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Leptocephalus larvae of elopomorph fishes are a cryptic component of fish diversity
in nearshore and oceanic habitats. However, identifying those leptocephali can be
important in illuminating species richness in a region. Since the Deepwater Horizon oil
spill in 2010, sampling of offshore fishes in the epi-, meso-, and upper bathypelagic
depth strata of the northern Gulf of Mexico resulted in 8989 identifiable specimens of
leptocephalus larvae or transforming juveniles, in 118 taxa representing 83 recognized
and established species and an additional 35 distinctive leptocephalus morphotypes
not yet linked to a known described species. Leptocephali account for ∼13% of the
total species richness of fishes collected in the offshore region. A new morphotype
of Muraenidae leptocephalus is also described. We compare this study with other
leptocephalus diversity studies in the western Atlantic.

Keywords: leptocephali, leptocephalus, MOCNESS, DEEPEND, ONSAP, Gulf of Mexico

INTRODUCTION

Elopomorph fishes are basal teleosts, comprising the Elopiformes (tarpon and ladyfishes),
Albuliformes (bonefishes), Notacanthiformes (spiny eels and halosaurs), and Anguilliformes (true
eels, including the formerly separate Saccopharyngiformes) (Forey, 1973; Arratia, 1999; Dornburg
et al., 2015; Poulsen et al., 2018). One unique characteristic of elopomorph fishes is a larval stage
known as the leptocephalus (Greenwood et al., 1966; Pfeiler, 1986; Wiley and Johnson, 2010). This
stage features an extended planktonic phase, allowing the larva to stay in the water column from a
few months to several years before metamorphosis to a juvenile, depending on the species (Hulet,
1978; Smith, 1979, 1989a; Miller, 2009). The head is small, the body is transparent (Figure 1) and
laterally compressed, with thin sheets of musculature on either side of the body subdivided into V-
or W-shaped myomeres (Smith, 1979, 1989a) and large amounts of gelatinous glycosaminoglycans
(GAGs) as an extracellular matrix sandwiched between the sheets of musculature (Miller, 2009).
Leptocephali lack hemoglobin, and most species have sparse or no pigmentation (Pfeiler, 1991;
Bishop et al., 2000; Miller, 2009). Because the head is small, and therefore the gills as well, and
erythrocytes with hemoglobin do not develop until the latter part of metamorphosis, much of
the respiration is via cutaneous exchange across the surface of the leaf-shaped body (Pfeiler,
1991). The high surface area to volume ratio allows for gas exchange and also possibly uptake of
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FIGURE 1 | A sample of morphological diversity in leptocephalus larvae and a
transforming juvenile. Top to bottom: transforming Congridae? juvenile eel,
congrid Rhynchoconger flavus, unidentified muraenid similar to Gymnothorax
miliaris, ophichthid Myrichthys breviceps, synaphobranchid Ilyophinae sp. D3

from Straits of Florida, congrid Ariosoma anale, chlopsid Chlopsis bicolor, and
elopid Elops smithii. Images are not to scale and are provided to show a
sample of the diversity of leptocephalus morphology and pigmentation. All
photos by Dante Fenolio.

dissolved organic matter (Pfeiler and Govoni, 1993). Besides
uptake of dissolved organic matter, leptocephali are reported to
feed on larvacean houses, fecal pellets, marine snow, bacteria,
and protists (Mochioka and Iwamizu, 1996; Govoni, 2010; Miller
et al., 2013; Liénart et al., 2016).

Understanding larval fishes and their ecology is very
important for gaining insights into recruitment for fisheries
management (Blaxter, 1984; Sammons and Bettoli, 1998; Valdez-
Moreno et al., 2010). Larval fishes can also elucidate regional
biodiversity (Limouzy-Paris et al., 1994; Richardson and Cowen,
2004a; Miller et al., 2006, 2016; Miller and McCleave, 2007).
Distinctive larvae were recognized as representing cryptic species
before the adults were distinguished; for example, Smith (1989b)
recognized a unique larva of an unknown Elops sp. in the
western North Atlantic and McBride et al. (2010) described
adults as a new species, Elops smithi. However, many distinctive
morphotypes are still not linked to the adults of described species.

While many leptocephali are smaller than 10 cm total length
(TL), some are large enough to get caught in standard larger-
mesh fishing nets. Some anguilliform leptocephali can reach

more than 30 cm TL (Miller et al., 2013; Kurogi et al., 2016)
and notacanthiform leptocephali from the families Halosauridae
and Notocanthidae, in particular, grow to 1.8 m TL (Nielsen
and Larsen, 1970). During various trawling expeditions to Bear
Seamount, it was not unusual to find leptocephali in the cod
end and wrapped around the mesh of the wings of high-speed
rope trawls, Yankee 36 bottom trawls, and IGYPT midwater
nets (Moore et al., 2003, 2004). Similarly, Miller et al. (2013)
compared leptocephali caught with an IKMT vs. a large pelagic
trawl. They show that net avoidance does occur given that the
larger pelagic trawl caught more species and larger leptocephali
than the IKMT. However, the larger pelagic trawl had larger
mesh in the cod end and therefore failed to capture smaller
leptocephali. Castonguay and McCleave (1987) indicated that
net avoidance may be an issue resulting in differential day vs.
night catches of at least some leptocephali. They also showed
very little vertical migration in most species examined; however,
there did appear to be some vertical differences in size classes of
particular species. Other investigators have also noted diel vertical
migrations in leptocephali on small vertical scales of 50–150 m
within the epipelagic and in a few cases the upper mesopelagic
zones (Kajihara et al., 1988; Smith, 1989a; Otake et al., 1998;
Miller, 2015).

One issue hindering biodiversity studies in low latitude
oceanic ecosystems is the difficulty in identification of some
leptocephali. Even though leptocephali have a basic body plan
with a transparent, compressed, leaf-like body, there is variation
in many features that allow for identification to family, genus,
or species for many of the elopomorphs in the western Atlantic
(Figures 1, 2). Leptocephali of major clades are distinguished
based on features such as tail type and presence of pelvic fins
(forked tail and pelvic fins in Elopiformes and Albuliformes, long
fleshy post-caudal streamer and pelvic fins in Notacanthiformes,
terminal pointed or rounded caudal fin with pelvic fins absent
in Anguilliformes). Other features that distinguish leptocephali
include myomere counts, which correspond with vertebral
counts in juveniles and adults (Fahay and Obenchain, 1978;
Smith, 1989a; Miller and Tsukamoto, 2004), gut length and
swellings or loops in the gut (Fahay, 2007), morphology of the
liver along the gut (Leiby, 1989), location of the last vertical blood
vessel coming off the posterior most portion of the larval kidney
(Castle, 1970), pigmentation patterns (Smith, 1989a; Baldwin,
2013), morphology of teeth (Smith, 1989a), body and body shape
(Fahay, 1983; Miller, 2009), and relative positions of the dorsal
and anal fin origins (Smith, 1989a).

One difficulty with using these features is that they
are often modified or lost during metamorphosis. Many
leptocephali undergo transformations that are as profound as the
metamorphosis of a tadpole to a frog. This has made it difficult
to link the larva with the adult using morphological features.
For example, species of the genus Ariosoma are distinguished by
pigmented lines resembling angled slash marks in the myosepta
along the lateral midline and both the dorsal and anal fin origins
are positioned very far back, close to the caudal fin. However,
before the leptocephali begin other signs of metamorphosis, such
as loss of teeth, loss of transparency, and a thickening of the body,
Ariosoma leptocephali initiating metamorphosis lose the lateral
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FIGURE 2 | A sample of morphological diversity in the heads of leptocephalus
larvae, showing differences in shape, dentition, pigmentation, eye shape, and
rostral projections. Clockwise from top center: halosaurid “Tiluropsis,”
nettastomatid Nettenchelys pygnaea, nettastomatid Facciolella sp. C FWNA,
synaphobranchid Ilyophinae sp. D3 FWNA from Straits of Florida,
nettastomatid Saurenchelys stylura from Straits of Florida, ophichthid
Stictorhinus potamius, congrid Xenomystax congroides, nettastomatid
Facciolella sp., ophichthid Ophichthus puncticeps from Straits of Florida, and
congrid Bathycongrus sp. A FWNA. All photos by Dante Fenolio.

pigmentation and both median fins begin extending anteriorly.
This can result in leptocephali with transitional morphologies
that are unlike the typical leptocephalus for that species and yet
distinct from juveniles and adults. Individuals caught in the midst
of transformation to the juvenile stage can have a mix of features
(Figure 1, top).

One traditional method for identification of leptocephali
relied on growing out specimens to a point past metamorphosis
so the morphology of the leptocephalus larva could be linked with
the juvenile or adult morphology (Kuroki et al., 2010). Another
method was assembling a series of leptocephalus specimens
that bridged that same transformation (Castle, 1970). The
metamorphosis of leptocephali to juveniles can occur quickly;
in several species where this is known, the majority of the
metamorphosis occurs over a period of several days to a very
few weeks (Ochiai and Nozawa, 1980; Kuroki et al., 2010; Huang
et al., 2018). This rapidity of metamorphosis means there are
even fewer specimens of individuals caught in the midst of
this transformation, making assembling a series of specimens
difficult. These methods are even more likely to fail for rare or
deep-sea species, where their numbers may be greatly reduced
and their duration as epipelagic plankton may be brief or non-
existent (some deep-sea eel larva may rarely rise to the epipelagic,
for example, Saccopharynx spp., Monognathus spp., or cyematids;
Poulsen et al., 2018).

There are more than 1058 known species of elopomorph fishes
worldwide, with the true eels (Anguilliformes) making up the vast

majority (1009 species; Fricke et al., 2019). Within the western
Central Atlantic (e.g., the Gulf of Mexico, Caribbean Sea, and the
adjacent portions of northern South America, Central America,
and southern North America) there are 188 described species of
elopomorphs recorded (Carpenter, 2002; McBride et al., 2010),
and 127 species have been recorded from the Gulf of Mexico
(Leiby, 1989; Smith, 1989c,d; McEachran and Fechhelm, 1998;
McEachran, 2009). Unfortunately, the distributions of many
eel species are not well known because adults may be cryptic,
burrowing in soft sediments or living deep in hard structures and
therefore difficult to capture. Leptocephali may prove helpful in
demonstrating the wider distributions for some of these species.
However, there are a number of distinctive leptocephalus larvae
known from the Gulf of Mexico that have not yet been linked
to a known adult species (Böhlke, 1989b). Table 1 in Miller
and McCleave (1994) shows how relatively few research cruises
focused on leptocephali were conducted in the Gulf of Mexico
from the 1950s to the 1980s.

This paper describes the elopomorph fauna, based on
leptocephali collected from the oceanic waters of the northern
and eastern Gulf of Mexico following the Deepwater Horizon
oil spill and subsequent surveys, and further discusses the
contribution of these larvae to the overall species richness
observed in the offshore Gulf environment.

MATERIALS AND METHODS

Following the Deepwater Horizon oil spill, the NOAA Office of
Response and Restoration provided support for the creation of
the Offshore Nekton Sampling and Analysis Program (ONSAP)
to generate biological information on the fauna potentially
impacted by the spill (Cook et al., unpublished). The goal of this
program was to provide independent data for use during the
Natural Resource Damage Assessment (NRDA) process. During
ONSAP, the R/V Pisces conducted four cruises in the Gulf of
Mexico during late 2010 and 2011, with cruises identified as
PC8 (Dec 2010), PC9 (Mar–Apr 2011), PC10 (Jun–Jul 2011),
and PC12 (Aug–Sep 2011). All sampling on the Pisces used a
modified Irish Herring/High-Speed Rope Trawl (HSRT). The
station grid chosen for sampling aligned with SEAMAP stations,
with the designation of station names retained in this study
(Figure 3; modified from Eldridge, 1988), with stations occurring
at every half degree latitude–longitude crossing, stations were
approximately 30 nautical miles (nm) apart. Sampling at each
station was conducted day and night to capture diel migration
dynamics, with deployments centered around solar noon and
midnight, respectively. Due to the nature of the Pisces modified
trawling net, which had no closing mechanism, discrete depth
bins were restricted to “shallow” and “deep,” with trawls reaching
depths between 0–700 and 0–1500 m, respectively.

Additional sampling for ONSAP was conducted in 2011 on
the merchant vessel Meg Skansi, with the same sampling grid as
the Pisces, but instead using a 10-m2 mouth area, 3-mm mesh,
6-net Multiple Opening Closing Net and Environmental Sensing
System (MOCNESS) midwater trawl. A flowmeter attached to the
frame recorded the volume filtered by each net, and a ship-board
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FIGURE 3 | SEAMAP sampling grid used by both ONSAP and DEEPEND cruises (Eldridge, 1988). Note the location of the DWH marked by a star. Yellow line marks
the 200 m isobath, orange the 1000 m isobath, pink the 2000 m isobath, and blue the 3000 m isobath.

computer operated the opening and closing of the respective
nets based on real-time depth information (see Weibe et al.,
1985 for detailed description of unit). The MOCNESS sampling
protocol was standardized at all locations: net 0 fished from the
surface to the maximum depth (usually 1500 m, bottom depth
permitting); net 1 fished from 1500–1200 m depth; net 2 fished
from 1200–1000 m; net 3 fished from 1000–600 m; net 4 fished
from 600–200 m; and net 5 fished from 200–0 m. The rationale for
sampling these depth strata was to characterize the fauna below,
within, and above the depth range of a large hydrocarbon plume
reported at 1000–1200 m depth (Camilli et al., 2010), as well as
to characterize potential trends in the vertical distributions of
migrating and non-migrating taxa as reported by Sutton (2013).
The M/V Meg Skansi trawling surveys were divided into three
major cruise series: MS6 (25 Jan–1 Apr 2011), MS7 (19 Apr–30
Jun 2011), and MS8 (18 Jul–30 Sep 2011).

More recently, the Deep Pelagic Nekton Dynamics of the Gulf
of Mexico (DEEPEND) consortium continued the MOCNESS
time-series of trawl sampling at the same stations on the R/V
Point Sur. There were six DEEPEND cruises: DP01 (1–8 May
2015), DP02 (8–22 Aug 2015), DP03 (1–16 May 2016), DP04 (5–
20 Aug 2016) and DP05 (29 Apr–12 May 2017), and DP06 (18
Jul–2 Aug 2018). While the DEEPEND sampling cruises were
shorter than those conducted during the Meg Skansi cruises,
efforts were made to standardize sampling methodologies.
Attention was also given to sampling mesoscale oceanographic
features associated with the Loop Current and its eddies, and
combined CTD, satellite, and AUV information was collated to

inform and define key oceanographic features. More detailed
information on the various sampling programs can be found in
the paper by Cook et al. (unpublished).

The leptocephali were identified following Böhlke (1989b)
and their standard lengths measured to the nearest 0.1 mm
using digital calipers. Only distinctive species and morphotypes
are included here; damaged leptocephalus specimens, specimens
only identifiable to family, transforming juveniles that could
not be identified to a species or distinctive morphotype, or
juveniles/adults over 2.0 g weight were excluded from the
results. Distributional information on elopomorphs used in this
study came from Böhlke (1989a,b) and Carpenter (2002), with
information on Gulf of Mexico occurrences from McEachran and
Fechhelm (1998) and McEachran (2009).

The methodology for the vertical profiles is found in Cook
et al. (unpublished). The depth profiles illustrated were calculated
from just DEEPEND cruise samples.

The DEEPEND specimens were collected under the Florida
Atlantic University IACUC protocols A15-06 and A18-12.

RESULTS

A total of 8989 elopomorph leptocephali were collected,
measured, weighed, identified, and included in this study
from the research area in the northern Gulf of Mexico
(Table 1). A total of 118 taxa representing known species
or distinctive morphotypes of leptocephali were collected
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TABLE 1 | Size range and number of specimens captured for ONSAP (2010–2011, including R/V Pisces and M/V Meg Skansi cruises) and DEEPEND (2015–2018, all
six R/V Point Sur cruises) cruises by species or morphotype.

Taxa SL range (mm) ONSAP Pisces ONSAP Meg Skansi DEEPEND Total

Elopomorpha (118 taxa)

Elopiformes (three taxa)

Elopidae (two taxa)

Elops saurus 19 0 1 0 1

Elops smithi 26–32 0 2 1 3

Megalopidae (one taxon)

Megalops atlanticus 18–25 0 2 2 4

Albuliformes (one taxon)

Albulidae (one taxon)

Albula vulpes 30–67 0 2 4 6

Notacanthiformes (seven taxa)

Halosauridae (seven taxa)

Aldrovandia sp. 78–320 3 1 0 4

Aldrovandia gracilis 80 0 1 0 1

Aldrovandia oleosa 121 0 0 1 1

Aldrovandia phalacra 100 1 1 0 2

Halosaurus guentheri 126 1 0 0 1

Leptocephalus giganteus 135–377 1 6 1 8

“Tiluropsis” 136–320 4 4 6 14

Anguilliformes (107 taxa)

Anguillidae (one taxon)

Anguilla rostrata 30–54 0 28 3 31

Chlopsidae (six taxa)

Chilorhinus suensonii 17–47 1 19 10 30

Chlopsis bicolor 22–50 0 13 2 15

Chlopsis dentatus 17–45 0 9 2 11

Kaupichthys hyoproroides 9–53 0 30 23 53

Kaupichthys nuchalis 17–45 0 4 4 8

Robinsia catherinae 33–55 0 3 3 6

Congridae (24 taxa)

Acromycter perturbator 105 0 0 2 2

Ariosoma anale 50–256 36 3 12 51

Ariosoma balearicum 17–217 583 443 255 1281

Ariosoma selenops 62–103 1 0 5 6

Ariosoma sp. FWNA 149 0 1 0 1

Bathycongrus dubius 35–96 0 8 2 10

Bathycongrus sp. A FWNA 28–156 1 1 3 5

Bathycongrus sp. B FWNA – 0 0 1 1

Bathycongrus sp. C FWNA 46 0 1 0 1

Conger oceanicus 43–92 1 3 5 9

Conger triporiceps 43–90 0 6 0 6

Genus C sp. B FWNA 50–66 0 2 0 2

Gnathophis sp. FWNA 24–102 5 63 53 121

Heteroconger longissimus 15–110 0 11 6 17

Heteroconger luteolus 15–132 5 83 134 222

Parabathymyrus oregoni 135–195 0 1 3 4

Paraconger sp. FWNA 17–110 168 1069 486 1723

Pseudophichthys splendens 19–128 10 12 7 29

Rhynchoconger flavus 15–189 17 697 566 1280

Rhynchoconger gracilior/guppyi FWNA 13–112 1 71 28 100

Uroconger syringinus 24–169 4 62 89 155

Xenomystax congroides 23–229 28 26 21 75

(Continued)
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TABLE 1 | Continued

Taxa SL range (mm) ONSAP Pisces ONSAP Meg Skansi DEEPEND Total

Derichthyidae (one taxon)

Derichchtys serpentinus 127 1 1 0 2

Eurypharyngidae (one taxon)

Eurypharynx pelecanoides 21–21 0 2 1 3

Moringuidae (three taxa)

Moringua edwardsi 23–51 0 15 17 32

Neoconger mucronatus 14–46 0 18 1 19

Neoconger sp. FWNA 31 0 1 0 1

Muraenidae (16 taxa)

Anarchias similis 24–51 0 20 1 21

Channomuraena vittata 55–80 1 1 0 2

Gymnothorax conspersus 51–86 0 4 0 4

Gymnothorax conspersus/kolpos FWNA 83–98 0 2 11 13

Gymnothorax kolpos 46–95 0 2 4 6

Gymnothorax miliaris 20–75 0 7 7 14

Gymnothorax moringa 23–72 2 56 28 86

Gymnothorax nigromarginatus/ocellatus/saxicola FWNA 21–80 8 132 116 256

Gymnothorax sp. 1 JAM 51–85 3 5 6 14

Gymnothorax sp. A FWNA 44–59 0 0 2 2

Gymnothorax sp. B FWNA 53 0 1 0 1

Gymnothorax sp. C FWNA 50–62 0 1 2 3

Gymnothorax sp. D FWNA 46 0 0 1 1

Gymnothorax vicinus 30–82 1 27 12 40

Monopenchelys acuta 44–45 0 2 0 2

Uropterygius macularius 27–57 0 3 4 7

Nemichthyidae (four taxa)

Avocettina infans 10–180 811 77 96 984

Labichthys carinatus 21–146 1 1 3 5

Nemichthys curvirostris 29–325 252 56 72 380

Nemichthys scolopaceus 180–273 58 3 0 61

Nettastomatidae (nine taxa)

Facciolella sp. B FWNA 55–105 0 3 6 9

Facciolella sp. C FWNA 78–99 0 2 3 5

Hoplunnis diomedianus 30 1 1 0 2

Hoplunnis macrura 21–107 1 219 155 375

Hoplunnis similis 65–99 0 1 1 2

Hoplunnis sp. C FWNA 78 0 1 0 1

Hoplunnis tenuis 11–150 4 169 112 285

Nettastoma melanura 17–74 0 14 2 16

Nettenchelys pygmaea 19–88 2 53 67 122

Ophichthidae (32 taxa)

Ahlia egmontis 33–91 0 62 21 83

Aplatophis chauliodus 25–59 0 6 3 9

Aprognathodon platyventris – 0 0 1 1

Apterichthus kendalli 69 1 0 0 1

Bascanichthyini sp. FWNA 20 0 1 0 1

Bascanichthys bascanium 26–91 0 2 16 18

Bascanichthys scuticaris 68 0 0 1 1

Callechelyini sp. FWNA 87 0 0 1 1

Callechelys guineensis 27 0 1 0 1

Callechelys muraena 31–71 0 15 5 20

Echiophis punctifer 17–61 0 2 0 2

(Continued)
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TABLE 1 | Continued

Taxa SL range (mm) ONSAP Pisces ONSAP Meg Skansi DEEPEND Total

Gordiichthys irretitus 64–69 0 0 2 2

Gordiichthys randalli 52–101 0 2 9 11

Letharchus aliculatus 42–115 1 3 2 6

Letharchus velifer 24–49 0 1 1 2

Myrichthys breviceps 77–125 2 4 7 13

Myrichthys ocellatus 118 0 0 1 1

Myrophis platyrhynchus 44–68 0 5 8 13

Myrophis punctatus 13–107 0 250 27 277

Ophichthini sp. 1 FWNA 19–68 0 2 1 3

Ophichthini sp. 2 FWNA 23–60 1 6 0 7

Ophichthini sp. 3 FWNA 55 1 0 0 1

Ophichthini sp. 5 FWNA 71 0 1 0 1

Ophichthini sp. 7 FWNA 53–89 0 2 10 12

Ophichthus gomesii 23–102 76 137 84 297

Ophichthus melanoporus 32–105 0 2 1 3

Ophichthus puncticeps 74 0 1 0 1

Ophichthus rex 39–55 0 0 5 5

Pseudomyrophis frio 44–79 0 1 1 2

Pseudomyrophis fugesae 52–62 0 2 2 4

Quassiremus ascensionis 28–69 0 2 0 2

Stictorhinus potamius 100 0 0 1 1

Serrivomeridae (one taxon)

Serrivomer beanii 34–89 3 0 0 3

Synaphobranchidae (eight taxa)

Dysomma anguillare 22–59 0 57 31 88

Dysommina proboscideus 26–78 0 3 0 3

Ilyophinae sp. A5 FWNA 99 0 1 0 1

Ilyophinae sp. B5 FWNA 33 0 1 0 1

Ilyophinae sp. C1 FWNA 38–49 0 3 0 3

Ilyophinae sp. D4 FWNA 63 0 0 1 1

Synaphobranchus oregoni 89–93 0 3 0 3

Synaphobranchus sp. FWNA 83–96 0 2 0 2

Unknown family (two taxa)

Type I sp. B FWNA 19–53 0 3 0 3

Type II FWNA 56 0 1 0 1

Totals 2104 4173 2712 8989

The list includes transforming juveniles. FWNA indicates a specific morphotype described in Böhlke (1989b).

by the ONSAP and DEEPEND projects. Of those 118 taxa,
leptocephali of 83 are currently recognized as larvae or
transforming juveniles of established species. Roughly half
of the taxa collected were rare, represented by four or fewer
individuals. Several leptocephalus larval morphotypes represent
multiple species (Paraconger sp., Gnathophis sp., Rhynchoconger
gracilior/guppyi, Gymnothorax conspersus/kolpos, Gymnothorax
ocellatus/nigromarginatus/saxicola) because features of the
leptocephalus morphology overlap or are indistinguishable
between the species. This study also found one new morphotype
that is distinctive from those already known.

That new morphotype, here designated as Gymnothorax sp.
1 JAM (Figure 4), has a leptocephalus very similar to that of
Gymnothorax vicinus, in that the dorsal fin origin is at midbody
and there is an interrupted line of pigment spots on the ventral

midline of the esophagus; however, this new morphotype has
153–169 total myomeres (131–142 in G. vicinus, Smith, 1989e),
95–105 preanal myomeres (60–68 in G. vicinus), 42–59 predorsal
myomeres (53–63 in G. vicinus), and a last vertical blood vessel
at 86–92 myomeres (60–67 in G. vicinus). There are no lateral
pigments, no band of pigments through the eye, and very few
melanophores over the brain, one melanophore lateral to the
heart, and three to five at the base of the pectoral fin bud.

Leptocephali account for 13% of the total species richness
of fishes collected in the ONSAP and DEEPEND projects
(Cook and Sutton, 2018a,b,c; Sutton et al., 2018a,b; Cook
and Sutton, 2019). Leptocephali of the families Congridae
(5600 specimens), Nemichthyidae (1430), Nettastomatidae (819),
Ophichthidae (800), and Muraenidae (473) were especially
abundant in the northern Gulf of Mexico. The most abundant
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FIGURE 4 | Muraenidae leptocephalus morphotype Gymnothorax sp.1 JAM.
Collected 11 May 2017 at station B175D in the 0–200 m stratum. Specimen
was 51 mm SL. Photo by Dante Fenolio.

species were Paraconger sp. (1698 individuals), Ariosoma
balearicum (1281), Rhynchoconger flavus (1280), Avocettina
infans (984), Nemichthys curvirostris (380), Hoplunnis macrura
(375), Ophichthus gomesii (297), Hoplunnis tenuis (285), and
Myrophis punctatus (277).

A number of the leptocephali identifiable to established
species represent new records for the Gulf of Mexico
based on the complete list of fishes in McEachran (2009)
and chapters in Böhlke (1989a,b). Taxa that represent
new records of occurrence for the Gulf of Mexico
include: Dysommina proboscideus, Quassiremus ascensionis,
Derichchtys serpentinus, Hoplunnis similis, and Serrivomer

beanii. Several other taxa were not reported in either
McEachran and Fechhelm (1998) or McEachran (2009),
but were listed as leptocephali occurring in the Gulf
of Mexico by Leiby (1989) and Smith (1989c) (e.g.,
Chilorhinus suensoni, Chlopsis bicolor, Chlopsis dentatus,
Kaupichthys hyoproroides, Robinsia catherinae, Gordiichthys
randalli, Pseudomyrophis frio, Pseudomyrophis fugesae, and
Stictorhinus potamius).

There is some evidence for net avoidance in certain taxa,
as determined by higher catches at night for species found
almost exclusively in the epipelagic (Figure 5). For example,
abundance estimates of Gnathophis sp. were almost four times
greater at night than during the day. Likewise, Heteroconger
luteolus leptocephali were collected in more than seven times
greater abundance at night. Other taxa seemed to show little
difference in day vs. night catch rates (Figure 6), which may
indicate less ability to swim out of the way of the net. Those
species that show net avoidance had firmer, more muscular
leptocephali when freshly caught, compared to other taxa,
such as most muraenids, which had flimsier bodies when
fresh out of the net. Species caught in the high-speed rope
trawl, but not in slower MOCNESS nets may also reflect taxa
that are capable of net avoidance. Hoplunnis tenuis, Ahlia
egmontis, and some other taxa showed evidence of diel vertical
migration (Figure 7). Not all leptocephali were confined to
the epipelagic; some were found in moderate abundances in
the 200–600 m depth stratum and some species were collected
as deep as 1500 m. A few species, particularly members of
the Synaphobranchidae, spanned the water column, down to
bathypelagic depths (Figure 8). These deep specimens were often
still in the larval stage (not metamorphosing juveniles in the
process of settling out).

FIGURE 5 | Depth profiles for the congrid leptocephalus morphotype Gnathophis sp. and the congrid species Heterconger luteolus. Note the greater abundances at
night in the surface stratum (0–200 m) as an indication of possible net avoidance by these taxa during the day.
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FIGURE 6 | Depth profile for the muraenid leptocephalus species complex
Gymnothorax ocellatus/nigromarginatus/saxicola, which show less difference
in day vs. night abundances.

DISCUSSION

Given that the number of leptocephali species and morphotypes
collected in the oceanic Gulf of Mexico is close to the number
of adult species known from the Gulf (McEachran, 2009),
leptocephali can serve as an important indicator of eel
biodiversity and represent potential distributional range
extensions and undiscovered species. Any ichthyofaunal
biodiversity survey that does not include an analysis of
leptocephali runs the risk of greatly undercounting the species
richness in a given region. However, it should be acknowledged
that capture of a larval species is not unequivocal evidence that
the adults also occur in the Gulf of Mexico. Richardson and
Cowen (2004b) stated that knowledge of both adult and larval
diversity is necessary to understand the full species richness of
some eel groups, such as the family Ophichthidae. Unfortunately,
leptocephali are often lumped into a common “leptocephalus”
category in ichthyoplankton surveys, and are also frequently
omitted or minimally included in identification guides to larval
fishes (Richards et al., 1993; Leis and Carson-Ewart, 2000;
Richards, 2005; Lyczkowski-Shultz et al., 2013). The latter is
another reason that leptocephali are “hiding in plain sight”; if
students do not see them in guides and surveys, elopomorph
larvae will be further overlooked.

In this study, distinctive leptocephali account for 13% of
the overall species richness found in the pelagic realm of
the northern and eastern Gulf of Mexico by the ONSAP
and DEEPEND investigations. It is likely that some larval
morphotypes will eventually be linked to adult specimens of
already-known species, but in some cases, distinctive larvae could

FIGURE 7 | Depth profile for the nettastomatid leptocephalus Hoplunnis
tenuis, suggesting diel vertical migration with moderate numbers of individuals
below 200 m during the day.

also point to undiscovered species, as was the case with E. smithi
(McBride et al., 2010).

Comparing our results with those of previous investigations
from other areas in the low-latitude western North Atlantic,
three things become clear. First, the sampling gear used makes
a big difference in results (Habtes et al., 2014). Our use
of a highspeed rope trawl on the R/V Pisces added several
large specimens and examples of faster swimming species
not collected in our MOCNESS cruises. Limouzy-Paris et al.
(1994) sampled with a 1-m2 mouth MOCNESS system for
a series of trawls in the Florida Straits. Their leptocephalus
diversity represents a smaller subset of what we found, and
this may reflect the smaller MOCNESS gear with resulting
greater net avoidance, compared to our study. Of the 28
species of elopomorphs listed in their table, our study collected
25 of those (89%). The species (Limouzy-Paris et al., 1994)
captured at the greatest number of stations correspond with
many of our most abundant species. Second, differences in
the eel fauna in different studies also reflect smaller scale
faunal differences within the tropical/subtropical western North
Atlantic. Leptocephali collected from the West Florida shelf
break near our sampling area shared 18 out of 21 species
(86%) with our study (Crabtree et al., 1992). Miller and
McCleave (2007) studied leptocephali in the Sargasso Sea
and found at least 61 taxa, of those 44 (72%) were also in
our collections. Interestingly, many of the dominant taxa in
our study (Paraconger sp., R. flavus, A. infans, H. macrura,
N. curvirostris) are relatively minor in abundance or completely
absent from Miller and McCleave’s study. They also found
several taxa not represented in our collections (e.g., Conger
escuelentus, Mixomyrophis pusillapinna, Ichthyapus ophioneus).
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FIGURE 8 | Depth profile of the leptocephalus for the nemichthyid species Avocettina infans, showing a distribution down to 1500 m depth and possible net
avoidance at the surface. The profile of the congrid leptocephalus of Rhynchoconger flavus also shows captures at 1200–1500 m. The profile of the congrid
Ariosoma balearicum shows captures down to 1200 m during the day. The profile for the synaphobranchid species Nettenchelys pygmaea also shows daytime
captures down to 1500 m.

Richardson and Cowen (2004a) examined leptocephalus diversity
around Barbados where they found 68 taxa, and 49 of those
(72% of their taxa) were also collected in our study. The
taxa unique to their study were either newly described by
them (Richardson and Cowen, 2004b) and not found in our
collections or taxa known from the southeastern Caribbean.
Third, several leptocephalus larvae are very rare and only
collected in studies with larger sample sizes. Our study shared

many rare species/morphotypes (for example, Ophichthini sp.1,
Gymnothorax sp. A and sp. C, Aprognathodon platyventris, and
Ophichthus puncticeps) with that of Richardson and Cowen
(2004a), who examined over 4500 specimens. To our knowledge,
several of the morphotypes we report here have not been listed in
the literature since Böhlke (1989b), such as Type I sp. B, Type II,
Ilyophinae sp. A5, Facciolella sp. B, congrid Genus C sp. B, and
Ophichthini sp. 5.
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While Richards et al. (1993) did not explicitly identify many
species of leptocephali in their study, instead grouping them as
“leptocephali,” they did point out that the reason for the high
diversity of larval fishes associated with the Loop Current in the
northern Gulf of Mexico was due to mixing of tropical and warm
temperate oceanic, mesopelagic, coastal demersal, and pelagic
species in the region. This appears to explain the high species
richness we found in our study, although we would also add
bathypelagic and deep-demersal taxa to the faunal components
mixed in this region.

Leptocephali show diel vertical migration in some species
(Castonguay and McCleave, 1987; Kajihara et al., 1988; Otake
et al., 1998; Miller, 2015). Most studies of vertical migration in
leptocephali subdivide the upper 200 m of water into several
distinct strata. Our collection methods integrated the entire
epipelagic stratum into one net, so we were not able to discern
finer-scale diel migration within that zone. However, we do have
evidence of larger scale migrations, where some species move
from the upper mesopelagic (200–600 m) during daytime to the
epipelagic at night (Figure 7, see also Gnathophis sp. in Figure 5,
and R. flavus and A. balearicum in Figure 8).

A number of leptocephali were collected in deep-water strata.
For example, specimens of A. infans, R. flavus, and A. balearicum
were found in reduced abundances below the epipelagic zone
(Figure 8), but throughout the sampled water column to 1500 m
and possibly deeper. All of the relatively rare Synaphobranchus
oregoni and Synaphobranchus sp. specimens came from the 600–
1200 m strata. The rarity of some leptocephalus types may be
an indication that these larvae do not generally come to the
surface. For example, halosaurs are ubiquitous and relatively
abundant demersal fishes on the continental slope to abyssal
plains, but their larvae (“Tiluropsis” and Leptocephalus giganteus)
are very rarely captured, indicating that they most likely stay in
the deeper layers. Leptocephalus giganteus was only collected in
the MOCNESS from nets fished between 1000–1200, 600–1000,
and 200–600 m depth. Leptocephali remaining at depth may help
explain the absence in this study of larvae of Saccopharynx and
Monognathus, and the absence or rarity of other bathypelagic
species (Poulsen et al., 2018).
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