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Cold-water coral (CWC) communities form complex benthic ecosystems in a distinct
part of the water column. The exact processes supporting CWC reef growth and
changes with time are still partly unsolved. Besides local hydrographic conditions,
noticeable interactions of tidal flow with topography have been reported for CWC sites.
Recent studies have suggested a tidally driven hydraulic control of flow over topographic
features as a driver for local overturning at cold-water coral sites. This mechanism
proposed a link between surface productivity and coral growth depths and is a driver of
resuspension of the bottom material. Only few studies have concentrated on how these
processes vary with the health status and structure of the cold-water coral occurrences.
In this study, we explore the processes over tidal cycles by analyzing in situ stratification,
hydrography and velocity data which we then combine with local topography from seven
Desmophyllum pertusum (previously Lophelia pertusa) dominated eastern Atlantic CWC
sites, from the Arctic to the southern hemisphere. The “quality” of CWC sites varies
from thriving to declining and dead reefs. We show that living and healthy corals are
concentrated at sites, where local hydrodynamics create overturning and mixing which
overcomes on a daily basis gravitational particle sinking and thus re-supply food to filter-
feeding corals. We find a very wide range of local hydrographic and biogeochemical
conditions at the sites which suggests they play only a secondary role for CWC health.

Keywords: cold-water corals, Desmophyllum pertusum, tidal dynamics, food availability, coral growth,
hydrodynamics, ecological interactions

INTRODUCTION

Cold-water coral (CWC) communities form complex ecosystems on topographic highs, on
continental shelves and on the upper-slope of continental margin (Frederiksen et al., 1992). The
reef-scale mechanisms driving their distribution and growth are yet not fully understood. One
theory to explain CWC framework initiation and development is the so-called “environmental
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control theory” (Roberts et al., 2009), which assumes that the
favorable environmental conditions control the distribution and
growth of the CWCs. A variety of favorable conditions have been
proposed based on the local hydrological and biogeochemical
characterization (e.g., oxygen, carbon chemistry, nutrients,
temperature, salinity, density and stratification) of the sites
(Dodds et al., 2007; Davies et al., 2008; Dullo et al., 2008; Freiwald
et al., 2009; White and Dorschel, 2010; Flögel et al., 2014b) as
well as food supply, controlled by surface productivity (White
et al., 2005; Duineveld et al., 2007). Other studies found CWC
occurrence is linked to local topography-bottom flow interactions
(Genin et al., 1986; Frederiksen et al., 1992; Mienis et al., 2007;
Davies et al., 2009; Rüggeberg et al., 2011; Van Haren et al.,
2014). Even though most of the thriving CWCs have been found
within aforementioned “favorable” conditions it is interesting to
note that some thrive in apparently “non-favorable” conditions
when considering one specific parameter e.g., in waters with
low pH (Georgian et al., 2016b; Baco et al., 2017; Gómez et al.,
2018) or with reduced oxygen (< 1 ml l−1) (Hanz et al., 2019).
It is assumed that CWC can cope with environmental stress
caused by single parameter non-favorable conditions but require
higher energetic effort to maintain their functioning (Diaz and
Rosenberg, 1995; McCulloch et al., 2012; Sokolova et al., 2012).
These sub-optimal sites are, however, found in areas with high
primary production and it has been suggested that high quality
food may compensate the extra necessary energy for CWCs to
survive under environmental stress (Cohen and Holcomb, 2009;
Georgian et al., 2016b; Hanz et al., 2019). The availability of
food has been linked to the physiological performance [e.g.,
calcification and respiratory metabolism (Naumann et al., 2011;
Larsson et al., 2013; Baussant et al., 2017)] and condition (fitness)
of corals (Büscher et al., 2017). Other experimental studies have
shown no feeding effects in low pH conditions (Maier et al., 2016;
Büscher et al., 2017; Gómez et al., 2018) which suggests that CWC
populations may prefer different optimal environmental ranges
and that CWCs are able to recover from short-term stress, but
exposure to long-term unfavorable conditions may increase coral
mortality (Dodds et al., 2007; Lunden et al., 2014).

Most dominant reef-forming CWC species like Desmophyllum
pertusum (previously Lophelia pertusa) (Addamo et al., 2016)
and Madrepora oculata are filter feeders that can feed on a range
of organic matter sources such as phytoplankton (Davies et al.,
2009), zooplankton (Naumann et al., 2011) or a combination
of both (Van Oevelen et al., 2009, 2018; Maier et al., 2019).
The source of the food particles lies in near-surface primary
productivity layers (Duineveld et al., 2004; Kiriakoulakis and
Wolff, 2005; Cathalot et al., 2015) in zooplankton swimming
depths or in bottom layers, where the usable carbon content
in re-suspended material might be very low due to microbial
activity in the benthic layer (Ritzrau et al., 1997; Davies et al.,
2009). Laboratory experiments by Orejas et al. (2016) and
Purser et al. (2010) have shown efficient prey capture by corals
at low flow rates (for zooplankton at flow rates < 2.5 cm
s−1 and for phytoplankton < 7 cm s−1). This differs from
in situ observations, where CWCs are associated with high
flow speeds of > 20 cm s−1 (Mortensen et al., 2001; Thiem
et al., 2006; White and Dorschel, 2010) and high tidal activity

(Mienis et al., 2007, 2012, Davies et al., 2009, 2010). The highest
polyp extension rate is seen when hydrographic conditions
and flow velocities change due to e.g., tidal influences both in
laboratory (Mortensen, 2001) and in situ experiments (Johanson
et al., 2017). In the latter case, the highest polyp activity is seen a
couple of hours after high tide (Johanson et al., 2017).

The hydrodynamics controlling food supply have got more
attention during recent years. A link between primary productive
surface and CWC depths can be formed by hydraulic control
of stratified flow over topographic features such as mounds,
sills, escarpments, canyons, etc. This kind of topographic feature
generates disturbances in flow and water-column stratification
(Soetaert et al., 2016). The processes include for example internal
waves and local up- or downwelling (Pratt, 1986; Dewey et al.,
2005; Jackson et al., 2012). The first sub-basin scale studies aiming
to include the interaction between internal tides and topography
in relation to the abundance of suspension- and filter-feeders
were published in the early 1990s by Rice et al. (1990) and Farmer
and Armi (1986). Today, the tidally driven hydraulic control
of stratified flow over topographic features has been identified
both with observations (White, 2007; Davies et al., 2009; Findlay
et al., 2013; Cyr et al., 2016) and simulations (Mohn et al., 2014;
Soetaert et al., 2016) as the major driver for oscillation of water
mass interface that creates periodically varying living conditions
and vertical mixing at CWC reefs.

The stratified flow is under hydraulic control when it is forced
to transition from subcritical to supercritical flow (Armi, 1986;
Findlay et al., 2013). This transition can be described by the
dimensionless Froude number, Fr = U0/c0. It represents the
ratio of the speed with which advection and wave propagation
carry information of a disturbance throughout a system (Mayer
and Fringer, 2017). Small (Large) Fr represents subcritical
(supercritical) flow. When Fr becomes close to 1, the flow is
under hydraulic control. Several Fr estimations have been used to
estimate the hydraulic control of flow or the topographic blocking
at CWC sites (Davies et al., 2009; Mohn et al., 2014; Cyr et al.,
2016). The previous estimations have not, however, captured both
the near-seafloor stratification or water mass boundaries (White
and Dorschel, 2010; Hebbeln et al., 2014) and the oscillating
nature of the bottom flow.

Previous studies that link hydrodynamics and CWC reef
growth and distribution have focused on thriving CWC
communities on high (> 100 m) CWC mounds on the Irish
margin (Frederiksen et al., 1992; Davies et al., 2009; Mohn et al.,
2014; Cyr et al., 2016). CWCs are found, however, globally from
the tropics to the polar regions (Freiwald et al., 2017) and they
grow on a variety of morphological structures. CWC occurrences
vary from single colonies to large frameworks (Davies et al.,
2017). Flögel et al. (2014b) have shown that this difference in
quality of CWC sites is linked to distinct oceanographic and
hydrographic settings. One aspect of this study is to investigate
whether the hydraulic control is important for CWC sites in all
qualities on basin scale or whether it is only characteristic for NE
Atlantic thriving CWC reefs.

To better understand the impact of varying ocean dynamics on
CWC habitats, we use high-resolution physical, biogeochemical,
and ecosystem data from seven CWC sites on the eastern margin
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of the Atlantic, from the sub-arctic to the subtropical southern
hemisphere (Figure 1). We use observations from a wide range
of hydrographic and hydrodynamic settings. To distinguish
between different health states of CWC sites, we employ a
categorization following Flögel et al. (2014b). The chosen sites are
dominated by the scleractinian reef-forming coral D. pertusum.
Multi-variable lander studies have previously been used in single
locations e.g., in the Gulf of Cadiz (Mienis et al., 2012), Bay of
Biscay (Dullo et al., 2018) and coastal Scotland (Davies et al.,
2009) but they have never been applied to an eastern Atlantic
North-South transect.

REGIONAL SETTINGS OF THE SITES

The seven studied CWC sites are located along the eastern
Atlantic from the sub-arctic into the subtropical southern

FIGURE 1 | The study sites on the Eastern Atlantic continental margin with
main currents. The 250 m, 500 m, 1000 m, 2000 m, 3000 m, 4000 m and
5000 m depth contours are shown based on the ETOPO-1 bathymetry grid.
STJ, Stjernsund; NL, Nordleksa; GM, Galway Mound; SNC, St. Nazaire
Canyon; PE, Pagés Escarpment; VM, Valentine Mound; SM, Sylvester Mound;
NCC, Norwegian Coastal Current; NAD, North Atlantic Drift; MO,
Mediterranean Overflow; AG, Angola Gyre; AC, Angola Current; SAC, South
Atlantic Current; BC, Benguela Current; ABF, Angola-Benguela Front.

hemisphere within three areas: near-shore Norway (two sites), the
western European Atlantic margin (three sites) and southwestern
African margin (two sites) (Figure 1). These regions have
characteristic water masses and ocean currents that set up the
large scale boundary conditions for the CWC distribution and
growth. The morphological structures vary from mounds and
sills (four sites) to ridges and escarpments (three sites). In order
to compare the effect of the distance from the living corals on
hydrography and on flow, we add one subsite in the vicinity
of a CWC sill on a sea-floor without corals as a reference
site (Figure 2).

To distinguish the thriving and healthy CWC sites from
declining and dead ones, we use a categorization based on ROV
video and still-photo footage following Flögel et al. (2014b). The
sites are classified into four categories based on the coral growth
density and the vertical and horizontal dimensions of the CWC
framework and coral growth. Category I represents the healthy
CWC reefs and mounds with significant vertical (> 1 m) and
horizontal (> 100 m2) CWC growth dimensions. The living
colonies dominate (> 2/3 of coverage) over the dead ones and
the colonies have several living generations. In the case of CWC
mounds, the coral framework can be up to several 100s meters
high. Three of the studied sites belong to this category (Table 1).
Smaller but healthy CWC sites belong to category II (Table 1),
where corals have patchier growth pattern with colonies of some
square meters and limited vertical elevation. One of the studied
sites belongs to this category. Category III sites (Table 1) are
dominated by dead CWC framework with only small and isolated
living CWC colonies. One of the sites belongs to this category.
Two of our sites do not have any living CWCs but only dead
CWCs and coral rubble, and thus belong to category IV (Table 1).

Hydrography of the Sites
CWC reefs are usually found below the surface waters at
intermediate water depths (200–1000 m), but the absolute growth
depth of CWCs can vary between 40 and 3000 meters (Freiwald
and Roberts, 2005). Therefore, we concentrate here on those
water masses that are relevant to CWCs and ocean currents
linked to them (Emery, 2003).

The waters off Norway are characterized by the Norwegian
Coastal Water (NCW), which is a mixture of saline Atlantic
Water (AW) carried to the area via the North Atlantic Drift
(NAD) and fresh water input from rivers, the North Sea runoff
and the Baltic Sea. NCW is dominant water mass in the
northward flowing Norwegian Coastal Current (NCC). The cold,
fresh, and oxygen-rich seasonal Winter Mode Water (WMW)
forms during the winter and is usually present in between the
surface waters and the NCW from spring to autumn (Sætre and
Ljøen, 1971; Mork, 1981).

The water masses along the western European Atlantic margin
are predominantly of North Atlantic and Mediterranean origin
(Pollard et al., 1996). Below the surface waters, the uppermost
water mass is the Eastern North Atlantic Central Water
(ENACW) flowing southwards along the coast (Pingree and Le
Cann, 1989). The lower part of the ENACW is laterally influenced
by the Eastern Atlantic Subarctic Intermediate Water (EASIW)
indicated by a salinity minimum. Below, salinity increases and
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FIGURE 2 | (A) Definition sketch. H, total water depth; h1, lower layer water depth; h2, upper layer water depth; ρ1, mean density of the lower layer; ρ2, mean
density of the upper layer; U0, horizontal flow speed; L, the width of the topography; bm, the height of the topography. (B–H) The morphology of sites with CWC
growth marked by CWC category representative color (blue: I, green: II, orange: III, red: IV). The deployed lander positions are indicated by stars. In STJ two landers
(STJP on the left side and STJS on the right side of the sill) were deployed. Diamonds in the upper part of each panel indicate the individual CTD locations. STJ,
Stjernsund; NL, Nordleksa; GM, Galway Mound; SNC, St. Nazaire Canyon; PE, Pagés Escarpment; VM, Valentine Mound; SM, Sylvester Mound. Topography for
GM from Beyer et al. (2006), and for VM and SM from Tamborrino et al. (2019).

oxygen levels drop due to the influence of Mediterranean Outflow
Water (MOW). Mediterranean Outflow (MO) flows from the
Mediterranean as a contour current (Pingree and Le Cann, 1989;
Daniault et al., 1994; Iorga and Lozier, 1999) to the Bay of Biscay
toward the north. The deepest water mass below the MOW is the
southward flowing North Atlantic Deep Water (NADW).

The southwestern African coast is an eastern boundary
upwelling system where upwelling is driven by coastal parallel
winds. Upwelling takes place from Cape Agulhas (∼34◦S) to
the Angola Benguela Frontal Zone (∼15◦S) (Hutchings et al.,
2009). The upwelled waters in the south and further off-shore are
dominated by Eastern South Atlantic Central Water (ESACW).
It is mixture of water masses formed in the South Atlantic,
namely the South Atlantic Central Water (SACW, Gordon, 1981;
Mittelstaedt, 1991; Poole and Tomczak, 1999) and thermocline
water that originate from the Indian Ocean and enters the South
Atlantic by Agulhas Current intrusions around the South Cape
of Africa (Poole and Tomczak, 1999; Mohrholz et al., 2008). The
water mass further to the north and more coastal is the low
saline, oxygen depleted and nutrient rich Angola Gyre subtype
of the SACW. This subtype of the SACW originates in the
subtropical Angola Gyre and enters the Namibian margin via the
Angola Current (Duncombe Rae, 2005; Mohrholz et al., 2008).
The intermediate and deep water masses of the region are the

northward flowing cool and fresh Antarctic Intermediate Water
(AAIW, Stramma and Schott, 1999) and the NADW beneath it.

Topography of the Sites
The northernmost site is located in the Stjernsund in northern
Norway. This WNW–ESE oriented sound connects the open
North Atlantic with the Altafjord. The main geomorphologic
formation within the sound is an asymmetric morainic sill, which
hosts one of the northernmost D. pertusum reefs (STJ, 70.02◦N,
22.02◦E, Figures 2B, 3A). The crest depths of the sill vary between
203 m and 236 m. Thriving CWC colonies (category I) cover the
sill on the WNW slope between 235 m and 305 m water depths
and on the ESE slope between 245 m and 280 m. Living corals
have colony thicknesses of 2–8 m on average. The horizontal
extent of the CWC complex is up to one square kilometer
(Rüggeberg et al., 2011).

Off central Norway, the category I CWC reef at Nordleksa
(NL, 63.61◦N, 9.38◦E, Figures 2C, 3B) is located at the mouth
of the Trondheimsfjord. CWCs are growing on a ridge-like
formation with a steep N–NW slope. Its summit is at 125 m
and base at 300 m water depth. The CWCs cover an area of
about 1,700 m in W–E and about 600 m in N–S direction, with a
saddle like depression between the two main reef tops. The living
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FIGURE 3 | In situ photographs of CWC sites: (A) Stjernsund, dense living
D. pertusum colonies with sponges (Freiwald and Dullo, 2014), (B) Nordleksa,
living D. pertusum colonies with sponges (Form et al., 2015), (C) Galway
Mound, dense CWC reef,© MARUM University of Bremen, (D) St. Nazaire
Canyon, single coral colonies, (E) Pagés Escarpment, coral rubble,
(F) Valentine Mounds, living D. pertusum colonies (mound top) with
sponges © MARUM University of Bremen (2016), (G) Sylvester Mound, dead
coral framework with dense colonization of yellow bryozoans, actiniarians and
sponges © MARUM University of Bremen (2016).

corals are found at depths between 145 and 210 m. The vertical
dimension of the patches is > 1 m (Form et al., 2014, 2015).

Southwest from Ireland on the eastern slope of the Porcupine
Sea Bight, Galway Mound (GM, 54.46◦N, 11.75◦W, Figures 2D,
3C) is part of the deep CWC mound chain of the Belgica Mound
Province (De Mol et al., 2007; Wheeler et al., 2007). The mound
is approximately 1 km wide and 2 km long, nearly symmetrical
in NNE–SSW direction with the longest axis perpendicular to
the dip of the slope (De Mol et al., 2002). Galway Mound has
its summit at 790 m and its base at 950 m water depth. Thriving
CWC colonies (category I) cover the southern flank of the mound
densely from 850 m to 950 m water depth (Dorschel et al., 2007).

In the northern Bay of Biscay, the Armorican margin
is characterized by a broad shelf with a steep slope. It is
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characterized by numerous spurs and canyons among which the
St. Nazaire Canyon (SNC, 46.23◦N, 4.33◦W, Figures 2E, 3D)
is a prominent one. This almost N–S oriented canyon has W–
E oriented spurs. Living scleractinian colonies (category III) are
mostly found on ridges within a depth range of 700–850 m. They
are isolated and few in number compared to the dead CWCs.
Not far distal from the crest of the ridges the corals are already
covered by sediments. The studied ridge is on the eastern side
of the canyon, SW–NE oriented approximately 3 km long and
0.5 km wide. It rises approximately 200 m above its surroundings
(Flögel et al., 2014a).

In the southern Bay of Biscay, west of the Le Danois Bank
on the Cantabrian Margin, the Pagés Escarpment (PE, 44.04◦N,
5.71◦W, Figures 2F, 3G) rises steeply from 2000 m to 260
m (Dullo et al., 2018). The northern summit is at 680 m
and base is at 1030 m while the southern escarpment rises
to 260 m and has its base is at 750 m water depth. Only
D. pertusum rubble (category IV) is found in water depths of
714–865 m. Anthropogenic impact is significant in this area
(Flögel et al., 2014a).

On the Angolan margin, healthy CWC reefs dominated by
D. pertusum are found on the top of mounds at water depths
between 330 m and 470 m whereas single colonies are found 250–
500 m water depth. The studied mound (VM, 9.73◦S, 12.73◦E,
Figures 2G, 3F) is part of the Valentine Mounds cluster. It is
SW–NE oriented and rises from 503 m to 413 m. Coral patches
dominated by D. pertusum (category II) are found from the
summit to 473 m water depth. The coral patches are 2–3 m
wide and < 1 m high with living colony thickness < 0.3 m.
Additionally, individual colonies are found from 473 m depth
down to the mound base (Hebbeln et al., 2017).

On the northern Namibian margin, the dead CWC mounds
are part of a larger geomorphologic setting dominated by a
NNW–SSE stretching escarpment. Mounds have a rather circular
shape and their heights increase from the south to the north
(Hebbeln et al., 2017). Sylvester Mound (SM, 20.75◦S, 12.82◦E,
Figures 2G, 3F) is part of the CWC mound cluster west of the
escarpment. Mounds occur at a narrow water depth interval
ranging from 219 to 246 m and they are 3–12 m high. Only
D. pertusum coral rubble (category IV) is covering this 10 m high
mound (Hebbeln et al., 2017).

MATERIALS AND METHODS

Data used in this study have been collected on nine cruises with
RV Meteor (M) and RV Poseidon (POS) over the years 2004–2016.
Data are from eight different locations at seven sites (Figures 1–3
and Table 2).

Sampling
The main instrumentation used were sea-floor monitoring lander
systems instrumented with physical and biogeochemical sensors
(Table 1). During deployment and recovery of these bottom
landers, local water column temperature, salinity, oxygen as
well as local topography were surveyed with the ship (Table 2).
Accuracy and sensitivity of the ship-borne instruments are shown

in Table 3. The temporal variability at the sites was recorded
with instrumentation mounted on bottom landers (Tables 1,
2). Upward looking Acoustic Doppler Current Profiler (ADCP,
Table 3) recorded currents from about 2 to 120 m above the sea
floor, with common range for all deployments of from 8 to 35
m above the sea floor (Table 3). The additional biogeochemical
sensors varied from deployment to deployment. Therefore, only
the data derived from the ADCP and CTD measurements is
included in this study.

Cruises and Deployments
The sites of near-shore Norway are in the Stjernsund (subsites
STJS and STJP) and at Nordleksa (NL). At the STJ, two subsites
were studied: STJS on the top of the sill, where one lander was
deployed at 234 m water depth and STJP on the NW slope
of the sill as a non-coral reference site at 362 m water depth
(Figure 2B). Landers were deployed from the spring to the end
of the summer 2012 [cruises POS434 (Pfannkuche, 2012a) and
POS438 (Pfannkuche, 2012b)]. At NL, a lander was deployed on
the reef saddle at 175 m water depth. During the deployment,
from summer 2013 to summer 2014 [cruises POS455 (Form
et al., 2014) and POS473 (Form et al., 2015)], the lander moved
horizontally 100–200 m due to strong currents. The data used in
this study were taken from an interval of 87 days when the lander
was stable at 210 m water depth (Figure 2C).

The three sites on the western European Atlantic margin are
Galway Mound (GM), St. Nazaire Canyon (SNC) and the Pagés
Escarpment (PE). At GM, the lander was deployed at 804 m
water depth (Figure 2D) from the spring to the autumn 2004
[cruises M61 (Pfannkuche et al., 2004) and POS316 (Pfannkuche
and Utecht, 2005)]. In the Bay of Biscay, data at sites SNC and
PE were collected during June 2011 during cruise M84-5 (Flögel
et al., 2014a). At SNC the lander was deployed on a ridge at 806 m
water depth for 5 days (Figure 2E) and at PE on the northern side
of the escarpment at 776 m water depth for 3.5 days (Figure 2F).

The two sites off the southwestern African coast are the
Valentine Mounds (VM) off Angola and the Sylvester Mound
(SM) off Namibia (Hanz et al., 2019). They were studied during
January 2016 during a cruise M122 (Hebbeln et al., 2017). The
lander was deployed west from VM at 430 m water depth for
7 days (Figure 2G) and at the southeastern base of SM at 222 m
water depth for 14 days (Figure 2H).

Data Preparation
For subsequent data analysis, the raw CTD and ADCP data were
converted. CTD data were converted to absolute salinity (SA),
conservative temperature (2), potential density (ρ) and potential
density anomaly (σ2) i.e., sigma-theta values (McDougall and
Barker, 2011). The current measurements were corrected for
the local magnetic declination based on IGRF-11 model data
(Finlay et al., 2010). The echo intensity was converted to
mean volume backscatter (Sv) (Deines, 1999). This is used
as an indicator for the abundance of particles in the water
column. The horizontal velocity components (eastward, ue, and
northward, un) were rotated using variance ellipses (Lilly, 2017).
Accordingly, the mean direction velocity components (um) are in
the direction of the most energetic fluctuations while components
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TABLE 2 | Metadata for CTD casts, ROV and submarine dives and lander deployments.

Station No. Gear Date Time
(UTC)

Lat
[◦N]

Lon [◦E] WD
[m]

Remark

M61/233 CTD 24.4.04 11:49 51.4503 −11.8158 1066

M61/245 LANDER 25.4.04 16:26 51.4547 −11.7538 806 Deployment

M61/550 ROV 5.6.04 9:41
20:45

51.4610
51.4586

−11.7722
−11.7559

899
892

Dive #16

POS316/506 LANDER 10.8.04 10:00 51.4633 −11.7517 921 Recovery

POS325/484 JAGO
submarine

31.7.05 12:14
16:38

70.2648
70.2605

22. 4602
22. 4622

319
305

Dive #912

M84/M579 ROV/OFOS 5.6.11 13:43 44.075 −5.68 1069 Dive #3-4

M84/M580 LANDER 5.6.11 19:52 44.044 −5.707 762 Deployment

M84/M598 CTD 7.6.11 5:41 44.047 −5.703 764

M84/M620 LANDER 9.6.11 13:55 44.047 −5.707 780 Recovery

M84/M642 LANDER 14.6.11 5:25 46.232 −4.325 814 Deployment

M84/M646 ROV/OFOS 15.6.11 2:39 46.233 −4.32 660 Dive #11

M84/M656 CTD 15.6.11 20:00 46.23 −4.353 1357

M84/M692 LANDER 20.6.11 6:55 46.234 −4.322 760 Recovery

POS434/145 CTD 1.6.12 8:26 70.2698 22.4452 368

POS434/147 CTD 1.6.12 13:56 70.2639 22.4925 311

POS434/151 LANDER 2.6.12 16:57 70.2702 22.4479 362 Deployment

POS434/155 LANDER 4.6.12 9:45 70.2581 22.4723 235 Deployment

– LANDER 31.7.12 6:55 70.2702 22.4479 0 Surfaced

– LANDER 10.8.12 18:00 70.2702 22.4479 0 Recovery

POS438/431 LANDER 15.9.12 11:10 70.2658 22.4748 Recovery

POS455/837-2 CTD 30.6.13 6:35 63.6095 9.3748 236

POS455/842-1 LANDER 2.7.13 7:12 63.608 9.38267 185 Deployment

POS473/887-1 JAGO
submarine

18.8.2014 6:57
11:05

63.6077
63.6083

9.3840
9.3853

Dive #2

POS473/896-1 LANDER 21.8.14 9:26 63.6088 9.3822 Recovery

M122/M001-4 LANDER 1.1.16 18:07 −20.732 12.8185 222 Deployment

M122/M007-1 ROV 2.1.16 9:18 −20.735 12.814 246 Dive #2

12:13 −20.731 12.813 241

M122/M020-1 CTD 3.1.16 17:31 −20.733 12.8138 247

M122/M001-4 LANDER 14.1.16 6:37 −20.814 12.8135 240 Recovery

M122/M100-1 ROV 19.1.16 11:46 −9.7278 12.7148 473 Dive #9

16:21 −9.7168 12.7168 426

M122/M 098-1 LANDER 19.1.16 8:28 −9.7262 12.7311 430 Deployment

M122/M088-1 CTD 17.1.16 17:01 −9.7291 12.7146 501

M122/M098-1 LANDER 26.1.16 5:05 −9.7262 12.7311 430 Recovery

WD, water depth.

perpendicular are interpreted as a cross flow (uc). The vertical
velocity component, uw, was not altered.

Since the deployment periods varied from 3.5 days to up to
more than 1 year, we used 1 week time series where possible
and the whole deployment period, where deployment times were
shorter than 1 week. The study period of all deployments is
sufficient to capture short-term variability such as semi-diurnal
internal tides, but we are aware of possible effects of different
lengths of the datasets.

Data Analysis
The mean conditions around the CWCs are described with
the time-averaged mean values and standard deviation (SD) of
hydrography and flow time series. For analysis, a 1-h running

mean is used to remove higher frequency spikes and outliers
(Lilly, 2017).

The site-characteristic dominant tidal frequencies, ω, and
their amplitudes, a, were analyzed with the harmonic analysis
toolbox T_Tide (Pawlowicz et al., 2002). The tidal signals for
barotropic and baroclinic tidal signals were analyzed by using
bottom pressure and horizontal velocity fields at 8 (u8) and 35
(u35) meters above the sea-floor (masf). Only tidal signals with
signal-to-noise ratio (snr) > 2 are considered significant.

The effect of near-bottom mean direction velocity (um,8)
on hydrography and correlation between flow components
was estimated using zero-normalized cross-correlation (ZNCC)
analysis. For analysis, the signals were first de-trended, the
signal mean was subtracted and the signal was divided by its
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TABLE 3 | Instrumentation details and metadata for landers and onboard CTDs.

Landers CTD RV Meteor CTD RV Poseidon

ADCP RDI Workhorse sentinel 300 kHz or
600 kHz

Velocity acc/res 0.5% for 300 kHz, 0.3% for 600 kHz

Echo intensity acc/res ± 1.5 dB

CTD SBE 16 plus/RBR XR-420CTm SBE 9 plus SBE 9 plus

T in acc/res [◦C] ± 0.005/0.0001 or ± 0.002/0.00005 ± 0.001/0.0002 ± 0.001/0.0002

C in acc/res [mS m−1] ± 0.5/0.05 or ± 0.003/0.001 ± 0.3/0.04 ± 0.3/0.04

P in acc/res [% WD−1] ± 0.1/0.002 or ± 0.05/0.001
(0.015%)

± 0.015/0.001 ± 0.015/0.001

Releaser or Deck unit Video-controlled launcher or K/MT 562 SBE 11 plus deck unit SBE 11 plus deck unit

Additional sensors Sediment trap, camera, a single point
current meter, SAMS/optical sensors,
turbidity, dissolved oxygen, pH, chl-a,
fluorescence

Dissolved oxygen, seabird bottle
release, Niskin bottle

Fluorescence of chl-a, dissolved
oxygen, turbidity, 12 × 10 rosette

acc, accuracy; res, resolution; T, temperature; C, conductivity; P, pressure; WD, water depth.

standard deviation. Since the sampling interval between the flow
and hydrography measurements vary, those time series were
interpolated to 10-min sample intervals for the analysis. ZNCC
measures the Pearson correlation coefficient, R, between two time
series with time delay (τ). When signals are positively (negatively)
correlated, the ZNCC function maximum (minimum) indicates
the τ where signals are best aligned. With positive (negative) τ the
primary variable is leading (lagging from) the secondary variable.
The strong and symmetric periodicity of the ZNCC function
implies that processes are regular throughout the time series.
We used ZNCC with a maximum time lag of 24 h to compare
the influence of the mean direction velocity at 8 masf (um,8) on
bottom density (σ2), vertical velocity at 8 masf (uw,8), and mean
direction velocity at 35 masf (um,35). Only significant (p < 0.001)
correlations are presented.

Finally, for hydraulic control estimations we consider the flow
around the CWCs to be hydrostatic two-layer flow introduced
by Baines and Johnson (2016) with uniform velocity over
topographic features. We also take into account the time-varying
and stratified nature of the flow (Marshall et al., 1997; Dewey
et al., 2005). The topographic effects for this flow can be described
in terms of the two-layer Froude number, Fr, topography height
ratio, Hm, the layer thickness ratio, r, non-hydrostatic parameter,
ε, and excursion number, Ex, where

Fr =
U
c0

, c2
0 =

1ρg
ρ1
h1
+

ρ2
h2

, Hm =
bm

h1
,

r =
h1

H
, ε =

U2

( L
2 )2N2

, Ex =
2U
ωL

(1)

where U is the horizontal flow speed, c0 is the speed of long
waves in two-layer fluid at rest, ρ1 and ρ2 denote the lower and
upper layer densities, 1ρ = ρ1-ρ2, g is gravity, h1 and h2 are
the lower and upper layer thicknesses, H = h1 + h2 is the total
water depth, bm is the height of the morphologic structure, L
is the horizontal length scale i.e., the width of the morphologic
structure, N = (∂ρg/(ρ∂z))1/2 is the buoyancy frequency used to
represent the water column stratification and ω is the oscillating

(tidal) frequency. A definition sketch is given in Figure 2A. The
Fr–Hm diagram shows parameter ranges where the stratified flow
is subcritical or supercritical over the topography, and where
the flow is blocked or partially blocked by the morphologic
structure (Figure 4; Baines, 1998, 2015; Baines and Johnson,
2016). If the morphologic structure blocks the flow partially
and the lower layer is thinner than the upper layer (r < 0.5),
hydrostatic flow generates a hydraulic jump. The motion can be
considered hydrostatic or quasi-steady, if Ex� 1 (Dewey et al.,
2005), and ε� 1 (Marshall et al., 1997). Under these conditions,
the advective timescale is larger than the tidal time scale so
that the flow experiences the total height of the morphologic
structure (Ex� 1) during the tidal cycle but it is smaller than the
buoyancy period (ε� 1) so that the non-hydrostatic effects can
be neglected. The interaction between the flow and topography
should be quasi-steady so that flow disturbances have time to
grow and develop.

For the site specific Hm, we can determine lower limit for
Fr and hence flow velocity U (when c0 is assumed constant)
for partially blocked conditions, Ucr = Fr(Hm) × c0. The
development of a significant hydraulic jump requires that
the flow supports partially blocked conditions for a period
comparable to tcr > L/(2×Ucr) (Dewey et al., 2005). The vertical
displacement scale i.e., the maximum vertical movement of the
isopycnals, 1h, is controlled by stratification, flow, the height
of the morphologic structure and time and length scales. If the
time scale is large (Ex � 1), and the height of the topography
(bm > U/N) or the depth of the fluid (H – bm > U/N) do not
affect the motion, the vertical displacement is 1h = Umean/N
(Legg and Klymak, 2008).

RESULTS

Water Column Structure
The CTD casts allow the identification of the regional water
masses and their boundaries. The water masses are characterized
by their temperature (2), salinity (SA) and oxygen (O2) values
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FIGURE 4 | Regime diagram for hydrostatic two-layer flow over a topography near Boussinesq limit (ρ1/ρ2 ≈ 0.99). U0 is the mean horizontal flow speed, h1 the
initial lower layer thickness and c0 the internal wave speed. In the region DABC the flow is partially blocked, with an upstream hydraulic jump controlled by a critical
condition at the obstacle crest. Above AD, the flow is supercritical, below AB subcritical and right from BC blocked. Modified after (Baines, 1998).

(Figure 5), and their boundaries are found at the stratification (N)
maxima (Figure 6). The boundary between water layers h1 and
h2 is taken at the stratification maximum closest to the summit
of the morphologic structure. We include the water column from
the surface to the base of the morphologic structure.

At both Norwegian sites, waters are well stratified, cold and
oxygen-rich. The seasonal temperature minimum, WMW, is
measurable below the surface layer. At site STJ, the WMW is
located within the NCW at depths between 100 and 150 m
(2 < 5.2◦C) and at NL above the NCW at depths 40–120 m
(2 < 7.6◦C). At both sites, the NCW occupies most of the water
column and the influence of AW is only seen near the bottom
with SA > 35 g kg−1 (Figure 5). The CWCs are found in well
oxygenated waters (O2;CWC = 6.11–6.21 ml l−1). At NL, the mean
stratification is stronger (N = 7.7 × 10−3 s−1) than at STJ (STJP:
N = 4.1 × 10−3 s−1 and STJS: N = 4.3 × 10−3 s−1). Below
the surface layer, the stratification maximum is at the boundary
between the WMW and the NCW (STJS: h2 = 202 m, STJP:
h2 = 192 m, NL: h2 = 120 m) (Figures 6A–C).

On the western European Atlantic margin, waters are
relatively saline and weakly stratified. The ENACW is found
below the surface layer to around 400–550 m, where the
salinity minimum (GM: 35.61 g kg−1, SNC: 35.79 g kg−1 and
PE: 35.77 g kg−1) indicates the presence of the EASIW. The
salinity maxima and oxygen minima below the EASIW (GM:

SA = 35.59 g kg−1, O2 = 3.68 ml l−1, SNC: SA = 35.73 g kg−1,
O2 = 4.15 ml l−1 and PE: SA = 35.84 g kg−1, O2 = 3.92 ml l−1)
show the presence of the MOW. The cold, fresh and oxygen-
rich NADW occupies the waters below the MOW (2 < 8◦C,
SA < 35.5 g kg−1 and O2 > 4.5 ml l−1) (Figure 5). Oxygen
concentrations at the depth range of CWCs are lower than at
the near-shore Norway (O2;CWC = 3.81–4.24 ml l−1). The mean
stratification is weak (N ≈ 2.5 × 10−3 s−1). The deep-layer
stratification maximum is found at the boundary between the
EASIW and the MOW (GM: h2 = 846 m, SNC: h2 = 812 m,
PE: h2 = 868 m). It is strongest at GM followed by SNC and PE
(Figures 6D–F).

At sites VM and SM, waters are warm and oxygen-depleted.
Below the warm and saline surface waters lies the SACW
where oxygen drops to minimum (O2 < 1 ml l−1). At site
SM, the SACW occupies the remaining water column. At VM,
the presence of the AAIW is seen below 580 m with oxygen
increase to levels O2 > 1 ml l−1 and temperature drop to
2 < 7◦C (Figure 5). The oxygen levels at the depth of CWC
occurrence are hypoxic (VM: O2;CWC = 0.52 ml l−1 and SM:
O2;CWC = 0.10 ml l−1). The water columns are well stratified
(VM: N = 5.2 × 10−3 s−1 and SM: N = 5.6 × 10−3 s−1).
The maximum stratification around mounds at VM and at
SM is found at 328 m and 190 m water depths, respectively
(Figures 6G,H).
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FIGURE 5 | Water column 2SA-O2 plot. The sigma-theta range of 27.35–27.65 kg m-3 from Dullo et al. (2008) marked with dotted lines. The lander positions
relative to water columns are marked with stars. STJS, Stjernsund CWCs; STJP, Stjernsund reference; NL, Nordleksa; GM, Galway Mound; SNC, St. Nazaire
Canyon; PE, Pagés Escarpment; VM, Valentine Mound; SM, Sylvester Mound.

Lander Measurements
The near-seafloor hydrography (2, SA and σ2, Figures 7A,B)
and flow velocity measurements (Figures 7C,D) give the mean
conditions and short term variations for the respective coral
sites. The velocity regimes are shown for 8 masf and 35 masf
(Figures 7C,D).

Hydrography
The mean bottom water temperature, 2, varies between 6.10◦C
and 12.58◦C. Water is cool (2 < 8.5◦C) at near-shore Norway
(sites STJP, STJS and NL) and at VM, in between (8.5 and
10.5◦C) at GM, SNC and PE and warm at SM (2 > 10.5◦C).
The variations in temperature are small (SD2 < 0.05◦C) at near-
shore Norway and at PE in comparison to other sites where
temperature variations are up to tenfold as large (SD2 = 0.1–
0.5◦C). The mean bottom salinity, SA, ranges between 34.91 g
kg−1 and 36.04 g kg−1. Water is relatively fresh (SA < 35.1 g
kg−1) at NL and VM, and saline (SA > 35.7 g kg−1) on the
western European Atlantic margin (sites GM, SNC and PE). The
salinity variations are small (SDSA < 0.02 g kg−1) at STJP, GM,
SNC and PE compared to the other sites (SDSA > 0.035 g kg−1).
The mean sigma-theta, σ2, varies from 26.63 kg m−3 to 27.68 kg
m−3. Water is less dense (σ2 < 27.25 kg m−3) at NL, VM and
SM, compared to the other sites (σ2 > 27.55 kg m−3). The
variations in density are small at STJP and PE (SDσ2 < 0.017 kg
m−3), in between (SDσ2 = 0.023–0.047) at STJS, NL, VM, SM and
SNC, and large at GM (SDσ2 = 0.058 kg m−3).

Flow Characteristics
The time-averaged horizontal flow speed, Umean, varies between
1.6–26.1 cm s−1 and 3.2–27.5 cm s−1 at 8 masf and 35 masf,
respectively. Flow speeds are weak (Umean < 5.5 cm s−1) at
STJP,8,35, SNC8,35 and PE8,35, in between (Umean = 8–12 cm
s−1) at VM8,35 and SM8,35 and strong (Umean > 18 cm s−1) at
STJS,8,35, NL8,35 and GM8,35. The peak horizontal flow speed,
Umax, varies between 5.6–61.2 cm s−1 and 12.4–72.9 cm s−1 at 8
masf and 35 masf, respectively. It is low (Umax < 14 cm s−1) at
STJP,8,35, SNC8,35 and PE8,35, medium (Umax = 20–40 cm s−1)
at NL8, VM8,35 and SM8,35, and high (Umax > 55 cm s−1) at
STJS,8,35, NL35 and GM8,35. The flow speed is suitable for feeding
(< 7 cm s−1) < 10% of the time at STJS,8,35, NL8,35, 15–30% at
GM8,35, SM8,35, around 40% at VM8,35 and > 50% at STJP,8,35,
SNC8,35 and PE8,35.

The vertical velocity, uw, varies between−23.0–5.0 cm s−1 and
−26.5–9.2 cm s−1 at 8 masf and 35 masf, respectively. The vertical
velocities are low (|uw| < 2 cm s−1) at STJP,8,35, VM8,35 and
SM8,35. Vertical velocities |uw| > 5 cm s−1 are recorded at the
other sites. The flow is inclined downslope at PE8 and SNC8,35
and upslope at the other sites.

The flow direction is controlled by local topography and large
scale circulation. The predominant horizontal flow direction at 8
masf is along the sound or fjord axis at the near-shore Norwegian
sites (STJS and STJP: E–ESE, NL: E–ESE). At the other sites it is
along the mounds (GM: NNE, VM: ENE), across the escarpment
or the ridge (SNC: SE, PE: ESE–SE) or along the continental slope
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FIGURE 6 | Water column stratification, N (solid thin line), and sigma-theta, σ2 (dash-dot thin line), for (A) STJS, Stjernsund CWCs; (B) STJP, Stjernsund reference;
(C) NL, Nordleksa; (D) GM, Galway Mound; (E) SNC, St. Nazaire Canyon; (F) PE, Pagés Escarpment; (G) VM, Valentine Mound; and (H) SM, Sylvester Mound. The
deep layer stratification maximum (dotted thick line) and summit depth of the morphologic structure (dashed thick line) show the depths (h1, h2 and bm) used in the
analysis. At STJS only one line is shows, because the stratification maximum and the summit depth coincide. Note that the scale of the y-axis varies from the surface
to the base depth of the morphologic structure. The displayed ranges are N = 0–12 × 10−3 s−1 and σ2 = 26–28 kg m−3.

(SM: SSW–S). The mean flow direction varies between 8 masf
and 35 masf < 6◦ at STJS, STJP, NL and VM, around 10◦ at
GM and < 20◦ at PE and SM. At SNC the flow direction change
is largest from SE to NNE. The flow oscillates from the main
direction to its opposite direction at all sites.

Tides
Tidal analysis of the pressure records (Table 4) explains
89.7–98.7% of the pressure fluctuations with 3–5 significant
constituents. At all sites, the semidiurnal (M2) signal generates
largest amplitude and is thus the most significant constituent.
At the near-shore Norway, M2 generates an amplitude of 0.91–
0.94 dbar, followed by diurnal K1 (0.08–0.12 dbar) signal. On
the southwestern European Atlantic margin, the M2 generates
the amplitude of 1.30–1.70 dbar followed by K1 (0.12–0.15 dbar)
at sites SNC and PE, and M3 (0.02 dbar) at site GM. At VM
and SM, the M2 has amplitude of 0.3–0.6 dbar followed by K1
(0.06–0.09 dbar).

The analyses of the tidal constituents from the horizontal
velocity records reveal a different picture (Table 4). With 1–
5 significant tidal constituents, tidal analysis explains 7.7–89.0
and 4.6–89.3% of the horizontal velocity fluctuations at 8 masf

and 35 masf, respectively. Fluctuations at tidal frequencies
explain > 75% of the horizontal velocities at STJS,8,35 and NL35,
44–61% at STJP,8,35, NL8, GM8,35, PE8 and VM8,35 and < 15%
at SNC8,35, PE35 and SM8,35. The M2 generates amplitudes
of > 20 cm s−1 at STJS,8,35 and NL8,35, 8–10 cm s−1 at GM8,35
and VM8,35 and < 5.5 cm s−1 at STJP,8,35, SNC8,35, PE8,35 and
SM8,35. It is the most significant constituent at all sites except at
GM8,35 and SNC8,35, where K1 (17.8–22.5 cm s−1) and M6 (0.7–
1.5 cm s−1) are the most significant constituents, respectively.

Cross-Correlation
The hydrographical parameters are not steady, but seem to follow
the velocity fluctuations. The density is salinity driven off Norway
and temperature driven elsewhere due to the local water masses.
To simplify, only cross-correlations with σ2 are discussed.

For sites of category I or II (i.e., STJS, NL, GM and VM)
the cross-correlations of um,8 with σ2 and velocity components
uw,8 and um,35 vary from moderate to strong (|R| > 0.6) and
offsets are relatively small (|T| < 6 h) (Table 5). The um,8
and uw,8 have moderate to strong correlations (|R| ≥ 0.6) with
small offset (τ ≤ 20 min). At STJS, NL and GM strong um,8
occurs same time as upward velocities and at VM strong um,8
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FIGURE 7 | Hydrographic and velocity data from lander deployments. (A) 2SA-uw plot (negative values upward). The mean 2, SA–values are marked with black
dots. (B) The maximum density change within one tidal cycle (back dashed lines). The sigma-theta range 27.35–27.65 kg m-3 from Dullo et al. (2008) marked with
dotted lines in panel (A,B). Horizontal velocity from 8 masf (C) and 35 masf (D) with variance ellipses (black ellipse) and mean velocity (black dot). Color scale shows
the vertical velocity as in panel (A). Axis scale is ± 50 cm s-1 in panel (C,D). STJS, Stjernsund CWCs; STJP, Stjernsund reference; NL, Nordleksa; GM, Galway
Mound; SNC, St. Nazaire Canyon; PE, Pagés Escarpment; VM, Valentine Mound; SM, Sylvester Mound.

velocities occur 20 minutes before maximum downward velocity.
The changes in the mean direction velocity components at 8 masf
and 35 masf happen simultaneously (R > 0.89, τ = 0 min) at
these sites. The um,8 and σ2 have moderate or strong correlation
(|R| > 0.65) with |T| < 6 h. At STJS and VM the peak in
bottom density is followed by maximum um,8 values (τ = −2.75
to −0.5 h). At GM and NL, the maximum σ2 values follows the
peak um,8 after τ = 4.8 h and 5.7 h, respectively and coincide
with the minimum um,8 velocities (Figure 8). The changes in
flow direction are semidiurnal at STJS, NL and VM and diurnal
at GM. This drives the variation in hydrography and during the
acceleration phase of um,8 and uw,8 the density increases from its
daily minimum to a maximum. σ2 drops to its minimum when
the flow turns and relaxes. The maximum density change within
one tidal cycle (M2 at STJ, NL and VM, K1 at GM) is > 0.1 kg
m−3 at all four sites (Figure 7B). When this tidal density change

is compared to water column density measurements (Figure 6),
the maximum tidal density change corresponds to a vertical
isopycnal displacement of 240 m at GM, around 70 m at STJS
and VM and 30 m at NL.

For sites in category III and IV (i.e., SNC, PE and SM)
or for the reference location (STJP) the cross-correlations of
um,8 with velocity components or sigma-theta are lower than
for the category I–II sites (Table 5). At PE, SM and STJP
um,8 and uw,8 have weak correlation (|R| = 0.3–0.45) with
lag |T| ≤ 5.4 h. At SM and STJP strong um,8 is linked to
downward or weak upward vertical flow and at PE upward or
weak downward vertical flow. At SNC, um,8 and uw,8 have no
correlation (R = 0.16, τ = −9.33 h). At SNC and PE, um,8 and
um,35 have weak or no correlation (|R| ≤ 0.36 with τ ≤ 0.5 h).
At STJP and SM the correlations between um,8 and um,35 are
similar to category I–II sites (|R| > 0.7 with τ = 0 min). At
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TABLE 4 | Tidal analysis for bottom pressure and flow record based on the harmonic analysis toolbox T_Tide (Pawlowicz et al., 2002).

Site % Tidal constituent (period in hours)

K1 (23.93 h) M2 (12.42 h) M3 (8.28 h) M4 (6.21 h) 2MK5 (4.93 h) M6 (4.14 h)

STJS

p (dbar) 93.5 0.116 0.930 0.016 0.014

uh,8 (cm s−1) 89.0 2.45 33.62 4.65 0.96

uh,35 (cm s−1) 89.3 2.31 38.02 0.91 2.51

STJP

p (dbar) 93.5 0.116 0.936 0.015 0.014

uh,8 (cm s−1) 54.1 0.78 4.11 0.31 2.35

uh,35 (cm s−1) 52.5 5.24 2.48 0.63

NL

p (dbar) 89.7 0.078 0.917 0.033

uh,8 (cm s−1) 60.8 22.69 3.47 1.41 3.28

uh,35 (cm s−1) 75.2 34.533 3.451

GM

p (dbar) 94.9 1.489 0.024 0.008

uh,8 (cm s−1) 51.9 17.79 8.72

uh,35 (cm s−1) 55.2 22.51 8.73 3.74

SNC

p (dbar) 98 0.123 1.701 0.009 0.035 0.004

uh,8 (cm s−1) 7.7 0.56 0.18 0.68

uh,35 (cm s−1) 4.6 0.95 1.50

PE

p (dbar) 98.7 0.145 1.304 0.013 0.027 0.002

uh,8 (cm s−1) 44.5 0.58 2.65 0.30 0.68 0.73

uh,35 (cm s−1) 7.2 3.01 0.64

VM

p (dbar) 97.7 0.094 0.530 0.006 0.006 0.002

uh,8 (cm s−1) 45.3 1.26 9.48 0.49

uh,35 (cm s−1) 46.8 9.24

SM

p (dbar) 92.3 0.065 0.353 0.005 0.004

uh,8 (cm s−1) 11.9 3.06 0.56 0.75

uh,35 (cm s−1) 11.6 2.73 0.55 0.33

Shown are amplitudes of the significant tidal constituents from lunar diurnal K1 to shallow water overtides of principal lunar M6. Explained variance through the tidal model
in percent is given next to the parameter. Two of the most important tidal constituents are indicated with bold letters. p, pressure; uh,8, horizontal flow 8 masf; uh,35,
horizontal flow 35 masf; STJS, Stjernsund CWCs; STJP, Stjernsund reference; NL, Nordleksa; GM, Galway Mound; SNC, St. Nazaire Canyon; PE, Pagés Escarpment;
VM, Valentine Mound; SM, Sylvester Mound.

sites SNC, PE and STJP, um,8 and σ2 have no correlation (|R|
≤ 0.30, |T| < 9 h). At SM, correlation between um,8 and σ2

is moderate (R = 0.62, τ = −1.33 h) meaning that minimum
densities are usually reached before the peak mean direction
velocities. At these sites the maximum density change within one
tidal cycle (M2) (Figure 7B), corresponds to a vertical isopycnal
movement of > 120 m at SNC and SM around 80 m at PE and
around 2 m at STJP when compared to water column density
values (Figure 6).

Hydrodynamics
When local topography, water column structure and velocity
measurements are combined, we get flow type estimations for
each site. In Figure 9 the results are shown for the time-
averaged horizontal velocity (Umean) and peak horizontal velocity
(Umax) linked to high tide. The velocities needed for partially

blocked flow vary between Ucr = 0.3–80 cm s−1 with time
scales tcr = 0.04–6.5 h. At SNC and PE flow is blocked
and partially blocked conditions are never met since Ucr is
over twice as large as Umax. At GM partially blocked flow
is seen once a day (Ucr = 26 cm s−1) except for 7.5.2004.
At NL and STJS the flow is partially blocked almost all
the time, with Ucr < 3.5 cm s−1. At SM and STJP flow
is mostly subcritical, but reaches partially blocked conditions
irregularly (0–2 times per day) throughout the study periods.
At VM flow is partially blocked twice a day before 20.1.2016
(Ucr = 19.4 cm s−1). After this, the flow speed decreases and flow
is subcritical at the site.

Even though the flow is at least partly partially blocked at
most of the sites, the formation of hydraulic jump is restricted
if the flow is not quasi-steady. This is the case at SM, where
advection time scale is larger than the buoyancy period (ε = 2.8).
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TABLE 5 | Cross-correlations between mean direction velocity component at 8
masf (um,8) with sigma-theta (σ2), vertical velocity component at 8 masf (uw,8) and
the mean direction velocity component at 35 masf (um,35) with maximum
correlation (R) and offset (τ) in hours.

Sites um,8* σ2 um,8*uw,8 um,8*um,35

R τ (h) R τ (h) R τ (h)

STJS 0.92 −0.5 −0.86 0 0.97 0

STJP 0.18 −2.17 0.32 0 0.73 0

NL −0.66 4.83 −0.72 0 0.89 0

GM −0.87 5.67 −0.98 0 0.92 0

SNC −0.24 0.5 0.16 −9.33 −0.2 0.167

PE −0.29 −8.83 −0.44 −1.67 0.36 0.5

VM 0.75 −2.67 0.61 0.33 0.90 0

SM 0.62 −1.33 0.37 5.33 −0.75 0

STJS, Stjernsund CWCs; STJP, Stjernsund reference; NL, Nordleksa; GM, Galway
Mound; SNC, St. Nazaire Canyon; PE, Pagés Escarpment; VM, Valentine Mound;
SM, Sylvester Mound.

At STJP, SNC and PE the flow is too slow for quasi-steady
conditions (Ex ≤ 1).

The isopycnal displacement (1h = Umean/N) is > 60 m at STJS
and GM, between 15–25 m at NL, VM and SM, around 11 m at
PE and STJP and 6 m at SNC. This is restricted by layer thickness
ratio at NL (r > 0.5) and the height of the morphologic structure
at SM (Umean/N > bm).

When the tide turns, flow relaxes and the upstream wave can
propagate upward as a non-linear internal bore if the formation
of the hydraulic jump has been under hydrostatic conditions.
Strong mean volume backscatter signals (Sv) coincide with this
relaxation phase at GM (Figure 8). The signal of resuspended
particles propagates upward ∼10 m h−1 over 6 h and the signal
of the settling particles is visible for the next 12 h. Weaker and
disturbed semidiurnal signals are seen at NL, STJS and VM (not
shown). At SM and at STJP the fluctuation of the strong Sv
signals are neither diurnal nor semidiurnal but irregular with
some stronger signals during the study period. At SNC and at PE
there is no structure in Sv.

DISCUSSION

At reef scales, several parameters coincide with healthy and
high quality CWC occurrences: relatively anisotropic flow with
oscillating flow direction, hydrostatic partially blocked flow
during high tide, and strong correlation between velocity
parameters and bottom density. These can be shown with the
Froude number (Fr)–topography height ratio (Hm) diagram
(Baines and Johnson, 2016). Healthy CWCs are found at
sites, where regular hydraulic control of tidal flow leads to
enhanced hydraulic jumps, local overturning, and internal
bores. These processes provide several food-supply sources and
prevent sedimentation.

This process has previously been reported as the major driver
for oscillation of water mass interface and vertical mixing at CWC
reefs. The linked overturning is assumed to carry deep water
and re-suspended particles to the CWCs (Davies et al., 2009).

The turn of the tide is linked to enhanced mixing, overturning,
and increasing oxygen levels at CWC depths (Davies et al.,
2009; Soetaert et al., 2016). Model studies suggest that down-
ward movement can be very fast, transporting particles from
the surface to intermediate depths (> 500 m) in less than an
hour (Soetaert et al., 2016). Based on observations, the strength
of the overturning is linked to the height of the CWC mounds
(Cyr et al., 2016). In simulations, the overturning strength is
enhanced by steep topographic slopes (large 2bm/L) and slowly
oscillating flows (large ω and vertical tidal excursion) (Legg
and Klymak, 2008). Decreasing stratification leads to larger
vertical length scales of overturning, as the vertical displacement
scale (1h = U/N) increases (Legg and Klymak, 2008). Our
observations strengthen the theory that hydraulic control of tidal
flow is important to CWC growth on basin scales. The strength
of the process varies with the health status of the sites.

State of Flow as a CWC Reef Growth
Indicator
Our results indicate that living and healthy CWCs concentrate
at sites, where quasi-steady tidal flow is partially blocked. To
compare our results to literature data, we add data from five
Atlantic CWC sites. These include three category I sites from
offshore Ireland [SE Rockall Bank: Haas CWC mound (hm),
an unnamed smaller mound (um) (Cyr et al., 2016) and the
Mingulay Reef complex (mrc) (Davies et al., 2009)]. One category
II site from the Gulf of Mexico (Campeche CWC mound (cm))
(Hebbeln et al., 2014) and one category IV site from the Gulf of
Cadiz (Pen Duick Escarpment, pde) (Mienis et al., 2012) are also
used. Their calculated hydrodynamical parameters are described
in Table 6 and their state of flow in Figure 9.

With a total of 12 sites and 13 locations, we can distinguish
four different cases linking Fr–Hm to CWC growth. These are
healthy category I CWC mounds (GM and hm) with regularly
partially blocked flow with Hm > 1.5 (state PBb), healthy category
I CWC sites (STJS, NL, um and mrc) with partially blocked
flow with Hm ≈ 1 (state PB), category II and IV CWC sites
(SM, cm and VM) and non-coral subsite (STJP) with partially
subcritical flow with Hm < 0.6 (state PBsc), dead or declining sites
in category III–IV (SNC, PE and pde) with constantly blocked
flow (state B) with partially subcritical flow.

At healthy CWC mounds with regularly partially blocked flow
(PBb), the flow is partially blocked only when flow speeds are
higher than the mean flow (Ucr > Umean). It seems that the higher
the speed required for the partially blocked situation, the stronger
the hydraulic jump and generation of internal bores. At hm
(Ucr = 46 cm s−1 and Umax = 50 cm s−1) overturning with over
100 m isopycnal displacement is reported only during spring tides
(Cyr et al., 2016) and at GM (Ucr = 26 cm s−1 and Umax = 61 cm
s−1) the estimated maximum isopycnal displacement is over 70 m
(see Section “Hydrodynamics”). Both GM and hm are tall (> 100
m) CWC mounds where corals have been growing without hiatus
since the last glacial (Eisele et al., 2008; Mienis et al., 2009)
and where corals are virtually absent from the summit. This
strengthens the idea first given by Cyr et al. (2016), that CWC
mounds can reach a maximum height favorable for turbulent
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FIGURE 8 | Selected 2.5-days time series from Galway mound for (A) pressure, (B) sigma-theta, (C) velocity components for 8 masf (red: um, yellow: uc, green: uw),
and (D) mean volume backscatter (Sv) anomaly showed as Hovmöller diagram (Høvmoller, 1949) with red (blue) representing stronger (weaker) than average
backscatter.

environments under present hydrodynamical conditions. This
height is the limit, because mound starts to block the flow
during neap tide, preventing the mixing to reach its summit
regularly and the mound reaches a steady state where it no longer
grows vertically.

Healthy CWC sites with Hm ≈ 1 (PB) have partially blocked
flow conditions even under very low velocities. This creates a
turbulent environment over the topographic feature. The site
morphologies vary from small (bm < 100 m) CWC mounds (um
and mrc) to sill and bank settings (NL and STJS). At all sites,
corals have been growing since the last glacial period (López
Correa et al., 2012; Douarin et al., 2014). At NL, um and mrc
corals grow on the summit of the mounds and bank. At STJS
corals do not grow at the summit but on the flanks of the sill.

Partially subcritical sites (PBsc) have subcritical conditions
during mean or low horizontal velocities and partially blocked
conditions during the peak velocity phase. VM and cm are both
healthy (category II) CWC sites, where corals have been growing
continuously for at least 34 ka (Wefing et al., 2017) and 10.1
ka (Matos et al., 2017), respectively. Even though flow at SM is
partially blocked, corals have vanished there around 5 ka ago.
This time coincides with the intensification in upwelling and a
decline in oxygen (Tamborrino et al., 2019) within the area. The
reference site (STJP) is located in a portion of the sound with
a horizontal sea-floor and with low flow velocity. Even though
the hydrographical (temperature, salinity, oxygen) ranges are
suitable for CWC growth, there is no local overturning or mixing
that would enhance particle flow to this point. Both SM and STJP

have unsteady flow over the tidal cycle and no hydraulic jumps
are excepted during the partially blocked flow conditions.

Dead or declining sites (B) are found in the Bay of Biscay
and the Gulf of Cadiz, where corals are reported to live at the
edge of their survival limit and most of the CWC findings are
from dead sites. In the Gulf of Cadiz, large scale coral growth
has stopped around 9 ka ago (Wienberg et al., 2010). Common
for these sites are low flow velocities (Umax < 25 cm s−1) and
high sedimentation rates which cause corals to be covered with
sediments (Mienis et al., 2012). Since the flow is always blocked,
there are no mixing processes over topography. Particles in the
water column are evenly distributed most likely due to slow
currents and low tidal activity (Bernárdez et al., 2017). This might
be the reason, why there is no structure in the backscatter signal at
SNC and PE. Even when the favorable hydrographical conditions
are met, hydrodynamics prevents veritable coral frameworks to
grow on these sites.

Besides the partially blocked flow state, the flow has to
be quasi-steady and topography tall compared to isopycnal
movement so that flow disturbances have time to grow and
develop. The PBb sites have quasi-steady flow and the topography
height does not limit the maximum vertical displacement, 1h.
For PB sites the flow is quasi-steady over the tidal cycle, but the
water layer ratio (r > 0.5) at NL and mrc affects the vertical
displacement of the isopycnals. The flow is not quasi-steady at
totally blocked sites (B) at Bay of Biscay, since the time scale
is too short (Ex ≈ 1) and the sites act as internal wave maker.
At pde, the flow is quasi-steady, but totally blocked. For the

Frontiers in Marine Science | www.frontiersin.org 15 March 2020 | Volume 7 | Article 132

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00132 March 17, 2020 Time: 16:36 # 16

Juva et al. Tidal Control on CWC Growth

FIGURE 9 | The two layer Froude number, topography height ratio (Fr, Hm) diagram. Mean horizontal flow velocity (square) and maximum horizontal flow velocity
(circle) cases are shown. Sites used in this study (STJS, Stjernsund CWCs; STJP, Stjernsund reference; NL, Nordleksa; GM, Galway Mound; SNC, St. Nazaire
Canyon; PE, Pagés Escarpment; VM, Valentine Mounds; SM, Sylvester Mound) are shown in capital letters. Sites from literature (hm, Haas CWC mound; um,
unnamed smaller mound; mrc, Mingulay Reef complex; cm, Campeche CWC mound; pde: Pen Duick Escarpment) are written with small letters. CWC categories
marked in colors (blue: I, green: II, orange: III, red: IV and CWC absence). The four CWC growth states are shown with ellipses; PBsc: Healthy category II sites with
subcritical flow where flow is partially blocked during high tide, PB: Healthy category I sites with partially blocked flow, PBb: Tall and healthy CWC mounds with
mostly completely blocked flow where partially blocked flow conditions are met only during the high or spring tide, B: Dead or declining sites in category III–IV with
constantly blocked flow. The locations SM and STJP are excluded from the growth states since the flow is not quasi-steady during the high tide. Flow type
separation lines after (Baines, 1998).

TABLE 6 | Dynamical deep sea parameters for CWC sites and the parameters to estimate the quasi-steady flow conditions.

Site Cat (Fr,Hm) Fr0 Frinert Frtopo FrZw
−1 1h (m) r ε Ex Site references

GM I PBb 0.08 0.89 0.49 1.65 78.5 0.11 0.065 4.3 This study

hm I PBb 0.06 0.70 0.16 5.25 50.0 0.22 0.250 7.1 Cyr et al., 2016

STJS I PB 0.17 1.53 0.38 3.95 60.7 0.44 0.031 2.5 This study

NL I PB 0.08 0.88 0.14 5.80 23.8 0.6 0.003 2.9 This study

um I PB 0.05 0.40 0.67 1.61 50.0 0.23 0.191 6.2 Cyr et al., 2016

mrc I PB 0.33 1.08 0.89 7.22 65.2 0.63 0.199 14.5 Davies et al., 2009

VM II PBsc 0.03 0.22 0.19 5.75 16.7 0.35 0.027 6.1 This study

cm II PBsc 0.09 0.30 1.61 6.40 48.4 0.06 0.294 23.8 Hebbeln et al., 2014

SNC III B 0.01 0.06 0.03 2.15 6.4 0.15 0.002 0.8 This study

SM IV PBsc 0.08 0.53 1.79 9.64 17.9 0.19 2.832 66.8 This study

PE IV B 0.01 0.08 0.03 6.02 11.3 0.16 0.004 1.0 This study

pde IV B 0.07 0.28 0.43 3.51 44.0 0.63 0.250 7.1 Mienis et al., 2012

STJP Ref. PBsc 0.03 0.27 0.07 3.76 11.2 0.47 0.001 1.0 This study

Shown are after the name of the sites and CWC categories the flow state (Fr,Hm), Froude number for one layer flow (Fr0), the internal Froude number, Frinert (Davies
et al., 2009), topographical Froude number, Frtopo (Cyr et al., 2016), tidal excursion inverse Froude number, FrZw

−1 (Legg and Klymak, 2008; Mohn et al., 2014),
vertical isopycnal displacement scale, 1h (in meters), the layer thickness ratio, r, non-hydrostatic parameter, ε, and excursion number, Ex. For details see Sections "Other
Representations for Hydraulic Control" and "Data Analysis." GM, Galway Mound; hm, Haas CWC mound; STJS, Stjernsund CWCs; NL, Nordleksa; um, unnamed smaller
mound; mrc, Mingulay Reef complex; VM, Valentine Mounds; cm, Campeche CWC mound; SNC, St. Nazaire Canyon; SM, Sylvester Mound; PE, Pagés Escarpment;
pde, Pen Duick Escarpment; STJP, Stjernsund reference; PBb, mostly blocked flow with regularly partially blocked conditions; PB, partially blocked flow; PBsc, mostly
subcritical flow with regularly partially blocked conditions; B, completely blocked flow.
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sites that are partially subcritical (PBsc), the situation is more
complicated. For these, only cm and VM have quasi-steady flows,
where conditions support hydraulic jumps. At SM, the advection
timescale is short relative to buoyancy period (ε > 1) and the
height of the topography is small compared to possible vertical
displacement of the isopycnals (bm < Umean/N). At location STJP,
the advection time scale is too short for hydraulic control to occur
(Ex≈1).

Short and Long Term Changes in Velocity
Field and Hydrography
The strength of the bottom currents is affected by the respective
phase of the tidal cycle, with maximum velocities occurring
during the spring tides. A model study by Soetaert et al.
(2016) shows that overturning and mixing at CWC mounds
are strongest during spring tide and weakest during neap tide.
A 1-week study period is not long enough to capture both,
neap and spring tides. Thus, higher than measured velocities
can be expected to occur at those sites that were studied
during neap tide periods (PE, SM, STJ, mrc and cm). From
these, sites SM, STJ, mrc and cm reach partially blocked
conditions with measured velocities and at PE the required
velocity Ucr > 10 × Umax. It is unlikely that time varying
magnitude of U would change the flow states of the sites on
the Fr–Hm diagram.

More likely the flow states are affected by the changes in
the water column structure. This is driven by short-term and
seasonal changes in the wind fields that cause changes in local
currents and hydrography. Off southwestern Africa, the biannual
change in the Angola–Benguela front is due to changes in the
wind field. This causes changes in water masses and hence
in oxygen levels at SM (Junker et al., 2017). Trade winds
are strongest during May–September, when cold, oxygen-rich
ESACW dominates the Namibian margin. The flow reverses
during October–April when warm, nutrient-rich and oxygen
depleted SACW dominates the area. Anoxic conditions have been
reported to occur along the Namibian margin in February–May
(Junker et al., 2017). Along the Angolan margin, the wind field
is more stable (Shannon et al., 1987) and the near-shore seasonal
variations are caused by seasonal variations in the Cuanza and
Congo river inputs (Kopte et al., 2017). The seasonality of
temperature and stratification are strong on the Norwegian coast
(Sætre and Ljøen, 1971; Mork, 1981). The water column mixes
and is weakly stratified during the winter storms. Due to the
presence of the WMW, water column is strongly stratified during
spring and summer months.

Environmental Conditions
Hydrographic (temperature and salinity) and oxygen conditions
have been documented from most of the known living CWC
sites. The known ranges for D. pertusum in PSS-78/EOS-80
for temperature are 4–13.9◦C (Roberts et al., 2006; Freiwald
et al., 2009; Davies and Guinotte, 2011), salinity 31.7–38.8 psu
(Freiwald et al., 2004; Davies et al., 2008), dissolved oxygen
1.0–7.2 ml l−1 (Dodds et al., 2007; Davies et al., 2008, 2010;
Ramos et al., 2017), and sigma-theta 27.35–27.6 kg m−3 (in

the eastern Atlantic) (Dullo et al., 2008). The conversion
errors between PSS-78/EOS-80 and TEOS-10 are small at the
Atlantic and thus our results are comparable to the known
ranges. The recorded temperature (6.12–12.53◦C) and salinity
(33.8–36.1 g kg−1) values fit well into these defined ranges.
The CWCs grow in less dense waters at NL and at VM
compared to the previously defined ranges, but outside the
eastern Atlantic thriving CWCs are found outside this range
e.g., in the Mediterranean (Flögel et al., 2014b) and in the
Gulf of Mexico (Hebbeln et al., 2014). Corals at Nordleksa are
within this sigma-theta range during spring months when the
influence of AW is strongest (not shown). At the northern
Atlantic sites, dissolved oxygen levels (3.7–6.2 ml l−1) are well
within previously reported limits, but the observed concentration
of dissolved oxygen on the Angolan and Namibian margins
are both hypoxic. At VM, the corals thrive at the lowest
reported oxygen levels of 0.46–0.69 ml l−1 (Hanz et al., 2019).
In summary, given the enormous ranges of hydrographic and
oxygen conditions a clear link to ideal environmental conditions
for CWC growth cannot be drawn and most likely these factors
are of secondary importance.

Our study suggests that the local food supply is important
part of ideal environmental conditions for CWCs. The thriving
coral sites (category I and II) described in this study benefit
both hydrodynamical processes that deliver food particles
on diurnal bases to corals during maximum flow phases
(partially blocked flow conditions with Umax) and low velocity
phases (U < 7 cm s−1 for < 40% of the time) for
optimal food capture (Purser et al., 2010; Orejas et al., 2016)
whereas the declining sites showed unfavorable conditions for
hydrodynamical food supply processes (blocked flow conditions,
flow speed mostly < 7 cm s−1). Sufficient level of food is
crucial to CWCs since under starvation both coral fitness and
physiological performance drop (Naumann et al., 2011; Larsson
et al., 2013; Baussant et al., 2017). In elevated temperature
conditions, increased food supply has been observed to stimulate
CWC growth but not to compensate for adverse effects of
ocean acidification (Büscher et al., 2017). Under low pH and
undersaturated aragonite conditions, CWC net calcification has
been observed to decrease but the high quality food supply
mitigates the physiological impacts on respiration and prey
capture (Georgian et al., 2016b). In field studies, corals are
found to even thrive in hypoxic conditions in the Gulf of
Mexico (Lunden et al., 2014; Georgian et al., 2016a) and
off Namibia (Hanz et al., 2019) as long as sufficient high
quality food is available whereas laboratory studies have shown
coral mortality in hypoxic conditions (Dodds et al., 2007;
Lunden et al., 2014) and in water temperatures > 14◦C
(Lunden et al., 2014).

On geological time scales, the demise of CWC colonies has
been observed in sediment core data during glacial periods
(Raddatz et al., 2013). The demise has been linked to hypoxia
(< 2 ml l−1; Fink et al., 2012), warming in bottom water
temperatures (> 12◦C; Wienberg and Titschack, 2017; Wienberg
et al., 2018) and decrease in surface productivity. While
major environmental overturns might cause the demise of
CWCs at one site, they might support coral re-settlement at
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another site (e.g., Frank et al., 2011). During glacial periods
the sea level has been about 120 m below the present
and hence the tidal interaction level has been deeper than
in the modern ocean. The change of the depth of the
water mass boundaries on glacial/interglacial time scales has
been suggested as an explanation for CWC reef development
(Wang et al., 2019). A recent study by Hebbeln et al.
(2019) highlights the food supply as the most prominent
key driver of demise/re-establishment of the CWCs and
stresses the interactions between the water column and the
local hydrodynamics.

Under ongoing global change, the ocean is predicted to
become warmer, more acidic and less oxygenated. The discussed
studies have shown the negative effects of rising temperature
(e.g., Lunden et al., 2014), ocean acidification (Gómez et al.,
2018) and ocean deoxygenation (Fink et al., 2012) and their
interactions (Büscher et al., 2017; Wienberg et al., 2018) on
CWC ecosystems but the projected changes in climate will
also shift the primary productivity northeastwards (Barton
et al., 2016) due to changes in ocean warming, circulation
and stratification. The latter two will also affect the tidal
dynamics control and CWC growth described here more than
predicted sea-level rise (few centimeters per decade, Dangendorf
et al., 2017) within the next decades when both overall
density decreases and the surface stratification (upper 200 m)
strengthens (Capotondi et al., 2012). The stratification maxima
and hence the layer thicknesses will change depending of the
area. If the N maximum moves toward surface, topography
height ratio (Hm) will decrease. On the other hand, larger
differences in the upper and lower layer densities will yield
increase in the speed of the long waves and hence decrease
in Froude number (Fr). Together these changes would shift
the flow states in Fr-Hm diagram toward the down-left corner
and sites which are currently PBsc or healthy small mounds
on subcritical boundary, may not experience partially blocked
conditions in future.

Other Representations for Hydraulic
Control
Simple one-layer flow in relatively shallow water
Fr0 = Umean/(NH) gives only little information from the
deep-water coral sites. Therefore, several estimations (Equation
2) have been used to capture the dynamics around the CWCs.
In addition to the two-layer Froude number used in this study,
these are the internal Froude number, Frinert (Davies et al., 2009),
topographical Froude number, Frtopo (Cyr et al., 2016), and tidal
excursion inverse Froude number, FrZw

−1 (Legg and Klymak,
2008; Mohn et al., 2014), where,

Frinert =
Umaxπ

N
(
H − bm

) ≈ Umaxπ√
g(ρ b−ρ s)(H−bm)

ρmean

,

Frtopo =
Umean

Nbm
, Fr−1

Zw =
dh N
dx ω

=
N
ω

2bm

L
e−0.5 (2)

Where ρb is water density at summit depth, ρs is the surface water
density and ρmean is the mean density of the water column. From

these, quasi-steady conditions (Ex > 1 and ε < 1) are expected
when using Frinert and Frtopo. The FrZw

−1 is independent from
the magnitude of the flow. The values for these dynamical
parameters are shown in Table 6.

Frinert describes the flow conditions over the crest depth of
the morphologic structures. Similar to Fr0, hydraulic control
is expected when Frinert ≈ 1. This parameter picks well the
sites with known overturning since Frinert = 1 ± 0.2 at GM,
hm, mrc and NL. For the two category I not in this range,
the flow is supercritical at STJS (Frinert = 1.53) and subcritical
at um (Frinert = 0.4). For other sites, the flow with Frinert is
subcritical (< 0.53).

Frtopo describes the obstruction of the steady flow by the
topography (Legg and Klymak, 2008). The values Frtopo � 1 are
used to describe conditions where overturning is possible. For
conditions with small Frtopo, however, the disturbances will be
restricted to the horizontal plane. As Frtopo increases toward 1,
non-linear lee-waves are expected to occur. The range for this
non-linear regime is suggested to be Frtopo = 0.5–0.8 (Baines,
1998; Vosper et al., 1999). At large Frtopo, the flow may exhibit
three-dimensional wakes and be more turbulent (Dewey et al.,
2005). Of sites used in this study, Frtopo > 1 at VM and cm.
Within the 0.5–0.8 range are GM and um. Mingulay reef complex
(Frtopo = 0.89) and Haas mound (Frtopo = 0.16) are known for
overturning events, but with the values used, this is not shown
with this estimation.

The tidal excursion inverse Froude number describes the
effect of vertical tidal excursion distance and stratification over
a tidal cycle to bottom flow. Internal jumps are expected in
high velocity and weak stratification regimes with FrZw

−1 > 3.
The hydrodynamic model study from NE Atlantic by Mohn
et al. (2014) shows that areas with coral present have higher
FrZw

−1 values than coral absence and background areas
(FrZw

−1 < 1.5). All of the sites used in this study have
FrZw

−1 > 1.5. Surprisingly, GM, um and SNC are the only sites
with FrZw

−1 < 3.
These parameters describing the bottom flow

dynamics depend on local water column characteristics
such as stratification and depth, the dimensions of
the topographic feature and the bottom flow. It is
important that the right parameter is used for further
model studies and hydraulic control estimations driven
from observations.

CONCLUSION

The data of this study represent a compilation of stratification,
ambient water mass characteristics and the bottom water flow
at CWC sites colonized by D. pertusum in the eastern Atlantic
from the Arctic to the southern hemisphere. It sheds new
light on the processes which determine coral distribution and
growth. Even though large scale environmental conditions are
useful for statistical habitat suitability models, on the reef
scale hydrodynamical processes give more information about
the quality of the coral occurrences. High-quality and healthy
D. pertusum reefs are found in areas where quasi-steady tidal
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flow is partially blocked by the CWC morphology and the two-
layer Froude number is > 0.35 and the topography height ratio
Hm = 0.3–1.7. Our study suggests that the hydrodynamical setting
causes a quasi-steady particle supply for filter-feeding corals. In
contrast to episodic food supply theories based on spring blooms
our observations suggest diurnal re-supply of sinking particles
back to the water column to heights that are in reach for the
feeding the CWCs. Steady (diurnal basis) supply of high-quality
food would be a key factor when diagnosing a change in the
CWC environment, where environmental stress set by e.g., ocean
acidification (low pH) or low oxygen concentrations, may be of
secondary importance but will increase food and energy demand.
Indeed, the local stratification (e.g., the vertical displacement of
the isopycnals) and the topography are important factors that
determine the strength of the internal tidal bores and thus keep
the particles resupply process running. Changes in stratification,
flow magnitude and the height of the morphologic structure
(e.g., by sea level changes during glacial/non-glacial periods, by
ocean warming/cooling or by outgrowth of the CWC mounds)
may cause starving of the CWC habitat. The future plan is
to link hydraulic control to vertical growth rates as well as to
distinguish the different food sources by estimating the uptake
of resuspended particles.
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