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To develop more accurate global carbon (C) budgets and to better inform management
of human activities in the ocean, we need high-resolution estimates of marine C stocks.
Here we quantify global marine sedimentary C stocks at a 1-km resolution, and find
that marine sediments store 2322 (2239–2391) Pg C in the top 1 m (nearly twice that
of terrestrial soils). Sediments in abyss/basin zones account for 79% of the global
marine sediment C stock, and 49% of that stock is within the 200-mile Exclusive
Economic Zones of countries. Currently, only ∼2% of sediment C stocks are located
in highly to fully protected areas that prevent the disturbance of the seafloor. Our results
show that marine sediments represent a large and globally important C sink. However,
the lack of protection for marine C stocks makes them highly vulnerable to human
disturbances that can lead to their remineralization to CO2, further aggravating climate
change impacts.

Keywords: blue carbon, soil carbon, carbon storage, climate mitigation, carbon cycle, SOC

INTRODUCTION

Marine sediments are one of the most expansive and critical carbon (C) reservoirs on the planet;
hence, they are key for regulating climate change. Although less than 1% of the gross production
on Earth ends up on the seafloor (Hedges and Keil, 1995; Burdige, 2007), organic C buried in the
sediments of the ocean can remain there for 1000s to millions of years if left undisturbed (McLeod
et al., 2011; Estes et al., 2019). However, advances in human exploitation of the ocean have made the
once semi-permanent C stocks in marine sediments vulnerable to remineralization, a process that
will likely exacerbate future climate change. To help develop more refined C budgets and to better
inform management of human activities on the seafloor, we quantified the distribution of organic
C stocks in global marine sediments and identified critical C storage hotspots.

Large-scale degradation of marine habitats has sparked concern that without protection, marine
sediments may become a large source of carbon dioxide (CO2) (Pendleton et al., 2012; Lovelock
et al., 2017). When disturbed, marine sediments can become mixed and resuspended, exposing
them to oxygen and heterotrophic metabolism that can remineralize the C to CO2 (Bianchi
et al., 2016). Climate change, coastal development, and advancements in technology that have
expanded fishing (e.g., deep-sea bottom-trawling), mining, and oil and gas exploration and drilling
in the ocean (Davies et al., 2007; Cordes et al., 2016), pose a potential threat to marine C
stocks that could lead to their significant loss and remineralization. To help mitigate abatable
threats to C, many have argued that the protection of C hotspots should be considered when
developing spatial management plans, including Marine Protected Areas (MPAs) (Howard et al.,
2017; Roberts et al., 2017).
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Despite recent advancements in our understanding of the
distribution of C stocks in vegetated coastal ecosystems such
as mangroves (Atwood et al., 2017; Hamilton and Friess,
2018; Sanderman et al., 2018), seagrasses (Kennedy et al.,
2010; Fourqurean et al., 2012), and salt marshes (Macreadie
et al., 2017; Osland et al., 2018), as well as the carbon
content in global surface (<5 cm) marine sediments (Seiter
et al., 2004; Lee et al., 2019) we still lack robust, spatially
explicit estimates of global marine sediment C stocks. Without
this knowledge, the protection of marine habitats for their
climate mitigation potential will likely be overlooked in ocean
conservation efforts. Furthermore, seminal reports such as those
by the International Panel on Climate Change (IPCC, 2013),
which help guide societies response to climate change, are
still using non-spatially explicit estimates of global marine
sediment C stocks that are calculated by multiplying the
average C density of marine sediments by their global extent
(Emerson and Hedges, 1988). Such an approach limits our ability
to understand and modify biogeochemical processes and the
human driving forces that influence local and global marine
sediment C inventories.

Fortunately, the collection and dissemination of the chemical
compositions of 10s of 1000s of marine sediment cores through
programs like the Ocean Drilling Program have now made it
possible to map global sediment C stocks at a high spatial
resolution. Here, we used C data from 11,578 sediment cores
collected from the global ocean (Figure 1) to model and map
the distribution of marine sediment organic C stocks down to a
1 m depth at a 1-km2 resolution. In addition to our fine-scale C
estimates, we also quantified the amount of C stored within 200-
mile Exclusive Economic Zones (EEZs), across oceanic provinces
(continental shelf, continental slope, abyssal/basin plains, hadal
zone, and subtidal coastal zones not included in the continental
shelf), and within current MPAs.

MATERIALS AND METHODS

C Mapping
We used Google Scholar, Web of Science, Pangea, personal
datasets, and published reports to generate the most extensive
dataset to date on ocean sediment C stocks. Studies included

FIGURE 1 | Sediment core locations. Black dots represent the locations
where sediment cores for marine sedimentary carbon were collected.

contained latitude and longitude of the sample location, percent
organic C content of the sediment, loss on ignition (LOI) or
percent organic matter (OM), and maximum core depth. This
search resulted in C data for 15,004 cores. However, 3,426
cores were removed from the data set because they occurred in
supratidal sites that lacked predictor variables for our Random
Forest model (see below). In some cases, the original data was
presented as an average across multiple sites; in these cases, GPS
coordinates of the middle point were used. In cases where a
single GPS point was provided for multiple cores, we jittered
the longitude of each core in a random direction by 0.001 m.
This offset allowed us to make each C sample spatially explicit.
Studies reporting LOI were converted to percent C using Eq. 1
for cores collected from salt marsh (Howard et al., 2014) and
Eq. 2 for cores collected from seagrass (Fourqurean et al., 2012;
Howard et al., 2014).

Salt marsh : %C = 0.4 ∗ LOI + 0.0025∗LOI2 (1)

Seagrass : %C = 0.43∗LOI − 0.33 (2)

We standardized soil C stocks down to 1 m in the sediment. This
standardization allowed for direct comparisons with terrestrial
soils (Scharlemann et al., 2014; Köchy et al., 2015), and allows for
comparisons across marine systems as 1 m is commonly used in
marine sediment C studies, especially studies in vegetated coastal
ecosystems (Fourqurean et al., 2012; Duarte et al., 2013; Atwood
et al., 2017; Macreadie et al., 2017). Additionally, studies have
suggested that the top 1 m of sediment is the most sensitive
to disturbances (Pendleton et al., 2012; Atwood et al., 2017).
Studies containing depth profiles greater than (i.e., reported
composite stocks for depths greater than 1 m) or less than
1 m were standardized to 1 m by taking the average C stock
per centimeter and multiplying it by 100. For studies that
did not provide a direct measure of C stock, we calculated
it using Eq. 3. C stocks are generally reported in Mg ha−1,
however, we converted all stocks to Mg km−2 for modeling and
mapping. We used the pedotransfer function in Eq. 4 (R2 = 0.65,
n = 6,172; Figure 2), to estimate dry bulk density in studies that
did not report one.

C stocks (Mg ha−1) = 10, 000 ∗ soil depth (m)

∗dry bulk density (g cm−3) ∗ (%OC/100)
(3)

dry bulk density = 0.861∗%C−0.399 (4)

Random Forest Regression models were implemented to predict
global marine sediment C stocks between 80◦ N and ∼58◦ S.
The southern bound of our data was limited by the spatial
coverage of our predictor variables. Marine areas that lacked
predictor variables, such as supratidal sites, were not included
in the model. Random Forest Regressions were based on the
compiled C data and 12 predictor variables; mean annual
temperature of nearest land point, mean annual precipitation
of nearest land point, maximum annual temperature of nearest
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FIGURE 2 | Pedotransfer function to estimate dry bulk density based on
carbon content (R2 = 0.65, n = 6,172). Dry bulk density = 0.861 *%C−0.399.

land point, minimum annual temperature of nearest land
point, ocean mean annual sea surface temperatures, ocean
chlorophyll a concentration, elevation and bathymetry, sea
surface height anomaly, sea surface salinity, distance from
land, and distance from rivers (Table 1). These variables
were chosen because they are known or hypothesized to
influence the delivery and breakdown of C in marine systems.
Carbon stocks down to 1 m in the sediment were modeled
at a 1 km2 resolution using a bootstrapped (500 iterations)
Random Forest regression from the ‘randomForest’ package
in R 3.3.3. Model performance was assessed using cross-
validation, where 30% of the data were withheld in each
model refitting.

TABLE 1 | Data sources for the predictor variables used in the Random Forest
analysis.

Data layer Source

Ocean Chlorophyll a https://neo.sci.gsfc.nasa.gov

Elevation https://asterweb.jpl.nasa.gov

Bathymetry https://visibleearth.nasa.gov/images/73963/
bathymetry

Mean Annual Precip. https://www.worldclim.org/bioclim

Sea Surface Height Anomoly https://sos.noaa.gov/datasets/sea-surface-
height-anomaly/

Sea Surface Salinity https://podaac.jpl.nasa.gov

Distance From Land Euclidean distance calculation

Distance From Rivers Euclidean distance calculation

Min. Annual Temp. https://www.worldclim.org/bioclim

Max Annual Temp. https://www.worldclim.org/bioclim

Mean Annual Temp. https://www.worldclim.org/bioclim

Ocean Mean Annual Temp. https://podaac.jpl.nasa.gov

Random Forest models are a popular and relatively new
machine learning tool that can be used for digital soil mapping.
Briefly, Random Forest models are an ensemble technique
that allows for both classification and regression by developing
multiple decision trees (i.e., bagging). Each tree is trained from
a random bootstrap sample, where a subset of the data points
are used to train (i.e., grow) the tree and the remaining data
points are used to validate the tree. In our study, 30% of the data
was used to validate our model. A more thorough explanation of
Random Forest models can be found in Breiman (2001).

Random Forest models provide several advantages over other
techniques: they allow for the modeling of high dimensional
non-linear relationships, they require few defined parameters,
they reduce experimental noise and enhance accuracy by
aggregating predictions, and one can measure the variable
importance of predictor variables (Breiman, 2001; Sanderman
et al., 2018). Random Forest Models assess the importance of
specific predictor variables by randomly permuting the out-of-
bag observations and then passing the modified out-of-bag data
down the tree to get new predictions. It then measures the
importance of each variable by taking the difference between the
misclassification rate for the modified and original out-of-bag
data and dividing it by the standard error.

One disadvantage of using Random Forest models is that
they do not estimate spatially-explicit uncertainty, rather they
quantify model uncertainty as a whole. Previous investigations
have demonstrated that sources of uncertainty in C stock are
present across multiple scales in soil/sediment measurements.
We therefore estimated error in C stocks at the core level
using parametric bootstraps, and then propagated that error
up to the pixel- and global-level. Parametric bootstrapping
was done by comparing the measured C stocks from collected
sediment cores to the predicted C stock values generated from
the Random Forest model. The difference between the measured
and predicted C stock values for each core are indicative of
the error associated with the measurement and calculation of
C stocks, while accounting for the influence of environmental
parameters, as well as the model performance. Plots of the
measured versus predicted data reveal that across the range of
C stocks measured, the residuals are relatively evenly spread,
but that the variation increases slightly as C stock increases
(Figure 3). Therefore, we converted the residual difference
between the measured and predicted data to a proportion
of the measured value, and used these residuals to generate
a normal distribution. This technique is similar to Monte
Carlo simulations used in previous studies to propagate error
in soil C stocks (Goidts et al., 2009). Proportional residuals
were not bound between 0 and 1 as the difference between
measured and predicted values could be greater or less than the
measured value. We found that the proportional residuals form
a normal distribution with a mean of −0.0032 and a standard
deviation of 0.017.

From the distribution of proportional residuals, we estimated
error in C stock by generating bootstrapped confidence limits
around C stock estimates. We used 1000 iterations to produce
bootstrapped confidence limits. For each iteration, we took the
predicted C stock value for each collected sediment core, and
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FIGURE 3 | Predicted carbon (C) stock data versus measured C stock. Each
data point represents the C stock data from one core. Measured C stocks
were calculated from the data reported in the original source study, while
predicted C stocks were obtained from the Random Forest model. The
dashed line represents the 1:1 line where measured data equals predicted
data.

then added a proportion of that predicted value based on a
sample from the normal distribution of proportional residuals
(a value that could be positive or negative). This process is
analogous to the Monte Carlo simulations used in previous
attempts to quantify error (Goidts et al., 2009). From the 1000
iterations of predicted value plus error sample generated for

each individual core, we identified the 0.025 and 0.975 quantiles
to produce upper and lower 95% confidence limits for the
predicted value of each core. This process meant that for each
core used in the analysis, we had a measured value, and an
upper and lower confidence limit. Finally, Random Forest models
were then run using the upper and lower confidence limits
for each collected sediment core value to produce confidence
intervals for each pixel, which was then propagated up to
the global C stock.

We used Harris and Whiteway (2009) geomorphic units to
calculate the amount of C stored in sediments located in the
continental shelf, continental slope, abyss/basin, and hadal zones
(Figure 4). We combined abyss and basin zones because they
were not spatially explicit in the original data set. We estimated
the amount of C stored in EEZs, the high seas, all MPAs, highly
protected MPAs, and ocean depths > 1000 m (deep-sea) using
spatial statistics. EEZ locations were obtained from the marine
regions database managed by the Flanders Marine Institute1.
MPA locations and protection levels were identified using the
MPAtlas database (Marine Conservation Institute, 2019). Ocean
depths were calculated from the bathymetry predictor variable
used in the Random Forest analysis2.

RESULTS

Our Random Forest Regression model explained 76% of the
variance in C stocks estimated from sediment cores (R2 = 0.76,
RMSE 7306 Mg km2). Ocean chlorophyll a concentrations,
elevation and bathymetry, mean annual precipitation of
nearest land point, and sea surface height, respectively, were
the most important variables explaining marine sediment C
stocks (Figure 5).

1http://marineregions.org
2https://visibleearth.nasa.gov

FIGURE 4 | Global distribution of ocean provinces. Data from Harris and Whiteway (2009).
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FIGURE 5 | Variable importance plot for predictor variables used in the
Random Forest analysis expressed as the percent increase in mean squared
error (% IncMSE). The higher the values of %IncMSE, the more important that
variable is in the Random Forest model.

We found that the global ocean stores 2322 Pg of C in
the top 1 m (Figure 6A), with a 2239 to 2391 Pg C range
across all pixels. Error spatially varied across ocean sediments
with larger uncertainty occurring in areas that had low data
densities and/or higher variability in known C stocks. Areas
with the highest uncertainty included the continental shelf, with
parts of the Caribbean, the North Sea, the Mediterranean, and
coastal Indonesia and Malaysia having the highest variability in C
stocks (Figure 6B).

Carbon stocks spatially varied across oceanic depths and
across regions. Five-times as much C is stored in deep-sea
sediments (water depths > 1000 m) compared to sediments
underlying shallow seas (Table 2). Within the oceanic provinces,
abyssal/basins store the most C (1777–1898 Pg C), followed by
the continental shelf (256–274 Pg C), the continental slope (164–
175 Pg), hadal zone (23–24 Pg), and other non-shelf coastal
habitats (19–20 Pg). The amount of C stored in EEZs and the
high seas were similar, with 1132 (1092–1166, 95% CI) Pg C
stored in EEZs and 1190 (1147–1225) Pg C stored in the high
seas. As of 2019, 94 (92–97) Pg C in the top 1 m of sediments is
stored in MPA’s, of which only 48 (47–50) Pg C is stored in highly
protected MPAs (Figures 6A,C and Table 2).

DISCUSSION

We estimate that the ocean is currently storing 2322 (2239–
2391) Pg C in the top 1 m of sediments, with most (79%) of
this C stored in abyssal/basin zones. This estimate makes the

FIGURE 6 | Global marine sediment carbon (C) stocks and marine protected
areas. (A) Average distribution of global marine sediment C stocks. Stocks
represent the amount of C stored in the top 1 m of sediment. (B) Uncertainty
in C stocks as express by the difference between the upper and lower 95%
CI. (C) Locations of marine protected areas. Areas circled in red are
implemented fully to highly protected marine areas where only light extractive
activities are allowed, and other impacts are minimized to the extent possible.
Data on marine protected areas are from http://mpatlas.org/map/mpas/
(Marine Conservation Institute, 2019). MPAtlas. Seattle, WA, United States.
www.mpatlas.org [Accessed 19/02/2019].

ocean the largest pool of sediment/soil C stocks in the world,
with 1.75 times greater C stocks than the top 1 m of terrestrial
soils (Köchy et al., 2015). Because our estimate does not include
supratidal areas, our C stock estimate is likely conservative as
it omits some supratidal marshes and mangroves, which are
known to store large amounts of sediment C (Atwood et al., 2017;
Macreadie et al., 2017; Osland et al., 2018). Past studies have
estimated that marine surface sediments store between 87 Pg C
(top 5 cm; Lee et al., 2019) and 147 Pg C (top 30 cm; Emerson
and Hedges, 1988); if we extrapolate their results to a 1 m
depth (assuming an equal distribution of C with depth), our
estimate is 1.3 times to 4.7 times greater, respectively, than these
previous calculations. Emerson and Hedges’ (1988) estimate was
not spatially explicit and relied on average %C and bulk density
estimates for the open ocean and continental margin sediments.
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TABLE 2 | Global extent, average (95% confidence intervals) carbon (C) stocks in the top 1 m, and proportion of the global marine sediment C stock in the top 1 m for
different oceanic provinces, marine jurisdictions [Exclusive Economic Zones (EEZ)], ocean depths, marine protected areas (MPAs), including implemented highly and fully
protected areas, and total marine sedimentary C stock for the global ocean.

Area km2 C stock (Mg km2) Total sediment C stocks (Pg) Global proportion # of cores

Oceanic Provinces

Continental Shelf 14,250,873 18, 666 (17, 964−19, 227) 266 (256−274) 11.5% 5450

Other Coastal 4,894,100 3, 882 (3, 882−4, 087) 19 (19−20) 0.8% 856

Continental Slope 19,693,306 8, 632 (8, 328−8, 886) 170 (164−175) 7.3% 2261

Abyss/Basin 306,595,886 6, 014 (5, 796−6, 191) 1844 (1777−1898) 79.4% 2981

Hadal 3,437,928 6, 690 (6, 690−6, 981) 23 (23−24) 1% 30

Jurisdictions

EEZs 167,345,228 6, 764 (6, 525−6, 968) 1132 (1092−1166) 48.8% 9610

High Seas 181,526,865 6, 556 (6, 319−6, 748) 1190 (1147−1225) 51.2% 1968

Ocean depth

Shallow sea (<1000 m) 31,687,886 11, 361 (10, 951−11, 708) 360 (347−371) 15.5% 7692

Deep-sea (>1000 m) 317,184,207 6, 186 (5, 965−6, 369) 1962 (1892−2020) 84.5% 3886

MPAs

All MPAs 18,164,927 5, 175 (5, 065−5, 340) 94 (92−97) 4% 835

Highly protected MPAs 8,498,959 5, 648 (5, 530−5, 883) 48 (47−50) 2% 236

Total C stocks

Global marine sediments 348,872,093 6, 656 (6, 418−6, 854) 2322 (2239−2391) 11,578

Global terrestrial soil 125,800,000 1325

The number of cores indicates the sample size for each category. Terrestrial soil stocks and land area estimates are from Köchy et al. (2015).

The more recent estimate from Lee et al. (2019), used 5623
sediment cores collected from the global ocean before 2004, and
k-nearest neighbors algorithms to estimate C content in marine
sediments at a 5 × 5-arcmin resolution. They then calculated
C stocks in the top 5 cm by using a global average for bulk
density. Our study improves upon these past estimates of marine
sediment C stocks by using spatially explicit estimates of bulk
density, and by including 1000s of additional cores, many of
which were collected from the carbon-rich sediments of coastal
vegetated habitats (Atwood et al., 2017; Macreadie et al., 2017;
Osland et al., 2018; Serrano et al., 2019).

Sediment C hotspots (i.e., large C stocks per unit area)
generally occurred along continental shelves. Some of the largest
C hotspots were observed off the coasts of Namibia, Peru, Baja
California, and in the Caribbean Sea, the Baltic Sea, and the
Indo-Pacific (Figure 4). Variable importance plots identified
ocean chlorophyll a, depth, mean annual precipitation of nearest
land, distance to land, and distance to rivers as some of the
most important variables influencing C stock distributions. These
results suggest that the large supply of organic-rich sediments
from land runoff and river discharge (Bauer et al., 2013; Regnier
et al., 2013; Bianchi et al., 2018) and the production of large
phytoplankton blooms in upwelling areas are important drivers
in the supply of C to continental shelf marine sediments. Over
the past two centuries, human-driven land-use change, river
modification, and climate change have led to significant impacts
on the spatial and temporal fluxes of C from land, rivers,
and pelagic environments to marine sediments (Bauer et al.,
2013; Regnier et al., 2013). As a result, human activities will
likely play a large role in reshaping the spatial distribution of
future C hotspots.

Deep-sea sediments (ocean depths > 1000 m) generally had
low C stocks per unit area owing to low C concentrations
(<1%) in the sediment (Lee et al., 2019). However, because of
their extensive geographic areal coverage, deep-sea sediments
accounted for 84% of the total marine sediment C stock.
Although our C stock assessment was standardized to a 1 m depth
to help compare C stocks across systems, the C composing deep-
sea stocks represent the accumulation of C over much longer
timescales than those in shallow coastal zones. Sedimentation
rates in the deep-sea are two to three orders of magnitude slower
than coastal sediments (McLeod et al., 2011; Estes et al., 2019).
Thus, C stocks down to 1 m depth in coastal sediments represent
accumulation over 100 to 1000s of years, while a depth of 1 m in
deep-sea sediments represent accumulation over 100s of 1000s to
millions of years.

For anthropogenic disturbances (e.g., deep-sea mining or
trawling) to enhance C remineralization in marine sediments,
the organic C in the sediment must be physically and chemically
available to be broken down by heterotrophic communities,
and physicochemical conditions in the sediments must be or
become conducive to heterotrophic metabolism (Hedges and
Keil, 1995; Burdige, 2007; Hendriks et al., 2008). In general,
organic-rich coastal sediments along the continental shelf that
experience high sedimentation rates and rapid oxygen depletion
with depth are hypothesized to be the most sensitive to
disturbances. Disturbances that physically disrupt these organic-
rich coastal sediments can enhance oxygen exposure and mix
fresh C pools with degraded ones, priming microbial activity,
and the breakdown of C (Bianchi, 2011; Lovelock et al.,
2017; Macreadie et al., 2019). Conversely, recent estimates
have suggested that a large portion of deep-sea sediment C
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occurs in oxygenated sediments, but that physical and chemical
protections make that C inaccessible to heterotrophic metabolism
(Keil and Hedges, 1993; Hedges and Keil, 1995; Estes et al.,
2019). As a result, deep-sea sediment C along the continental
slope, abyssal/basin, and hadal zones may be more resistant to
disturbances than coastal continental shelf sediments. Even if
deep-sea organic C is remineralized, it is unlikely to influence
atmospheric CO2 concentrations over the near future because
deep-sea C cycling works on millennial time-scales. However,
organic C availability and the release of metabolic CO2 in
sediment porewater from its degradation are major drivers of
calcium carbonate dissolution in marine sediments (Emerson
and Archer, 1990; Archer, 1991; Archer and Maier-Reimer,
1994; Jahnke et al., 1994). As calcium carbonate is a major
buffer, alterations to calcium carbonate preservation in marine
sediments could lead to complex and hard to predict ocean
acidification feedbacks, as well as effects on benthic calcifiers
(Sulpis et al., 2018).

The sheer volume of C stored in marine sediments
underscores the importance of safeguarding, as the
remineralization of even a small fraction of these C stocks
could greatly exacerbate climate change. Currently, 4% (94 Pg
C) of marine sediment C stocks occur in MPAs, and only 2%
(48 Pg C) occur in highly protected MPAs where commercial
extraction is prohibited, and recreational and subsistence
extraction is minimal (i.e., no-take reserves). Although the
expansion of MPAs will not reduce the effects of all disturbances
on marine C stocks, they can help alleviate impacts from
abatable threats like trawling and mining, as long as those
activities are not displaced to areas with higher C stocks.
However, most MPAs are established within country boundaries,
with only ∼1% of the high seas receiving protection from
current MPAs (Marine Conservation Institute, 2019). The
large amount of C stocks residing outside EEZs (48%), is,
therefore, concerning because there is currently little governance
over the expanding human activities (e.g., deep-sea mining
and bottom-trawling) that could lead to the disturbance and
remineralization of sediment C stored in high seas benthic
habitats (Ardron et al., 2013).

C Model Error and Uncertainty
Several factors may contribute to potential errors and uncertainty
in our C model predictions. Error estimates showed that
continental shelf sediments had the highest uncertainty in C
stocks. This uncertainty is, at least in part, likely the result of
high variability in the C content of continental shelf sediments,
which can range from relic sands that have C contents of < 1%
(Seiter et al., 2004) to organic-rich sediments in vegetated
coastal habitats with C contents > 15% (Donato et al., 2011).
In addition, the marine sediment C data used to build and
test our models is subject to a variety of errors. First, studies
used a variety of analytical methods for estimating percent
C in sediments that include both quantitative (wet oxidation
and dry combustion) and semi-quantitative (LOI) measures.
Each of these methods, as well as the labs and equipment
performing these analyses, vary in their sensitivity and error.
Second, maximum core depth varied across studies, with 84% of

the cores used in this study requiring standardization to 1 m.
We chose a standardized depth of 1 m to comply with IPCC
protocols and common practice in the literature for sediment/soil
C budgets. Our extrapolations assume a uniform distribution of C
to 1 m. However, many studies have shown that C concentrations
in sediments show a non-linear decline in C to a depth of
∼30 cm and then remain relatively constant to ∼1 m (Sanders
et al., 2016; Serrano et al., 2016). Third, 69% of cores used
in our study did not have a bulk density measurement and
required the use of a pedotransfer functions to estimate one.
Furthermore, various coring devices were used by the different
studies to extract sediments. Some coring devices cause severe
disturbance to surface sediments, which can cause sediment loss
from the surface. Other devices can cause compaction during
core penetration, which can affect bulk density measurements.
Bulk density estimates and non-standardization of core depth
are often two of the largest sources of uncertainty in large-
scale sediment/soil C models (Köchy et al., 2015; Sanderman
et al., 2018). Overall, only ∼10% of our data provided all the
necessary information to calculate C stocks down to 1 m, which
highlights the large disconnect between the current methods
used by studies examining C in marine sediments, and protocols
set out by the IPCC for carbon budgets. Fourth, the global
distribution of our sediment C data was not uniform, with
fewer collections occurring in the southern hemisphere and
a large data gap in the Southern Ocean. If the studies that
collected the cores used in our model were globally or regionally
biased toward more organic-rich or organic-poor sediments, then
such biases would propagate through the C model predictions.
Although we cannot discount that such sampling bias exists,
our study provides the most robust collation of global marine
sediment cores. Thus, our study represents our most up-to-date
knowledge on C stocks in global marine sediments based on the
cores collected to date. In addition to errors and uncertainty in
the C data, our model uses 12 predictor variables (see section
“Materials and Methods”) to estimate local C stocks at a 1-
km resolution. Most of these predictor variables are themselves
based on modeled data and are subject to their own error
and uncertainty. Finally, some benthic habitats in the ocean
are composed of hard substrates with little or no sediment
or soil accumulation. However, a high resolution, global map
of substrate characteristics has yet to be completed. In areas
with extensive coverage of hard substrate and no or limited
sediment or soil accumulation, our results will overestimate
sediment C stocks.

CONCLUSION

Our study shows that marine sediments, particularly nearshore
sediments, are a large and important global C sink. Currently,
only a small portion of marine sediment C is safeguarded
from activities that could lead to the disturbance of ocean
sediments and the remineralization of these stocks. These results
suggest that as nations strive to protect more of the ocean,
the design of new MPAs should consider the inclusion of
C storage as a conservation objective (Howard et al., 2017;
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Dinerstein et al., 2019). Not only can the protection of marine C
stocks help mitigate climate change, but C-financing mechanisms
can also be used to help support the economic costs of
implementing and maintaining an MPA (Howard et al., 2017).
This study provides a quantitative, high-resolution assessment of
the C stored in marine sediments that not only enhances our
understanding of the ocean C budget, but also helps identify
major priority areas for conservation.
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