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Meiofauna Community in Soft
Sediments at TAG and Snake Pit
Hydrothermal Vent Fields
Adriana Spedicato*, Nuria Sánchez, Lucie Pastor, Lenaick Menot and Daniela Zeppilli

LEP, Ifremer Centre de Bretagne, Plouzané, France

The risk assessment of seafloor massive sulfide (SMS) mining onmeiobenthic organisms,

specifically on soft-sediment meiofauna, is impeded by a lack of knowledge on the

biology and ecology of these communities. In this study, we investigated sediment

samples taken in proximity of active vents at Trans-Atlantic Geotraverse (TAG) and Snake

Pit, two hydrothermal vent fields of the Mid-Atlantic Ridge, in order to explore metazoan

meiofauna, particularly nematode community, and its relation to organic carbon, total

nitrogen, total sulfur, and dissolved oxygen. Organic carbon and nitrogen contents were

low at both sites. High concentrations of total sulfur and low oxygen penetration were

found at Snake Pit compared to TAG. Snake Pit showed approximately four times higher

meiofauna and nematode density compared to TAG, as well as a dissimilar nematode

community composition. We hypothesize that high sulfur concentrations at Snake Pit

may support high microbial growth, which represents one of the main food source for

nematodes. Moreover, TAG nematode community mostly consisted of persisters (K-

strategists), whereas Snake Pit one was composed by both persisters (Desmoscolecidae

family) and colonizers (r-strategists Metalinhomoeus and Halomonhystera), whose

presence can be facilitated by the bioturbation effect of polychaetes observed on

the sediment surface. Therefore, food availability, geochemical settings, and biotic

interactions seem to drive the local meiofauna and nematode community. Our study also

draws attention to the opportunity of including meiofauna and specifically nematodes

in impact studies conducted in this area in order to assess and monitor the impact of

SMS mining.
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INTRODUCTION

The demand for mineral raw materials is increasing nowadays as a result of constant population
growth, rising living standards, urbanization, technological advance, and, more recently, the
transition to a low-carbon economy (Murton et al., 2019). Therefore, alternative sources of
minerals are currently being sought, such as deep-sea seafloor massive sulfide (SMS) (Boschen
et al., 2013). Seafloor massive sulfide deposits form through hydrothermal vent activity, which
generates areas of hard substrate enriched with high content of base metals (zinc, iron, lead, and
copper), sulfides, and rare elements, such as gold, silver, cobalt, and platinum (Hoagland et al.,
2010). Once the flow of chemically reduced hydrothermal fluid ceases, sulfide deposits are no
longer hydrothermally active, thus becoming inactive (exinctSMS or eSMS) (Van Dover, 2019).
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These deposits are likely accessible to future mining and are far
more abundant than active ones, but their localization can be
impeded by pelagic sediment, which slowly covers the deposits
(Murton et al., 2019). For instance, according to Murton et al.
(2019), the Trans-Atlantic Geotraverse (TAG) (Figure 1), which
is one of the most studied hydrothermal sites of the Mid-Atlantic
Ridge (MAR), is smeared with deposits that extend sub-seafloor
and are actually larger than what previous studies estimated.
Indeed, whereas Hannington et al. (1998) reported a deposit
tonnage of 2.7 Mt, Murton et al. (2019) recently estimated
TAG sulfides to be around 26 Mt. Thus, TAG has been defined
as potentially more attractive for mining activities than it was
believed so far. Moreover, SMS deposits located on a slow-
spreading ridge, such as TAG and Snake Pit (Figure 1), are
bigger, and their venting activity more stable, compared to fast-
spreading ridges. They are thus more suitable sites for mining
(Fouquet and Scott, 2009; Boschen et al., 2013).

Mining activities will directly affect benthic communities of
the SMS deposits target areas mainly because of the removal
of substrate that harbors the organisms, but also because of
sediment turbidity and toxic plumes (Boschen et al., 2013).
The risk assessment of eSMS mining is, however, impeded
by a lack of knowledge on the biology and ecology of
communities associated with eSMS, and particularly so for
the soft-sediment communities (Van Dover, 2019). The few
studies that sampled hydrothermal sediments or sediments in
the vicinity of hydrothermal vents highlighted the patchiness of
the distribution, as well as the heterogeneity in the structure
and composition of meiofaunal and macrofaunal assemblages
(Vanreusel et al., 1997; Levin et al., 2009). In the North

FIGURE 1 | Map of Trans-Atlantic Geotraverse (TAG) (26◦08′ N) and Snake Pit (23◦23′ N) vent fields in the Mid-Atlantic Ridge (a); map of Snake Pit sampling site, pink

star = dive 1920-14 (b); map of TAG sampling site, pink star = dive 1913-07 (c), red triangle = nearest active mound (b,c); Snake Pit oxygen profile and penetration

depth with evidences of bioturbation (d); TAG oxygen profile and penetration depth (e).

Fiji Basin, Vanreusel et al. (1997) reported higher meiofauna
densities in active than inactive hydrothermal sediments as
well as a lower diversity and different nematode species
in hydrothermal compared to background sediments. The
hydrothermal sediments, sampled with a TV grab, were hardly
quantitative, but it remains, to date, the best comparison of
meiofaunal assemblages between hydrothermally active and
inactive sediments.

During the BICOSE 2 cruise (Cambon-Bonavita, 2018),
patches of sediment were quantitatively sampled at the periphery
of TAG and Snake Pit, two hydrothermal vent fields of the
MAR, with the aim of describing meiofauna communities
and understanding the drivers of variations in community
structure and composition in different geochemical contexts. The
meiofauna and nematode assemblages were investigated in soft
metalliferous sediments in relation with organic carbon (OC),
total nitrogen (N), total sulfur (S), and dissolved oxygen (O2).

MATERIALS AND METHODS

Study Sites
TAG (26◦08′ N) and Snake Pit (23◦23′ N) vent sites (Figure 1)
are located on two different segments of the slow-spreading
(22 mm/year) MAR (Kleinrock and Humphris, 1996) and are
separated by a linear distance of about 300 km (VanDover, 1995).

The TAG area holds several extinct SMS deposit and one high-
temperature SMS deposit (i.e., TAG activemound) (Murton et al.,
2019). Trans-Atlantic Geotraverse active mound is located at
3,670-m depth and 3 km east of the ridge axis. It consists in a 250-
m diameter and 50-m-high deposit topped with black smoker
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chimneys (350◦C) (Rona et al., 1986). Metalliferous red-brown
oxide sediments have been observed up to 125m away from the
base of the deposit talus, specifically a 7-cm-thick layer of Fe-
rich red-brown mud (20–40% Fe) overlying a 4-cm-thick layer of
carbonate ooze (5–70% CaCO3), which also contains up to 32%
Fe (German, 1993). Trans-Atlantic Geotraverse active mound
formed about 50,000 years ago and still shows hydrothermal
activity (Lalou et al., 1990; German, 1993).

The Snake Pit vent field is located at the ridge axis at a water
depth between 3,480 and 3,570m, and it consists of three elongate
parallel ridges (Thompson et al., 1988). The flat areas between the
ridges are covered by metalliferous sediment composed of dark
granular sulfides, mainly pyrrhotite, chalcopyrite, marcasite, and
pyrite, and minor sphalerite (Thompson et al., 1988; Sudarikov
and Galkin, 1995). Several small SMSs are known in the field,
including the Beehive, Nail, Moose, Firtree, and the Cliff deposits.
These mounds are 20–60m in diameter and 20–25m in height
(Fouquet et al., 1993). High-temperature activity and related
black smoker chimneys (325◦-330◦C) is restricted to the Beehive
and Cliff hydrothermal sites (Fouquet et al., 1993).

Experimental Design, Sampling, and
Processing
Samples were collected at the MAR during the BICOSE2 cruise
(2018) on board the RV Pourquoi Pas?. Soft sediment samples
were taken through the human-operated vehicle (HOV) Nautile
during the dive 1913-07 for TAG and dive 1920-14 for Snake
Pit, from January 27 to March 11, 2018 (Figure 1). These two
sampling sites will thereafter be named TAG and Snake Pit
for simplification. Trans-Atlantic Geotraverse sampling site was
located 90m to the northwest of the active mound. Snake Pit
sampling site was located 70m to the northeast of the black
smoker “Moose.” Four push cores (CT) (5.5-cm diameter, 24-
cm2 sampling area) were retrieved per site; three were used for
meiofauna, and one was used for O2 profiling and OC, N, and
total S contents. Samples for meiofauna were sliced vertically on
board according to depth in five layers of 1 cm each (0–1, 1–2,
2–3, 3–4, and 4–5 cm). Each layer was fixed in 4% formalin. The
sediment core for geochemistry was first used for O2 profiling
and then sliced horizontally every centimeter. The sediment was
kept frozen at −20◦C until freeze dried, grinded, and analyzed
back at the laboratory.

Meiofauna Identification
All samples were sieved on 1mm, 300µm, and 32µm in
order to separate fauna by body size. Meiofauna was extracted
by Ludox centrifugation according to Heip et al. (1985) and
then stained with fuchsine and fixed in 4% formalin. All
meiobenthic animals retained in both 32- and 300-µm sieves
were counted and classified to high taxonomic level under
a stereomicroscope Olympus SZX16 (Olympus Corporation,
Tokyo, Japan). All nematodes weremounted on permanent slides
following the formalin–ethanol–glycerol technique described by
Seinhorst (1959) and then identified at genus level with a Leica
DM2500 LED microscope (Leica Microsystems GmbH, Wetzlar,
Germany) according to Platt and Warwick (1988), WoRMS
Editorial Board (2020), Bezerra et al. (2020), Bain et al. (2014).

Geochemical Data
Oxygen profiles were performed ex situ using Clark-type
microelectrodes (Revsbech, 1989). The sediment core was kept
at in situ temperature during profiling, and surface water was
gently bubbled with an air diffusor to ensure a well-mixed
overlying water. Linear calibration was achieved between an
air-saturated seawater titrated using the Winkler technique
(Grasshoff et al., 1983) and an O2-free water obtained by
adding sodium sulfite (Na2SO3). The averaged concentrations
were then calculated for each layer in which meiofauna
was retrieved (basically every cm down to 5 cm when O2

was detected).
Total S, N, and carbon were determined using a TruMac CNS

from LECO (LECO, St. Joseph, MI, USA) (Kowalenko, 2001).
Total S and N were analyzed at 1,450◦C using COMCAT (LECO,
St. Joseph, MI, USA) as a combustion accelerator (Kowalenko,
2001). Organic carbon was measured at 1,350◦C after removing
carbonates overnight at a temperature of 60◦C with 1M HCl.
Samples were then rinsed twice with Milli-Q water and dried
before their introduction in the analyzer (Brodie et al., 2011 and
references therein).

Statistical Analysis
Richness (number of taxonomic groups), density (number of
individuals per 10 cm2), and community composition for
metazoan meiofauna were analyzed. For nematodes, richness
(number of genera) and density (number of individuals per
10 cm2) were considered. Kruskal–Wallis test was conducted
to assess differences in richness and density between sites.
Differences inmeiofauna and nematode community composition
between the two studied sites were tested using Ružička
(abundance) matrix through permutational analysis of variance
(PERMANOVA). Ružička index was calculated through the
function “beta” of the R package vegan v. 2.2-1 (Oksanen, 2015),
and PERMANOVA was performed using distance matrices
calculated with the function “adonis” included in the R package
vegan v. 2.2-1 (Oksanen, 2015). Principal component analysis
(PCA) conducted by densities were performed to visualize
community composition variations between sites using the
Hellinger distance for data transformation, functions “rda”
and “decostand” of the R package vegan v. 2.2-1 (Oksanen
et al., 2018). Moreover, the Shannon diversity index (H′)
and the Pielou’s evenness index (J) were calculated for
both meiofauna and nematode with the software PRIMER
v6 (PRIMER-e, Clarke and Gorley, Auckland, New Zealand)
(Clarke and Gorley, 2006).

RESULTS

Visual Description of Sediment Cores
At Snake Pit, a thin layer of reddish sediments at the top of the
core was draping darker brownish sediments. At the sediment
surface, numerous hesionid polychaetes were observed crawling
among tubes of ampharetid polychaetes.

The upper layer of the sediment core taken at TAG showed
a reddish color, reflecting the typical TAG iron oxyhydroxide
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minerals (German, 1993). No macrofauna was visually observed
at the surface of the sediment during the dive.

Geochemical Setting
Oxygen concentration was decreasing with depth at both sites
(Table S1, Figure 1). Oxygen penetration depth was 0.7± 0.5 cm
at Snake Pit, with visual evidences for bioturbation (increases
in O2 concentrations at depth due to bioirrigation of burrows
by polychaetes; Figure 1, Table S1), whereas O2 concentration
was still >100µM at 7-cm depth at TAG, with no visible signs
of bioturbation. The O2 concentrations averaged per sediment
layers (from 0 to 5 cm) are displayed in Table S1. Organic carbon
contents were<0.5% at both sites, with values slightly decreasing
with depth between 0 and 1 cm. Nitrogen contents were very low,
ranging from 0.06 to 0.11% at Snake Pit and from 0.03 to 0.1% at
TAG. Total S contents were 26 to 31% at Snake Pit and only 0.7
to 1.0% at TAG in the top 5 cm of the core.

Meiofauna Community Description and
Composition
Snake Pit has the highest average meiofauna density (138 ± 34
ind/10 cm2) compared to TAG (32 ± 16 ind/10 cm2) (Figure 2),
whereas the same taxonomic richness was observed at both sites
(a total of 7 taxa per site) (Table 1). The highest meiofauna
densities were found in the first 2 cm of sediment at both TAG
(95%) and Snake Pit (97%), with a sharp decrease from the first

to the second layer (from 90 to 6% at TAG and from 80% to
17% at Snake Pit). According to the Kruskal–Wallis test, the
only statistically significant difference between TAG and Snake
Pit was found in meiofauna density (p = 0.049). Nematodes
account for 70% of the total meiofauna at TAG and for 62%
at Snake Pit, thus being the highest density taxon, immediately
followed by copepods and nauplii, together accounting for 27%
at TAG and 34% at Snake Pit. Gastrotricha, Tantulocarida,
Ostracoda, and Halacarida account each for <2%, whereas only
at Snake Pit, polychaeta account for 3.4%. Only Nematoda were
found in the deeper layers (3–5 cm) of TAG cores, whereas
also Copepoda, Nauplii, and Ostracoda were present in those
layers in Snake Pit samples (Figure S1). Moreover, Tantulocarida
and Halacarida were exclusive taxa from TAG and Snake Pit,
respectively (Figure S1). Permutational analysis of variance was
conducted, but no statistically significant difference between sites
was detected. Similarly, PCA did not identify a discrimination
in taxa composition between the two sites (Figure 3). Both
Shannon’s diversity and Pielou’s evenness indices were lower for
TAG (H′

= 0.91, J = 0.47) than for Snake Pit (H′
= 1.11, J = 0.57)

(Table 1).

Nematode Community Description and
Composition
Nematodes were found mostly in the first 2 cm of sediment
for both Snake Pit (97% of the total population) and TAG

FIGURE 2 | Meiofauna density boxplot (A), meiofauna richness boxplot (B), nematode density boxplot (C), nematode richness boxplot (D). The boxplots represent

the median value (horizontal thicker line within the box), the distributions of 50% of the data (the box), and the highest and lowest values of the distribution for both

Snake Pit (in blue) and TAG (in yellow).
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TABLE 1 | The density (ind/10 cm2 ) per core of each meiofauna taxa and nematode genera is given for TAG (on the left) and for Snake Pit (on the right); total density and

total abundance per core are also given, together with an average density, and average abundance per site.

TAG Snake pit

TB4 TB8 TB12 TOT T07 T10 T2 TOT

Density (ind/10 cm²) Avg Density (ind/10 cm²) Avg

Nematoda 10.83 34.58 22.5 22.64 Nematoda 92.92 96.67 67.91 85.83

Copepoda 0.83 3.75 3.75 2.78 Copepoda 27.92 13.75 23.03 21.57

Nauplii 2.08 5.0 10.83 5.97 Nauplii 42.08 25.83 7.9 25.27

Bivalvia 0 0 0 0 Bivalvia 1.67 0 0 0.56

Gastrotricha 0 0 0.42 0.14 Gastrotricha 0 0 0 0

Polychaeta 0 0 0.83 0.28 Polychaeta 0 10 4.1 4.70

Ostracoda 0 0 1.25 0.42 Ostracoda 0 0 0.42 0.14

Halacarida 0 0 0 0 Halacarida 0.41 1.66 0 0.69

Tantulocarida 0 0 0.42 0.14 Tantulocarida 0 0 0 0

TOT Density 13.74 43.33 40 32.36 TOT Density 165 147.91 103.36 138.76

TOT Abundance 32 101 95 76 TOT Abundance 385 289 226 300

J′ 0.47 J′ 0.57

H′ 0.91 H′ 1.11

Acantholaimus 1.25 2.08 1.67 1.67 Acantholaimus 0 0 0 0

Anoplostoma 0 0 0 0 Anoplostoma 0 0.42 0 0.14

Amphymonistrella 0 0.42 0 0.14 Amphymonistrella 0 0 0 0

Camacolaimus 0 0 0 0 Camacolaimus 10 11.67 1.67 7.78

Cephalochaetosoma 0 0 0.42 0.14 Cephalochaetosoma 4.17 4.17 2.5 3.61

Chromadorella 0 2.91 4.17 2.36 Chromadorella 0 0 0 0

Chromadorina 0 0 0 0 Chromadorina 0 0.42 0 0.14

Cobbia 0.42 0 0 0.14 Cobbia 0 0 0 0

Cyatholaimus 0 0 0 0 Cyatholaimus 0 0.42 0 0.14

Daptonema 0 0 0 0 Daptonema 0 0.83 0 0.28

Desmodora 0 0 0 0 Desmodora 0 2.92 0 0.97

Desmoscolex 1.67 12.50 7.50 7.22 Desmoscolex 0 0 0 0

Dinetia 0 0 0 0 Dinetia 0 0.83 0 0.28

Diplopeltoides 0 0 0.42 0.14 Diplopeltoides 0 0 0 0

Dracogallus 0 0 0 0 Dracogallus 0 0.42 0 0.14

Eleutherolaimus 0 0 0 0 Eleutherolaimus 0 1.67 0 0.56

Epsilonema 0 0 0 0 Epsilonema 0.42 0.42 0 0.28

Euchromadora 0 0 0 0 Euchromadora 0.83 0.42 0.42 0.55

Leptolaimus 0 0 0 0 Leptolaimus 0 0 0.42 0.14

Halalaimus 1.25 1.67 0.83 1.25 Halalaimus 0 0 0 0

Halomonhystera 0 0 0 0 Halomonhystera 16.25 15.42 22.92 18.19

Megadesmolaimus 0 0 0 0 Megadesmolaimus 0.42 0.42 0 0.28

Metadesmolaimus 0 0 0 0 Metadesmolaimus 1.67 1 0 0.89

Metalinhomoeus 0 0 0 0 Metalinhomoeus 30.83 29.17 22.50 27.50

Microlaimus 2.08 8.75 3.33 4.72 Microlaimus 2.92 5 0.83 2.92

Molgolaimus 0.42 0 0 0.14 Molgolaimus 0 0 0 0

Oncholaimus 0 0 0.42 0.14 Oncholaimus 0 0 0 0

Prooncholaimus 0.83 1.25 1.67 1.25 Prooncholaimus 0 0 0 0

Pselionema 0 0.42 0 0.14 Pselionema 0 0 0 0

Retrotheristus 0 0.14 0 0 Retrotheristus 0 0 0 0

Oxystomina 0 0 0 0 Oxystomina 0.83 0 0 0.28

Sabatieria 0 0 0 0 Sabatieria 0 3.75 2.08 1.94

Syringolaimus 0.42 0 0 0.28 Syringolaimus 2.92 6.25 0.83 3.33

(Continued)
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TABLE 1 | Continued

TAG Snake pit

TB4 TB8 TB12 TOT T07 T10 T2 TOT

Density (ind/10 cm²) Avg Density (ind/10 cm²) Avg

Tricoma 0.42 0.83 0 0.63 Tricoma 0 0 0 0

Viscosia 0.42 0 0 0.14 Viscosia 0 0 0 0

Unidentified genus n◦1 0 0 0 0 Unidentified genus n◦1 0.42 0 0 0.14

Unidentified genus n◦4 0 0.42 0 0.14 Unidentified genus n◦4 0 0 0 0

Unidentified genus n◦5 0.83 0 0 0.28 Unidentified genus n◦5 0 0 0 0

Unident. genus(Chromadoridae) 0 0 0 0 Unident. genus(Chromadoridae) 0.42 0 0 0.14

Unident. genus(Comesomatidae) 0 0 0 0 Unident. genus(Comesomatidae) 0 0.42 0 0.14

TOT Density 10.83 34.58 22.50 22.64 TOT Density 72.08 86.01 54.17 70.75

TOT Abundance 26 80 54 53.33 TOT Abundance 223 232 163 206

J′ 0.68 J′ 0.59

H′ 2.04 H′ 1.92

The most abundant nematode genera per site are given in bold. The Pielou’s evenness (J) and the Shannon index (H′) are given per site for both meiofauna and Nematoda.

(97%), with a sharper decrease from the first (94%) to the
second (3%) cm at TAG than at Snake Pit (91% in the first
cm, 6% in the second). Snake Pit has the highest average
nematode density (86 ± 12 ind/10 cm2) compared to TAG
(22 ± 7 ind/10 cm2) (Figure 2) and a slightly higher diversity
(average of 14 genera, total of 24 genera) compared to TAG
(average of 10 genera, total of 19 genera) (Table 1). According
to the Kruskal–Wallis test, no statistically significant difference
was found in terms of nematode diversity between the two
sites, whereas the difference in nematode density is statistically
significant (p = 0.049). The most abundant nematode genera
at TAG are Desmoscolex (28% of the total density) and
Microlaimus (18% of the total density), whereas at Snake Pit
Metalinhomoeus accounts for 38% of the total density, and
Halomonhystera accounts for 25% (Table 1). Three of the 24
and 19 genera observed at Snake Pit and TAG, respectively,
were present at both sites: Cephalochaetosoma, Microlaimus,
and Syringolaimus. Trans-Atlantic Geotraverse deeper layers (2–
5 cm) host few nematodes: one specimen of Chromadorella,
Cobbia, Retrotheristus, Sabatieria, and Syringolaimus (Figure S2).
Snake Pit deeper layers (2–5 cm) host several nematode genera:
two specimens of Camacolaimus, Metalinhomoeus, Sabatieria,
and Syringolaimus; three of Halomonhystera; and only one of
Cephalochaetosoma and Desmodora (Figure S2). Permutational
analysis of variance analysis found a statistically significant
difference in community composition between sites (p =

0.001; F = 2.73), which explains 13% of the variance.
Moreover, PCA revealed a strong discrimination in genera
composition between the two sites. Indeed, PC1 explains
78% of the variance, with Metalinhomoeus (score = 0.6) and
Halomonhystera (score = 0.5) characterizing Snake Pit, whereas
Desmoscolex (score = −0.5) typifies TAG (Figure 3). Both
diversity and evenness indices were higher for TAG (H′

=

2.04; J = 0.68) than for Snake Pit (H′
= 1.92; J = 0.59)

(Table 1).

DISCUSSION

The ecology of nematodes living in chemosynthetic
environments has been reviewed by Vanreusel et al. (2010), who
noted that the community structure was driven by the presence of
soft substrate, geochemical settings, and the availability of food,
whereas community composition was additionally driven by the
spatial continuity of the habitat. In this study, sedimentation
of particulate matter around the studied sites was mainly due
to the erosion of ancient sulfides mounds and the settling of
hydrothermal particles that precipitated within the plume. The
solid phase composition shows a significant difference in total
S, with a stronger influence of metalliferous sediment at Snake
Pit (Table S1). Still, both sites exhibit similar and relatively low
organic and N contents. Because O2 is generally correlated to
OC, with an increasing penetration depth when OC decreases
(Wenzhöfer and Glud, 2002), one could have expected a similar
O2 penetration depth (OPD) between the sites. Nevertheless,
while the OPD at TAG is what we expect from abyssal areas (i.e.,
several centimeters; Glud, 2008), the OPD at Snake Pit is much
shallower, with evidences of bioturbation (Figure 1). This may
have contributed to the observed differences in our nematodes
community composition. While TAG nematode community is
mostly composed by persisters with a K-type life strategy (low
reproductive rates, low colonizing capability, and low levels
of tolerance to disturbance) and no clear dominance pattern,
Snake Pit community consists of both colonizers and persisters
genera with a clear dominance of two taxa, Metalinhomoeus
and Halomonhystera, representing together 63% of the total
community. The dominance of these two tolerant genera and
the presence of Sabatieria are consistent with the hypoxia of
Snake Pit sediments. The two nematode genera Metalinhomoeus
and Sabatieria are able to reach the deeper anoxic layers of
Snake Pit sediments (5-cm depth) (Figure S2). Metalinhomoeus
is one of the biggest and longest nematodes of our samples, a
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FIGURE 3 | Principal component analysis of meiofauna taxa composition (A) and nematode genera composition (B). Blue dots indicate Snake Pit samples, whereas

yellow dots indicate TAG samples. For meiofauna (A), PC1 explains 76% of the variance, whereas PC2 explains 13%. For nematodes (B), only the most

representative genera are shown in the plot, and PC1 explains 76% of the variance, whereas PC2 explains 12%.

peculiar body shape of thiobiotic nematodes (deeper-living in
the sediment) (Jensen, 1987). The pronounced body elongation
and the increase in surface–volume ratio in thiobiotic species
are an adaptive character related to low O2 partial pressure
(Vanreusel et al., 2010). The increased body length in suboxic or
anoxic conditions reflects an increased mobility, which allows
nematodes to move easily among sediment layers, passing
quickly from depleted to well-oxygenated zones (Jensen, 1986,
1987). Sabatieria has already been described as a resistant genus
to anoxic conditions, able to survive periods of anoxia of up to
7 weeks, and it is often the only remaining species in strongly
anoxic conditions (Jensen, 1984; Modig and Ólafsson, 1998;
Boyd et al., 2000; Wetzel et al., 2002; Steyaert et al., 2005, 2007).
The ovoviviparous strategy observed in Halomonhystera as a
response to stressful or toxic conditions (Walker and Tsui, 1968;
Luc et al., 1979; Chen and Caswell-Chen, 2003) may also enhance
their probability to survive and make them more tolerant than
other meiofauna taxa (Polz et al., 1992; Thiermann et al., 2000;
Bellec et al., 2018). In contrast to what Vanreusel et al. (1997)
found at the Fiji basin, specialized nematode genera seem to
have been able to invade the Snake Pit vent fields surrounding
sediments, where they coexist with genera less tolerant to harsh
conditions. The presence of the latter may be facilitated by
the activity of polychaetes that were observed on the sediment
surface, because polychaetes act as biodiffusors and bioturbators,
mixing particles and pore water through the sediment layers
(Reible et al., 1996).

The presence of numerous polychaetes and the higher density
of meiofauna, together with the low OPD, would suggest an extra
input of food sources at Snake Pit, despite the similar OC and
N contents at both sites. Snake Pit sediments are characterized
by sulfide-rich minerals, and Kato et al. (2018) suggested
that chemolithoautotrophic bacteria may play a key role as
primary producers in the sulfide deposits below the seafloor.

This chemosynthetic system can be fueled by oxidized pyrite
or pyrrhotite, which release Fe(II) and sulfide in oxygenated
seawater (Schippers and Jorgensen, 2002). In these reactions,
intermediate S species (ISS), such as elemental S, sulfite, and
thiosulfate, are produced during electron transfer from sulfide to
sulfate (Moses et al., 1987). Through the analysis of metagenome-
assembled genomes from massive sulfide deposits, Kato et al.
(2018) found that some yet-uncultivated bacteria are able to use
sulfate or ISS as energy sources. Therefore, we hypothesize that
high sedimentary S concentrations may result in an increase of
bacterial density and, subsequently, in a raise of food inputs
for the dominant meiofauna taxa, resulting in their flourishing
(Van Gaever et al., 2009). Indeed, the most abundant nematode
genera at Snake Pit (Metalinhomoeus and Halomonhystera) are
nonselective deposit feeders (group 1B, Wieser, 1953), which can
feed on bacteria as well (Moens and Vincx, 1997).

The observed differences in nematode community
composition between TAG and Snake Pit could also be
attributed to the distance between the sites (300 km) and the
further separation due to the Kane Fracture Zone. As already
suggested by Vanreusel et al. (1997), the dispersal ability of
free-living nematodes is limited; thus, colonization of patchily
distributed, and ephemeral hydrothermal vents comes from
adjacent sediments rather than the long-range dispersal of a
specialized fauna. In the Fiji basin indeed, the nematode genera
composition was similar between vents and control sites with
few dominating genera, of which Monhystera prevailed in the
majority of samples (Vanreusel et al., 1997). However, this
hypothesis will be further tested by a comparison with control
sites in a future study.

At our sites, as themeiofauna community composition reflects
the pattern reported in the literature for the deep sea, that
is, nematodes as approximately 90% of the total abundance
of meiofauna, it does not allow to determine a discrimination

Frontiers in Marine Science | www.frontiersin.org 7 April 2020 | Volume 7 | Article 200

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Spedicato et al. Sediment Influence on MAR Meiofauna Community

between TAG and Snake Pit (Heip et al., 1985; Vanreusel
et al., 2010; Zeppilli et al., 2014). Instead, nematodes show a
genus-specific response to variable geochemical characteristics
of metalliferous sediments. Thus, although meiofauna may be a
powerful bioindicator of anthropogenic impacts (Zeppilli et al.,
2015), a higher taxonomic resolution is needed to reveal the
response of meiobenthic communities to the heterogeneity of
their environments (Zekely et al., 2006; Gollner et al., 2010;
Degen et al., 2012; Sarrazin et al., 2015). This heterogeneity
should be taken into account when predicting the effect of
a mining event on the structure of meiobenthic community,
knowing that the reduction in habitat heterogeneity may
permanently alter the structure of benthic communities (Zeppilli
et al., 2015) and recolonization relies mainly on near vent sites
(Vanreusel et al., 1997; Zekely et al., 2006).

CONCLUSION

The soft-sediment meiofauna and nematode communities
showed four times higher densities at the Snake Pit than
the TAG vent fields. The composition of the meiofauna at a
low taxonomic resolution reflects the pattern reported in the
literature for the deep sea (i.e., nematodes contributing for 90%
of the total abundance of meiofauna) (Vanreusel et al., 2010
and references therein; Zeppilli et al., 2014), but differences in
the Nematoda community composition at genus level revealed
the influence of the surrounding environment. The geochemical
settings (mostly O2 and total S) and food availability are
hypothesized to be the main drivers for the observed differences
between the two study sites. Thus, our findings highlight the
heterogeneity of hydrothermal sediments and the necessity of a
high taxonomic resolution to reveal the response of meiofauna
community to variations in biotic and abiotic factors and
eventually mining impacts.
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