, identifying how climate change impacts
will manifest in ecological communities requires accounting for
species interactions and our findings underscore the value of
mechanistic models such as MSSMs for linking individual-level
climate impacts to population and community-level outcomes.

Structural uncertainty related to temperature assumptions
was also important for most long-term projections, but relative
importance can also easily be change based on which models
are represented in the ensemble. For instance, the baseline
variant M1 represents an extreme endpoint and was included
to bracket the range of model structures with regard to
temperature and to evaluate potential non-additivity between
different temperature-dependencies. Removing M1 from the
ensemble would reduce projection uncertainty and could be
justified based on the pervasive influence of temperature
on biological rates (Brown et al., 2004). That said, in the
absence of detailed species-specific information, the model
set could also be expanded to represent other general but
more nuanced hypotheses regarding temperature effects. For
instance, the scaling of temperature-dependencies may change
with ontogeny (Lindmark et al., 2018), differ across biological
rates (Englund et al., 2011; Rall et al., 2012), or scale with
temperature in a manner different from that described by
the Arrhenius correction factor (Woodworth-Jefcoats et al.,
2019). The latter may occur if species are currently at
or near their thermal maximum. If so, additional warming
could reduce rates ultimately controlling body growth, for
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example (Woodworth-Jefcoats et al., 2019). In the EBS, this
issue may emerge for some species, particularly those with
restricted northern distributions (e.g. snow crab, Northern
rock sole) if the warmest future scenarios are realized. As
our understanding of temperature effects on individuals and
communities evolves, the ensemble members can be updated
to formalize other possibilities, for instance, the effects of
temperature-driven changes in phenology or distribution, and
help identify the most consequential assumptions to projecting
future system states.

Despite uncertainty in the absolute value of climate change
impacts, we show that pursing GHG mitigation scenario RCP
4.5 ameliorated reductions in catches, SSB, mean body size, and
abundance relative to business-as-usual RCP 8.5. These findings
add to a growing body of research that demonstrate potential
benefits to advancing coordinated, global-scale policies that
abate GHG emission rates (Barange et al., 2014; e.g. Bryndum-
Buchholz et al., 2019; Lotze et al., 2018). Importantly, we
also show that these benefits were realized across the different
fishery management scenarios for the majority of species over
the long-term and that community-level catches were highest
from after ∼2060 under the flatfish scenario relative to the
other two scenarios. This latter observation suggests fisheries
on currently underutilized species such as Arrowtooth flounder,
flathead sole, Alaska plaice, and other flatfishes may partly
offset future losses in pollock catches owing to climate change.
Realization of the fishery management scenarios, however, is
based on additional contingencies such as the opening of
new markets and improvement in fishing gear technology and
therefore suggests a direction in which to steer the larger EBS
socioecological system.

The fishery management scenarios we considered are
merely a subset of potential options and are premised on
current fishery management polices remaining intact into
the future. However, the framework can easily be adapted
to evaluate a wider range of fishery management strategies
including the effects of significant policy changes, for instance,
modification or elimination of the 2 million m ton cap
on TAC or the use of versions of multispecies maximum
sustainable yield (Collie and Gislason, 2001; Moffitt et al.,
2016) for setting ABCs rather than the currently used single-
species version. To further increase the realism of different
fishery management scenarios, methods for updating the
reference SSBs that are used to calculate ABCs on annual
or semi-annual time-scales would also be desirable to more
closely simulate the management decision-making process.
While room for improvement exists, the representation of
the complex TAC setting process in the EBS is a major
strength of our modeling framework because different fishery
management strategies and scenarios can be compared to
status quo management, and will be useful for exploring
futures based on different regionalized socioeconomic pathways
(Maury et al., 2017).

Due to computational demands, we were unable to evaluate
several additional uncertainty sources. For instance, we
did not address parametric uncertainty, but we note that
uncertainty in parameters controlling allometric relationships

and life history traits can strongly influence MSSM projections
(Zhang et al., 2015). Outputs from the biophysical model,
such as primary production, are also sensitive to biological
parameterization uncertainty (Gibson and Spitz, 2011) and
the issue also extends to ESMs. We did not incorporate
parameter uncertainty because of practical computational
constraints and because we sought to focus on uncertainty
sources that have received less treatment in the ecological
literature (Cheung et al., 2016). That said, methods for efficiently
sampling parameter space to represent this uncertainty in
the ensemble are available (e.g. Gibson and Spitz, 2011;
Thorpe et al., 2015) and it is an important area for future
research. Stochasticity in the stock-recruit relationships
was also not represented in the MSSM. Consequently,
the projections are based on the assumption that average
recruitment relationships hold over time. Stochasticity in
recruitment (or in parameters that directly control recruitment),
can be a major uncertainty source in MSSM predictions
(Blanchard et al., 2014; Zhang et al., 2016) and quantifying this
uncertainty would help frame the importance of improving
basic understanding of recruitment processes relative to
other aspects of system structure. Last, we focused on
two major climate forcings (shifts in basal prey resources,
temperature), but other climate effects including ocean
acidification, deoxygenation, or distributional shifts due to
changes in habitat may also be important future drivers on
fish and crab dynamics. As projections of additional variables
become available for the EBS (e.g. Pilcher et al., 2018) and
our understanding of their biological impacts improves, the
model ensemble can be updated to consider a larger array of
climate drivers.

Modeling frameworks that link global climate processes to
regional ecological systems are vital test beds for evaluating
management strategies under climate change (e.g. Weijerman
et al., 2016; Hollowed et al., 2019). The framework presented
here makes significant inroads in this regard and offers a
template for other systems. Overall, we show that community-
level catches, SSB, and mean body size are likely to decline for
the EBS over the following century, but the level of decline
is dominated by structural uncertainty. For many individual
species, structural uncertainty also dominated projections,
but for a subset (e.g. Arrowtooth flounder, flathead sole)
fishery management scenario was instead important. This
information can help inform and prioritize development
of more concerted research programs based on both the
species and objective. While we have partly focused on one
facet of structural uncertainty at the MSSM level, we note
that other single and multispecies models may also offer
plausible representations of EBS fish and crab species dynamics
and a major goal of ACLIM is to bracket the possible
range of ecological effects of climate change by including
models that differ in terms of their strengths and weaknesses
(Hollowed et al., 2019). We expect ensemble projections
that include a broader set of structurally distinct higher
trophic level models will increase projection uncertainty. The
estimates in the current study should therefore be viewed
as conservative.
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The method we propose for decomposing projection
uncertainty can easily be adapted to account for additional
categories of uncertainty represented in future ACLIM model
suites and could be applied to other varieties of ensemble
projections retroactively to glean further insight. Our modeling
framework allows evaluation of different management and policy
options and, like other ecosystem models, is best viewed as a
strategic rather than tactical tool for supporting decision-making
(e.g. Fulton et al., 2011; Andersen et al., 2016). In this vein, our
efforts to characterize uncertainty in projections should facilitate
uptake of results by resource managers and policy-makers alike
(Addison et al., 2013; Cheung et al., 2016).
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