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To understand the restoration potential of degraded habitats, it is important to know the
key processes and habitat features that allow for recovery after disturbance. As part of
the EU (Horizon 2020) funded MERCES project, a group of European experts compiled
and assessed current knowledge, from both past and ongoing restoration efforts, within
the Mediterranean Sea, the Baltic Sea, and the North-East Atlantic Ocean. The aim was
to provide an expert judgment of how different habitat features could impact restoration
success and enhance the recovery of marine habitats. A set of biological and ecological
features (i.e., life-history traits, population connectivity, spatial distribution, structural
complexity, and the potential for regime shifts) were identified and scored according
to their contribution to the successful accomplishment of habitat restoration for five
habitats: seagrass meadows, kelp forests, Cystoseira macroalgal beds, coralligenous
assemblages and cold-water coral habitats. The expert group concluded that most
of the kelp forests features facilitate successful restoration, while the features for the
coralligenous assemblages and the cold-water coral habitat did not promote successful
restoration. For the other habitats the conclusions were much more variable. The lack
of knowledge on the relationship between acting pressures and resulting changes in the
ecological state of habitats is a major challenge for implementing restoration actions.
This paper provides an overview of essential features that can affect restoration success
in marine habitats of key importance for valuable ecosystem services.

Keywords: degraded habitats, restoration success, recovery, seagrass, macroalgae, coralligenous assemblages,
corals
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INTRODUCTION: DEGRADATION AND
RESTORATION OF HABITATS IN
EUROPEAN SEAS

For centuries humans have been reliant upon the ocean as a
source of food, transport, and leisure. As resources become
increasingly scarce and populations continue to grow, we
are progressively turning to the coasts and oceans to drive
the global economy and stimulate innovation and growth
(EC, 2018). The potential for economic opportunities in the
coastal region is great, resulting in convergence of different
activities, such as shipping, tourism and energy production,
alongside traditional resource-based activities, such as coastal
fisheries, seaweed harvesting, and aquaculture. There is now
ample evidence that such opportunities come with significant
environmental risk and costs (e.g., Ramirez-Llodra et al., 2011;
Halpern et al., 2015). Human activities exert considerable
pressure on ecosystems and resources through pollution, over-
exploitation of resources, introduction of invasive species and
habitat clearance and fragmentation (Dailianis et al., 2018;
Gerovasileiou et al., 2019). Together, such activities are resulting
in a decline in biodiversity, a reduction in the capacity of
the oceans to provide ecosystem goods and services (Worm
et al., 2006; EEA, 2015) and increased vulnerability of marine
ecosystems to additional pressures such as climate change and
ocean-acidification stressors (Folke et al., 2004).

In an attempt to reverse the current level of degradation within
European seas, the EU Biodiversity Strategy 2020 aims to restore
at least 15% of degraded ecosystems by 2020, in accordance with
the 2010 Aichi targets and the UN 2030 Agenda for Sustainable
Development1. However, whilst marine restoration actions are
common in many areas of the world, their success rate is
highly variable. For instance, whilst 65% of tropical coral reef
and salt marsh restoration projects successfully achieved their
goals, seagrass restoration has had a success rate of only 38%
(Bayraktarov et al., 2016; van Katwijk et al., 2016). Variation
in restoration success stems from different sources, including
the inherent biology and ecology of species, including their
interactions (Kilminster et al., 2015) and how, where and when
restoration is conducted (Montero-Serra et al., 2018a). This
variation leads to uncertainty in terms of conservation outcomes
and economics. Consequently, there is a need to develop robust
methodologies to effectively restore habitats and deliver the full
range of conservation and socioeconomic benefits that can be
derived (Elliott et al., 2007).

Historically, research on restoration best practices and
methods has mainly focused on terrestrial, rather than on marine,
ecosystems. Even though several of the basic principles developed
in terrestrial systems can be used in the marine realm (van Dover
et al., 2014; Da Ros et al., 2019), the knowledge on which factors
are enhancing or limiting restoration success is very limited for
the marine environment. The H2020 MERCES project2 aims
to enhance the European Union’s capacity to restore degraded
marine ecosystems and habitats and the ecosystem services they

1https://undocs.org/A/RES/70/1
2www.merces-project.eu

provide. As part of this effort, the present paper seeks to structure
and discuss the existing knowledge amongst leading European
experts on the restoration potential of some important marine
habitats within Europe. The discussion includes the biological
and ecological features that determine the habitats’ sensitivity to
human pressures and thereby modulate the success of restoration
actions. This information will provide the basis for knowledge-
based guidelines of how to advance marine ecosystem restoration
and increase the political and management willingness to initiate
restoration actions.

THE APPROACH

A total of 25 experts representing 11 European countries, from
Norway and Finland in the north to Crete in Greece in the
south, was part of a MERCES initiated workshop to discuss
habitat restoration activities. The group had expertise on species
biology and ecology, covering key habitats found within the
Mediterranean Sea, the Baltic Sea, and the NE Atlantic Ocean.
A set of focal habitats were selected (section Selection and
Description of the Target Habitats), and the experts were asked to
suggest and agree on a set of key biological and ecological features
(section Selection of Habitat Features and Assessment (“Scoring”)
of the Restoration Potential) that were important to the recovery
of these habitats. Following this discussion, each feature was
discussed in terms of their relevance to the recovery potential, in
general and for each habitat separately. The agreed-on features
and characteristics were based on knowledge from both past
and ongoing restoration efforts, within the European seas. The
aim was to provide a consensual judgment (a “scoring,” section
Selection of Habitat Features and Assessment (“Scoring”) of the
Restoration Potential) on how different biological and ecological
features impact restoration success and the recovery of habitats.

Throughout this paper, the term “restoration” refers to an
intentional activity (i.e., active intervention or manipulation) that
initiates or accelerates the recovery of an ecosystem with respect
to its health, integrity, and sustainability (SER, 2004). Active
approaches, also referred to as assisted regeneration (McDonald
et al., 2016), include seedling of spores, transplantation, the
removal of grazers, etc. The recovery of the ecosystem is defined
as the reinstatement of ecosystem attributes, such as composition,
structure, and function, back to a level identified for a reference
ecosystem (McDonald et al., 2016). We do not include passive
restoration (natural re-generation), where restoration goals are
achieved by allowing the ecosystem to recover once the source of
disturbance has been removed.

Selection and Description of the Target
Habitats
The five marine habitats chosen for this paper were selected
by the expert group at the workshop because they are
considered to be highly ecological and economic important, are
sensitive to human activities and are relevant in conservation.
Different directives and list were used as guidance when making
the agreed-on list of target habitats: EU Habitats Directive
92/43/EEC, OSPAR List of Threatened and/or Declining Species
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and Habitats (OSPAR, 2008), HELCOM List of Threatened
and/or Declining Species and biotopes/habitats in the Baltic Sea
(HELCOM, 2007), UNEP/MAP-SPA/RAC 2018 Annex II List of
Endangered or threatened species. The selected habitats cover
shallow and deep areas and soft and hard substrates in the
Mediterranean Sea, the Baltic Sea and NE Atlantic Ocean (see
Figure 1 for habitat examples).

Seagrass meadows are found on soft bottoms down to a
maximum depth of 50 m (Duarte, 1991b). Seagrasses are
important ecosystem engineers, i.e., they create, modify and
maintain habitats (Boström et al., 2014; Jahnke et al., 2016),
and provide multiple ecosystem services through stabilizing
sediments, sequestering carbon, filtering nutrients and providing
food and shelter for invertebrates, fish and birds (Hemminga and
Duarte, 2000). Different human pressures are responsible for the
decline of seagrasses in Europe (Airoldi and Beck, 2007). Whilst
seagrass loss has been accelerating through decades (Waycott
et al., 2009), recent assessment demonstrates a more positive
trend in Europe (de los Santos et al., 2019).

Kelp forests are found on rocky seabed down to a depth of
about 30 m, with single individuals (i.e., not forests) growing
even deeper. Kelps are habitat-forming species, providing food,
shelter and habitat for many species (Christie et al., 2009; Leclerc
et al., 2013). They play a major role in the carbon cycle (Krause-
Jensen and Duarte, 2016) and coastal protection, along with a

FIGURE 1 | Examples of the selected marine habitats assessed in this paper:
(A) Zostera marina seagrass meadow, (B) Laminaria hyperborea kelp forest,
(C) Treptacantha elegans macroalgal bed, (D) Mediterranean coralligenous
assemblage, and (E) Cold-water coral habitat, dominated by the octocorals
Callogorgia verticillata, Acanthogorgia sp. and Dentomuricea aff. meteor in the
Azores. Photos by Christoffer Boström (A), Janne K. Gitmark (B), Alba
Medrano (C), Cristina Linares (D) and EMEPC, ROV Luso
(EMEPC/Luso/Açores/2009) (E).

long list of other ecosystem services (Gundersen et al., 2016). The
kelp forest distribution is decreasing in many areas around the
world (Filbee-Dexter and Wernberg, 2018) but is also showing
increasing trends in some parts (e.g., recovering in the Norwegian
NE Atlantic, Araújo et al., 2016; Krumhansl et al., 2016).

Cystoseira macroalgal beds are found down to a maximum
depth of 50 m. Cystoseira spp. are habitat-forming species found
in rocky intertidal and subtidal coastal areas and are recognized
as hot spots for biodiversity. They provide food and habitat to
diverse assemblages of understory species and enhance coastal
primary productivity (Ballesteros, 1990; Ballesteros et al., 1998;
Cheminée et al., 2013). Shallow beds (mainly down to 10 m
depth) have a different community composition and different
life history traits than deeper ones (10–50 m depth, Capdevila
et al., 2016). The decline in Cystoseira over vast areas has been
documented in many regions (Bianchi et al., 2014; Thibaut et al.,
2015) and natural recovery has been recorded only occasionally
(Perkol-Finkel and Airoldi, 2010; Iveša et al., 2016).

Coralligenous assemblages can be found down to maximum
depth of about 120 m (Laborel, 1961). Coralligenous outcrops are
mainly produced by the accumulation of calcareous encrusting
algae. This habitat supports high biodiversity (approximately 10–
20% of the Mediterranean species) and structural complexity
(Ballesteros, 2006), and the most abundant species are long-lived
algae and sessile invertebrates with an important role as habitat-
formers (Linares et al., 2007; Cerrano et al., 2010; Teixidó et al.,
2011). Coralligenous assemblages have been lost or degraded in
several areas across the Mediterranean Sea (Bevilacqua et al.,
2018; Ingrosso et al., 2018).

Cold-water coral habitats are major ecosystem engineers in
the deep sea, mostly occurring in the depth range of 200–
1500 m, where they can form large and extensive habitats,
such as coral reefs formed mostly by Scleractinia species (stony
corals) and coral gardens primarily composed by octocorals and
black corals (Roberts et al., 2009; Buhl-Mortensen and Buhl-
Mortensen, 2018). They create a complex three-dimensional
habitat and support high levels of biodiversity, providing refuge,
feeding opportunities, and spawning and nursery areas for a wide
range of organisms (Buhl-Mortensen et al., 2010). Cold-water
corals grow extremely slowly (a few to several mm per year)
and can live for hundreds or thousands of years (e.g., Roberts
et al., 2009; Watling et al., 2011; Carreiro-Silva et al., 2013). The
limited knowledge on the distribution and extent of cold-water
coral habitats makes it difficult to assess changes. Nevertheless,
cold-water coral habitats have been defined as Vulnerable Marine
Ecosystems (VMEs, FAO, 2009) and international management
and conservation policies (e.g., FAO, OSPAR) are expected to
contribute to the recovery of impacted sites and the protection
of the remaining pristine coral communities.

Selection of Habitat Features and
Assessment (“Scoring”) of the
Restoration Potential
The recovery potential of habitats depends upon their resilience,
which is strongly influenced by the biology and ecology of
their component species. The expert group identified and agreed
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on the biological and ecological features of greatest relevance
through discussion and by structuring information from
literature reviews (Perkol-Finkel and Airoldi, 2010; Abelson et al.,
2016a,b; McDonald et al., 2016). This resulted in the selection
of five features most relevant to restoration success, namely:
life-history traits, population connectivity, spatial distribution,
structural complexity, and the potential for regime shifts. The
features’ general relevance to the recovery potential of habitats
is described in Table 1.

By using the features, the expert group assessed the restoration
potential of the selected habitats based on (1) evidence in the
published literature, (2) experiences obtained from ongoing
restoration projects and actions, and (3) expert knowledge of the
habitats’ or species’ biology and ecology. The discussion ended
up with agreed-on characteristics of the biological and ecological
features for each habitat (Table 2). Based on these characteristics,
each feature was given a score from 1 (low) to 5 (high), according
to its potential contribution to the successful accomplishment
of restoration for each of the habitats (Table 3). We chose five
levels to ensure that enough variability could be included in the
assessment to distinguish restoration potential amongst habitats,
but that did not have too many levels that would hide emerging
patterns. This number of levels have also been considered suitable
for defining conservation status of habitats and species (from
favorable to unknown under the EU Habitats Directive) and
ecosystem health status of marine waters (from high to bad
under the Water Framework Directive). When a feature may lead
to both restoration failure and success, the scoring was given
as a range or a set of values, rather than one single score. As
shallow Cystoseira beds have a different community and different
life history traits than deeper beds, these communities were
scored separately.

THE ASSESSMENT OF THE HABITAT
FEATURES AND THE RESULTING
“SCORING”

The characteristics of the biological and ecological features
relevant for assessing the recovery potential is described in
sections Seagrass meadows to Cold-Water Coral Habitats and
summed up in Table 2. Table 2 provides the information needed
for the agreed-on scoring in Table 3, in which the features of the
different habitats are considered according to their contribution
to successful restoration.

Seagrass Meadows
As life-history traits of seagrass may lead to restoration failure
or success, depending on the species in question, it is difficult
to assess this feature‘s importance for habitat restoration in
general (Kilminster et al., 2015). For example, Posidonia oceanica
is a slow-growing species (Duarte, 1991a) forming enduring
meadows (Kilminster et al., 2015), while Cymodocea nodosa and
Zostera marina exhibit faster clonal growth (Olesen and Sand-
Jensen, 1993; Cancemi et al., 2002), forming more transient
meadows (Kilminster et al., 2015). As slow-growing species
will need more time to recover than fast-growing species

(Montero-Serra et al., 2018a), the time scale needed for recovery
should be assessed carefully depending on the species in question.
In general, populations with high connectivity (dispersal and
gene flow) have higher genetic diversity, which makes them more
resilient to environmental perturbations (Reusch et al., 2005;
Jahnke et al., 2018). However, especially at the extreme ends of the
geographical range of eelgrass, clonal growth dominates, creating
vulnerable and isolated populations with limited connectivity
(Olsen et al., 2004). Several species may spread both asexual
(clonal) and through seed production (McMahon et al., 2014).
Thus, different geographical regions and species naturally possess
different capacities for local and large-scale dispersal (gene flow),
from less than 15 m to up to 1000 km (Orth et al., 1994;
Källström et al., 2008; Jahnke et al., 2018). The distribution of
the species is also crucial, as a wide spatial distribution implies
easier access to donor populations during restoration, which
increases the probability of recovery success. In general, large-
scale planting has been identified as an important method for
increasing restoration success (van Katwijk et al., 2016).

Seagrass meadows are extremely vulnerable to anthropogenic
pressures, such as habitat destruction, eutrophication, pollution,
and climate change (Orth et al., 2006). It is important that
pressures, such as eutrophication (which limits light availability
and growth, Burkholder et al., 2007; Moksnes et al., 2018)
and habitat destruction (Erftemeijer and Lewis, 2006), are
removed and appropriate sediment conditions are re-established,
as sediment conditions tend to become unsuitable for re-
establishment following seagrass loss (de Boer, 2007; Carr
et al., 2016; Moksnes et al., 2018). Seagrass meadows are
prone to regime shifts (Maxwell et al., 2016; Moksnes et al.,
2018), characterized by a transition into an algal dominated
or a barren state. Understanding drivers, interactions and
thresholds in these regime shifts is crucial before any restoration
action can take place.

After restoration action has taken place, seagrass meadows
should be sustained in the long-term through positive feedback
mechanisms (Maxwell et al., 2016; Suykerbuyk et al., 2016).
As part of restoration it is therefore important to ensure (and
possibility reintroduce) healthy populations of associated species,
especially top predators, which can control algal (over)growth
through trophic cascades (Moksnes et al., 2008, 2018;
Jahnke et al., 2018).

Kelp Forests
All of the selected features associated with kelp forests promote
successful restoration. Fertile kelp produces a high number of
propagules that can be dispersed for several days with coastal
currents (Reed et al., 1992; Andersen, 2013), and the release
is relatively synchronous among populations (Andersen et al.,
2011). Connectivity between kelp populations is reinforced by
reproductive synchrony because higher abundance of spores
in the currents increases the probability of long-distance
dispersal (Reed et al., 1997), which also facilitates recovery. Kelp
colonizes hard substrate such as bedrock, boulders, and rocks,
forming forests with a wide spatial distribution. Kelp forests
are structurally very complex, with a heterogeneous understory
of younger plants and associated flora and fauna. Kelp forests
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TABLE 1 | Description of the key features assessed for the habitats included in this paper and their relevance to the recovery potential.

Key features Description Relevance to the recovery potential References

Life history traits Reproduction potential,
larval biology, age at first
maturity, growth rate,
longevity, generation length.

Species with low reproductive output, delayed
maturity, slow growth, and high longevity take
longer to recover from impact.

McMahon et al., 2014; Capdevila
et al., 2016; Montero-Serra et al.,
2018a

Population connectivity Dispersal and gene flow. Populations with high connectivity/gene flow
have higher genetic diversity, which provides
resistance to disturbance and high potential for
natural recolonization of disturbed areas from
nearby sites.

Pascual et al., 2017; Jahnke et al.,
2018

Spatial distribution Spatial extent, distribution
patterns.

Populations in fragmented habitats are more
vulnerable to environmental impact and genetic
stochasticity, and therefore face a higher risk of
local extinction.

Gera et al., 2013; Giakoumi et al.,
2013

Structural complexity Three-dimensional
complexity.

Increased habitat complexity supports higher
biodiversity and thus associated food webs,
thereby enhancing recovery through various
ecosystem processes, including facilitation, and
positive feedbacks between coexisting species.

Kovalenko et al., 2012

Regime shift The potential for regime
shift.

Habitats that experience variation in extent,
coverage and status, but that don’t experience
regime shifts, will recover more easily than
habitats that show regime shifts

Hughes et al., 2013; Maxwell et al.,
2016

generally support food webs with a high number of species
at different trophic levels (e.g., Steneck et al., 2002; Smale
et al., 2013; Krause-Jensen and Duarte, 2014) contributing to
ecosystem resilience.

Restoration actions may be implemented at large spatial
scales and transplanted or recovered kelp plants can quickly
become spore donors to adjacent barren areas. The major threats
for kelp (reviewed in Filbee-Dexter and Wernberg, 2018) are
eutrophication, temperature increase (in the North Sea, Bekkby
and Moy, 2011; Moy and Christie, 2012) and grazing by sea
urchins (in the Norwegian and Barents Sea, Araújo et al.,
2016), but kelp forests show high level of recovery when these
pressures are removed. Consequently, removing pressures, such
as sea urchins and nutrients, should be the priority before any
additional actions (such as planting kelp or seeding spores).
Despite the documented regime shift and widespread collapse
of kelp forests (Ling et al., 2015), such as for the Laminaria
hyperborea forests, some forests have had a back-and-forth shift
between kelp and turf algae, without it being a regime shift
(e.g., Saccharina latissima, Christie et al., 2019). Before any
restoration action can take place, an in-depth understanding
of the drivers, feedback effects and critical thresholds for the
shifts is needed, including knowledge of the interaction with
predators (such as sea urchins), turf algae and local and
global stressors.

Cystoseira Macroalgal Beds
Cystoseira macroalgal beds display relatively high reproduction,
growth rate and longevity (Ballesteros, 1989), with a considerable
variation in life history traits at different depths (Capdevila
et al., 2016). The shallow beds have, in general (but with
exceptions), wide spatial distribution and are dominant habitat-
forming species in rocky intertidal and subtidal habitats, while

deeper beds are more fragmented. Cystoseira beds have a high
structural complexity, providing food and shelter to diversified
assemblages of understory species. Cystoseira beds are vulnerable
to various anthropogenic pressures (such as eutrophication,
chemical pollution, coastal development, sedimentation) as well
as being at risk due to climate change and outbreaks of grazers
(Fraschetti et al., 2001; Airoldi et al., 2014). Overgrazing due to
sea urchin outbreaks is responsible, along with other local and
global stressors, for the loss of Cystoseira beds and the subsequent
community shifts toward turf-forming algae or barren grounds
(Pinnegar et al., 2000; Airoldi et al., 2014).

The high level of fragmentation often found for this habitat
and the low connectivity (Thibaut et al., 2016) suggest that
restoration actions should be considered over a local scale
(meters). Restoration should focus on structural species that
provide habitat for associated species. Shallow beds have high
growth and fast dynamics (Ballesteros, 1989) and may be
easier to restore compared to deeper beds (e.g., below 30 m
depth). Restoration actions should include large adult organisms.
However, in cases where the natural and donor populations
are in a critical state, manipulation should be avoided, and
restoration must rely on recruitment enhancement and the
growth of juveniles (Verdura et al., 2018; De La Fuente et al.,
2019). In these situations, a longer time (possible decades)
for restoration must be accepted (Mangialajo et al., 2012;
Capdevila et al., 2016; Thibaut et al., 2016). Anthropogenic
pressures (such as eutrophication, chemical pollution, coastal
development, sedimentation) should be reduced. Restoration
practitioners have found that a combination of two approaches
(sea urchin eradication to control their impact, and recruitment
enhancement techniques) was the best technique to enhance
Cystoseira forestation from a shallow degraded barren ground
(Medrano et al. unpublished data).
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TABLE 2 | The characteristics of the five selected key features for each habitat.

Habitat Habitat features

Life history Population
connectivity

Spatial distribution Structural complexity Regime shifts

Seagrass meadows Both slow and
fast-growing species,
both low and high
reproductive output

Generally high dispersal
and high gene flow, but
some populations are
clones

Relatively fragmented
populations, depending
on the species

High 3D complexity Prone to regime shifts

Kelp forests High recruitment,
growth rate and
longevity

High connectivity,
number of propagules
and dispersal distance

Wide distribution High 3D complexity Prone to regime shifts

Cystoseira macroalgal
beds

(Shallow, i.e., at 0–10 m) Fast or medium growth
and recruitment rate

Medium or poor
dispersal ability

Wide distribution, but
might occur in patches

High 3D complexity Prone to regime shifts

(Deeper, i.e., at 10–50 m) Slow growth and
recruitment rate

Poor dispersal ability Fragmented High 3D complexity Prone to regime shifts

Coralligenous
assemblages

Slow growth and low
recruitment rate, long
life span

Low connectivity,
disconnected
populations and limited
larval transport

Fragmented High 3D complexity Likely, but unclear

Cold-water coral
habitats

Slow growing, long life
spans, low reproductive
output and low
recruitment rate

Low fecundity and
larval dispersal for most
species

Fragmented High 3D complexity Unclear

Shallow Cystoseira macroalgal beds have a different community and different life history traits than deeper ones and are thus treated separately.
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TABLE 3 | The agreed-on expert scoring of the habitat features according to their contribution to the successful accomplishment of habitat restoration; 1 – low
contribution, 5 – high contribution.

Habitat Habitat features

Life history Population connectivity Spatial distribution Structural complexity Regime shifts

Seagrass
meadows

1–5 5 (1) 2 5 Prone to regime shifts

Kelp forests 5 5 5 5 Prone to regime shifts

Cystoseira
macroalgal
beds

(Shallow, i.e., 0–10 m) 4 3 4 5 Prone to regime shifts

(Deeper, i.e., 10–50 m) 3 2 2 5 Prone to regime shifts

Coralligenous
assemblages

2 1 1 5 Likely, but unclear

Cold-water
coral habitats

1 1 1 5 Unclear

The habitat features are presented in general in Table 1. Table 2 provides the information used for the agreed-on scoring here. Seagrass meadows are difficult to score
when it comes to life history, as the life history of the different seagrass species may lead to both restoration failure and success. Also, some seagrass populations have
extremely low connectivity (leading to the score 1 in brackets). Shallow Cystoseira macroalgal beds have a different community and different life history traits than deeper
beds, and scores are therefore given separately.

Coralligenous Assemblages
Coralligenous assemblages form through the growth of
organisms on dead skeletons of previous generations, creating
high structural complexity. Most are calcareous algae, sponges,
bryozoans, and octocorals, which are relatively slow-growing
and long-lived species, with limited recruitment (Coma et al.,
1998; Garrabou and Harmelin, 2002; Linares et al., 2007;
Teixidó et al., 2011). In addition, populations of different
coralligenous species, such as the octocorals Paramuricea clavata
and Corallium rubrum, are most likely far apart, and larval
supply may be limited (Costantini et al., 2007; Ledoux et al.,
2010; Arizmendi-Meija et al., 2015).

Restoration through transplantation would require low initial
effort due to high survival of transplants. As coralligenous species
are slow-growing and long-lived, with limited recruitment, it
takes a long period of time to restore the full complexity of the
habitat through transplantation, probably at decadal timescales
(Linares et al., 2008; Montero-Serra et al., 2018a). This would
be the case for most of the key coralligenous groups, such as
sponges (e.g., Petrosia fisciformis, Spongia lamella, S. officinalis)
and octocorals (e.g., Paramuricea clavata, Corallium rubrum)
(Teixidó et al., 2011; Montero-Serra et al., 2018b). However, there
are other groups, such as bryozoans, mainly Pentapora fascialis,
which can display higher growth rates, and recovery of structural
complexity could be achieved in short time scales (5–10 years,
Pagés et al. unpublished data). As the habitats are generally
fragmented and the population connectivity low, restoration
actions need to be performed at very local scales.

Coralligenous assemblages are presently threatened by a
combination of nutrient enrichment, invasive species, increase
of sedimentation and mechanical impacts, mainly from fishing
activities, as well as climate change (Ballesteros, 2006; Balata
et al., 2007; Garrabou et al., 2009; Cebrian et al., 2012; Piazzi
et al., 2012). Reduction of pressures should be a priority before
starting restoration actions. The slow population dynamics of
coralligenous assemblages make it difficult to detect regime shifts,
which could be eventually detected after longer time periods

exposed to stressors. However, experimental and observational
evidences show that extreme warming events can replace a
structurally complex habitat with fast-growing and turf-forming
species, which can indicate regime shifts (Ponti et al., 2014; Di
Camillo and Cerrano, 2015; Verdura et al., 2019).

Cold-Water Coral Habitats
Cold-water coral habitats have among the lowest recovery
potentials. This is related to coral life-history traits such as slow
growth, high longevity and low fecundity, which makes their
recovery dynamics extremely slow, particularly for octocorals and
black corals. Bypassing sensitive early-life stages, by transplanting
adult and reproductive colonies of key coral species, may
accelerate the initial recovery of the ecosystem (e.g., Linares et al.,
2008; Montero-Serra et al., 2018a). However, the life-history traits
of the species will condition the slow recovery of the ecosystem,
including its full biodiversity, structure and functioning, which
will likely require several decades to centuries. This is because
individual native species will regenerate naturally at different
time scales and because transplantation may be feasible only
for a limited number of species (and if donors are available).
Therefore, the appropriate choice of species to transplant may be
important, giving priority to species with relatively fast growth
rates, so that they can more easily recover and create the three-
dimensional structure needed for associated species. The slow
population dynamics of the cold-water coral habitats makes it
difficult to really know if they are prone to regime shifts, as it
would take long-lasting studies.

Cold-water coral habitats are sensitive to a range of human
activities, including commercial bottom fisheries, hydrocarbon
exploration and extraction, and if developed, deep-sea mining
(Ramirez-Llodra et al., 2011; Ragnarsson et al., 2017). The bottom
fisheries are considered to be the major pressure, often resulting
in the removal of entire communities, with little evidence of
recovery (Clark et al., 2019). An important challenge in the
restoration of deep-sea coral habitats is the remoteness of these
habitats, which makes restoration actions highly dependent on
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technological means (e.g., large ships and ROVs), being costly in
comparison with shallow-water habitats (van Dover et al., 2014;
Da Ros et al., 2019). This may reduce the capacity to restore large
areas using coral transplants. Thus, a combination of restoration
approaches will likely be necessary, with assisted regeneration at
small scales and natural regeneration (through fisheries closures,
marine protected areas) at large scales.

CONCLUSION AND FUTURE
PERSPECTIVES ON RESTORATION

Active restoration is required where the impact of human
pressures goes beyond a point where no passive (unassisted)
recovery may take place or does not proceed at the desired
speed. Undertaking active restoration may provide conservation
outcomes (Possingham et al., 2015) and should be used
in combination with other management practices, such as
protected areas (Barbier et al., 2014; van Dover et al., 2014;
Da Ros et al., 2019).

Based on the discussions and scoring of the biological and
ecological features and their contribution to the successful
accomplishment of habitat restoration, the expert group
concluded that most of the kelp forest features facilitate successful
restoration (high score in Table 3), while the features for the
coralligenous assemblages and the cold-water coral habitat did
not promote successful restoration (low score). For seagrass
meadows and Cystoseira macroalgal beds the conclusions were
much more variable. Life-history traits of seagrass may lead
to restoration failure or success, depending on the species
(Table 2), which makes it difficult to score this feature
according to its contribution of the successful accomplishment
of habitat restoration.

The success of restoration actions depends upon the inherent
ecology and biology of the species and habitats being restored.
Life history and population connectivity impact restoration
success, while structural complexity typically is a feature that
will affect the habitat’s vulnerability against perturbations (see
Table 2). This means that restoration actions should mainly
undertake two different activities. The first step should be to
protect and maintain structural complexity and diversity, the
second should be devoted to enhancing the conditions crucial for
those features that make the success uncertain (i.e., life history
and population connectivity). The protection and maintenance
of structural complexity and diversity may be achieved by
coupling the restoration action with management measures to
significantly reduce stressors at the restoration site (van Dover
et al., 2014). Close proximity of the restoration site to more
pristine habitats improves restoration potential as the unaffected
populations can provide offspring to support re-colonization
and population connectivity, increasing genotypic diversity, if
no other limiting factors (e.g., current directions, topographic
barriers) are present.

Based on the experiences from ongoing restoration projects
and actions, the expert group suggests that four factors
should be considered to obtain the greatest chances of success
for restoration:

(1) The choice of the donor and recipient sites – to ensure that
the restoration site has suitable physical conditions and
biological characteristics, as similar as possible to that of the
donor site.

(2) The identification of the best transplantation methodology – a
multitude of transplantation techniques exists for different
species and habitats. The choice of the right technique
(or combination of techniques) requires reviewing existing
literature and outcomes of previous restoration projects.

(3) The influence of positive species interactions – the presence
of species could improve survival by for instance providing
habitat or refuge, which may speed up the recovery.
Instead of only minimizing competition and predation,
restoration actions should also focus on positive, including
co-restoration of several habitats.

(4) The potential for regime shifts – if the habitat is prone
to regime shifts, in-depth understanding of the drivers,
feedback effects and critical thresholds for the shifts,
including the interaction between species (positive and
negative) and local and global stressors, is needed.

Point 3 in the list above, which is also relevant for point 4,
needs some elaboration. Even though positive interactions
between species are highly recognized in ecology, it is not
commonly integrated in conservation or restoration efforts.
Often, the negative interactions (competition and predations)
are easier to identify and is therefore more often included as
part of the restoration effort (Silliman et al., 2015). Considering
positive interactions are more common in terrestrial (and
to a certain degree freshwater) restoration projects. However,
Halpern et al. (2007) provide some guidelines on why and
when positive interactions should be considered, including for
marine habitats. In general, physically or biologically stressful
systems benefit more from positive interactions than mild
habitats (Halpern et al., 2007; Silliman et al., 2015). It is
therefore important that the degree of stress in the system is
assessed as part of planning the restoration action. Silliman
et al. (2015) shows that doing small adjustments in the
restoration design to enhance positive interactions increases the
restoration success.

Often, the challenge of marine restoration is that it can
require long timescales (from several years to decades) before
the success of the restoration methods can be evaluated, and
it requires substantial funding and high-technology equipment,
particularly in deep-sea habitats (Bayraktarov et al., 2016;
Verdura et al., 2018). The cost of restoration is a crucial
issue, both in terms of its estimation, for example through
the transparent reporting of costs, and also the efficiency of
actions (Bayraktarov et al., 2016). Efficiency can be increased
by structuring restoration action across several partners (Bodin
and Crona, 2009) and by thinking creatively, for example using
deep-sea corals from fisherman’s by-catch in transplantations.
In addition, for habitats such as cold-water corals, which
recover slowly, short-term monitoring (i.e., a few years) cannot
be expected to be a good indication of restoration trajectory
or success. In these cases, management measures should be
taken to ensure the long-term monitoring of the area under
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restoration, which may be beyond the typical lifetime of
a restoration project. Often (as experienced in kelp forest
restoration), maintaining long-term restoration actions is also
a prerequisite for success (e.g., continuous sea urchin and
turf algae removal).

An additional challenge in marine restoration is that in many
cases (at least for the deep sea) we have limited knowledge on
key features that support restoration success or can promote
resilience. The lack of knowledge of pre-disturbance baselines,
which may have shifted along with climate change (Pauly, 1995),
is also a challenge. Ultimately, this hampers a proper evaluation
of the impact of anthropogenic activities, the actual degree of
degradation and therefore the choice of the restoration goals.

In conclusion, this work provides an overview of the
essential biological and ecological features for a range
of marine habitats (ecosystem engineers) that can affect
restoration success, highlighting the key factors for a
successful restoration. Moreover, we provide some best practice
guidelines to improve restoration success. Even though habitat
restoration is much more complicated than that which has
been discussed here, it is hoped that our discussions and
recommendations will be useful when designing and executing
future marine restoration.
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