
fmars-07-00206 April 11, 2020 Time: 18:40 # 1

ORIGINAL RESEARCH
published: 15 April 2020

doi: 10.3389/fmars.2020.00206

Edited by:
Laura Anne Bristow,

University of Southern Denmark,
Denmark

Reviewed by:
Bo Thamdrup,

University of Southern Denmark,
Denmark

Patrick Meister,
University of Vienna, Austria

*Correspondence:
Sajjad A. Akam

sajjada@tamucc.edu

Specialty section:
This article was submitted to

Marine Biogeochemistry,
a section of the journal

Frontiers in Marine Science

Received: 08 September 2019
Accepted: 16 March 2020

Published: 15 April 2020

Citation:
Akam SA, Coffin RB, Abdulla HAN

and Lyons TW (2020) Dissolved
Inorganic Carbon Pump

in Methane-Charged Shallow Marine
Sediments: State of the Art and New

Model Perspectives.
Front. Mar. Sci. 7:206.

doi: 10.3389/fmars.2020.00206

Dissolved Inorganic Carbon Pump in
Methane-Charged Shallow Marine
Sediments: State of the Art and New
Model Perspectives
Sajjad A. Akam1* , Richard B. Coffin1, Hussain A. N. Abdulla1 and Timothy W. Lyons2

1 Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX,
United States, 2 Department of Earth Sciences, University of California, Riverside, Riverside, CA, United States

Methane transport from subsurface reservoirs to shallow marine sediment is
characterized by unique biogeochemical interactions significant for ocean chemistry.
Sulfate-Methane Transition Zone (SMTZ) is an important diagenetic front in the
sediment column that quantitatively consumes the diffusive methane fluxes from deep
methanogenic sources toward shallow marine sediments via sulfate-driven anaerobic
oxidation of methane (AOM). Recent global compilation from diffusion-controlled marine
settings suggests methane from below and sulfate from above fluxing into the SMTZ
at an estimated rate of 3.8 and 5.3 Tmol year−1, respectively, and wider estimate for
methane flux ranges from 1 to 19 Tmol year−1. AOM converts the methane carbon to
dissolved inorganic carbon (DIC) at the SMTZ. Organoclastic sulfate reduction (OSR)
and deep-DIC fluxes from methanogenic zones contribute additional DIC to the shallow
sediments. Here, we provide a quantification of 8.7 Tmol year−1 DIC entering the
methane-charged shallow sediments due to AOM, OSR, and the deep-DIC flux (range
6.4–10.2 Tmol year−1). Of this total DIC pool, an estimated 6.5 Tmol year−1 flows
toward the water column (range: 3.2–9.2 Tmol year−1), and 1.7 Tmol year−1 enters the
authigenic carbonate phases (range: 0.6–3.6 Tmol year−1). This summary highlights that
carbonate authigenesis in settings dominated by diffusive methane fluxes is a significant
component of marine carbon burial, comparable to ∼15% of carbonate accumulation
on continental shelves and in the abyssal ocean, respectively. Further, the DIC outflux
through the SMTZ is comparable to ∼20% of global riverine DIC flux to oceans. This
DIC outflux will contribute alkalinity or CO2 in different proportions to the water column,
depending on the rates of authigenic carbonate precipitation and sulfide oxidation and
will significantly impact ocean chemistry and potentially atmospheric CO2. Settings with
substantial carbonate precipitation and sulfide oxidation at present are contributing CO2

and thus to ocean acidification. Our synthesis emphasizes the importance of SMTZ as
not only a methane sink but also an important diagenetic front for global DIC cycling.
We further underscore the need to incorporate a DIC pump in methane-charged shallow
marine sediments to models for coastal and geologic carbon cycling.

Keywords: marine carbon cycle, marine methane fluxes, sulfate methane transition zone, anaerobic methane
oxidation, methane derived authigenic carbonates, dissolved inorganic carbon, sediment carbon budget, ocean
acidification
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INTRODUCTION

Methane (CH4) is an important greenhouse gas with a significant
role in the geological evolution of Earth’s carbon cycle and
ongoing climate change. Compared to carbon dioxide (CO2),
methane has ∼28 times higher warming potential (Stocker
et al., 2014), and marine methane reservoirs constitute a large
exchangeable carbon pool in the Earth’s shallow subsurface,
which is significant for carbon cycle dynamics (Kvenvolden,
2002). Continental margins are characterized by methane flux
sites that involve transfer in dissolved and gaseous forms
via diffusion and advection from subsurface reservoirs to
the seafloor. Methane transport toward the seafloor creates
a characteristic chemosynthetic ecosystem based on benthic
microbial interactions and highly interconnected carbon cycling
coupled with other elements such as sulfur, iron, calcium,
and trace metals (Suess, 2010). They are thus sites of unique
geosphere-biosphere coupling that plays a significant role in the
chemical and biological composition of the oceans, as well as
the global carbon cycle (Judd and Hovland, 2009; Boetius and
Wenzhöfer, 2013; Levin et al., 2016; Suess, 2018).

Some abrupt climate change events in paleoclimate records
are potentially linked to massive dissociation of subsurface
methane reservoirs into the oceans and atmosphere (e.g.,
Dickens et al., 1995; Hesselbo et al., 2000; Jiang et al.,
2003). On the contemporaneous Earth, marine methane fluxes
are effectively prevented from entering the atmosphere by
microbial interactions in shallow sediments and water columns

(Boetius and Wenzhöfer, 2013; Ruppel and Kessler, 2017). These
processes convert methane carbon to inorganic and organic
carbon pool (Figure 1) and prevent the direct impact of methane
on the climate system (Reeburgh, 2007). However, the fate of this
methane-derived carbon pool is overlooked and could be relevant
to oceanic carbon cycling (Dickens, 2003; Coffin et al., 2014;
Aleksandra and Katarzyna, 2018). Here we quantify methane-
derived carbon cycling in shallow marine sediments in settings
characterized by diffusive methane fluxes. We do this by assessing
the transformation of methane carbon to inorganic and organic
carbon pools (Figure 1) with the goal to assess its contribution to
global oceanic carbon budgets. We emphasize settings dominated
by diffusive rather than advective methane transport because of
relatively well-constrained porewater data availability for global
diffusive fluxes of methane and sulfate.

SULFATE-METHANE TRANSITION
ZONES AND ASSOCIATED CARBON
CYCLING

Sulfate-methane transition zone (SMTZ) is an important
diagenetic front where the upward flux of methane encounters
downward diffusive sulfate flux and undergoes sulfate-driven
anaerobic methane oxidation (AOM) (Reeburgh, 1976; Borowski
et al., 1996; Malinverno and Pohlman, 2011). During AOM, both
methane and sulfate are consumed, and hydrogen sulfide (as
HS−) and dissolved inorganic carbon (DIC) present mostly as

FIGURE 1 | A simplified representation of DIC cycling at diffusion-controlled marine settings. Figure 4 provides DIC flux estimates. Refer to section “Calculations” for
descriptions of flux parameters.
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bicarbonate (HCO3
−) are produced (Boetius et al., 2000; Orphan

et al., 2001). The net reaction can be expressed as:

CH4 + SO2−
4 → HCO−3 +HS− +H2O (1)

Anaerobic methane oxidation in shallow sediment effectively
consumes the methane diffusion in marine sediments (Reeburgh,
2007; Knittel and Boetius, 2009). A recent compilation by
Egger et al. (2018) from 740 sites of wide oceanographic
settings suggests that 2.8–3.8 Tmol CH4 undergoes sulfate-
driven AOM annually. This range was higher than the average
∼1 Tmol CH4 year−1 proposed by Wallmann et al. (2012),
closer to 3–5.2 Tmol CH4 year−1 estimated by Henrichs and
Reeburgh (1987), and much lower than the estimated 19 Tmol
CH4 year−1 by Hinrichs and Boetius (2002).

Here we highlight that SMTZ is not only important as a
methane sink but also for DIC cycling in methane-charged
shallow sediments. We do this by quantifying the sources and
sinks of DIC cycling associated with the SMTZ at diffusive flux
settings (Figure 1).

DIC Sources at SMTZ
The SMTZ often contains higher DIC concentrations that
can be accounted for AOM (Figure 2). Organoclastic
sulfate reduction (OSR, Eq. 2) and deep-DIC flux from
methanogenic zones are the primary sources of this excess DIC
(Chatterjee et al., 2011).

2CH2O+ SO2−
4 → H2S+ 2HCO−3 (2)

The SMTZ depth is largely controlled by the upward flux
of methane (Borowski et al., 1996) as well as the rate of
organic matter degradation, which then controls rates of OSR
and methanogenesis (Meister et al., 2013). In diffusive settings,
OSR and AOM consume the sulfate at the SMTZ supported
by organic matter buried into the SMTZ as well as dissolved
organic carbon (DOC) that is produced below the SMTZ and
migrates upward (Berelson et al., 2005; Komada et al., 2016;
Jørgensen et al., 2019a). An estimated 11–80 Tmol year−1 of
SO4

2− is reduced globally in marine sediments (Jørgensen and
Kasten, 2006; Thullner et al., 2009; Bowles et al., 2014). Egger
et al. (2018) suggested that 5.3 Tmol year−1 of this global marine
SO4

2− reduction occurs at sites where methane transport occurs
through diffusion.

A global estimate for methane and sulfate fluxing to the
SMTZ in diffusive settings yielded an average ratio (CH4:SO4

2−)
of 1:1.4 (Egger et al., 2018). A combined effect of AOM and
OSR (Berelson et al., 2005; Kastner et al., 2008; Komada et al.,
2016; Jørgensen et al., 2019b), as well as cryptic C-S cycling
within SMTZ (due to concurrent production and consumption of
methane), have been suggested to be causing this higher sulfate
flux relative to methane flux (Borowski et al., 1997; Hong et al.,
2013, 2014; Beulig et al., 2019).

In addition to AOM and OSR, deep-DIC fluxing from
methanogenic depths provides another important source for
DIC through the SMTZ (Dickens and Snyder, 2009; Solomon
et al., 2014). Methanogenesis in deeper sediment can produce
DIC in the form of CO2 which can be summarized as Eq. 3

FIGURE 2 | Schematic concentration (based on measured and modeled)
profiles for CH4, SO4

2-, and DIC, at diffusive methane flux setting. Arrows
indicate flux direction. SRZ indicates the sulfate reduction zone with dominant
organoclastic sulfate reduction (OSR). The DIC concentration at the SMTZ is
the result of AOM, OSR, deep-DIC input, and authigenic carbonate
precipitation. Modified based on data from Snyder et al. (2007, Japan Sea),
Malinverno and Pohlman (2011, IODP Site U1325, Cascadia Margin),
Chatterjee et al. (2011, ODP Site 1244, Hydrate Ridge), and Wehrmann et al.
(2011, IODP Site 1345, Bering Sea).

(Meister et al., 2019b):

2CH2O
+H2O
−→ 2CO2 + 4H2

−H2O
−→ CO2 + CH4 (3)

This CO2 would dissociate to HCO3
− and H+, causing a pH

decrease. This step, in turn, would favor weathering of silicate
minerals in marine sediments (Marine Silicate Weathering-
MSiW), resulting in alkalinity production and pH buffering
(Aloisi et al., 2004; Wallmann et al., 2008; Solomon et al., 2014;
Kim et al., 2016; Wehrmann et al., 2016, Eq. 4).

Cation-richsilicate+ CO2 → Cation-depletedsilicates

+HCO−3 + Cations (4)

As a result of MSiW, methanogenic DIC enters the SMTZ as
alkalinity instead of CO2 (Wallmann et al., 2008). Additional
deep-DIC could enter the methanogenic zone and shallow
sediments due to fluid expulsion from greater depths [e.g.,
continental crust alteration (Meister et al., 2011)].

Fate of the DIC Entering SMTZ
Fate of the DIC pool entering the SMTZ primarily involves
precipitation as authigenic carbonate minerals, autotrophic
microbial consumption, and transport toward the water
column. AOM, OSR, and deep-DIC flux will increase the
DIC concentration and carbonate alkalinity of pore fluids at
SMTZ (Chatterjee et al., 2011; Yoshinaga et al., 2014). Higher
carbonate alkalinity, in turn, will stimulate authigenic carbonate
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precipitation at SMTZ (Aloisi et al., 2002; Orphan et al., 2004;
Naehr et al., 2007; Feng et al., 2010; Crémière et al., 2012; Prouty
et al., 2016) via the following reaction (Baker and Burns, 1985):

2HCO−3 + Ca2+
→ CaCO3 + CO2 +H2O (5)

A small portion of total DIC from SMTZ will be assimilated
into biomass by autotrophic microbes and eventually become
part of sedimentary organic carbon (SOC; Sivan et al., 2007;
Ussler and Paull, 2008). The remaining DIC enters overlying
sediment and eventually the water column if it is not involved
in diagenesis on the way.

CALCULATIONS

The flux of DIC to the water column from methane
charged sediments F(DIC−out), can be represented by Eqs 6
and 7, respectively.

Total(DIC) = F(DIC−AOM) + F(DIC−OSR) + F(DIC−deep) (6)

F(DIC−0ut) = (F(DIC−AOM) + F(DIC−OSR) + F(DIC−deep))−

(F(carb) + F(SOC)) (7)

As discussed below, Total(DIC) represents the ratio of DIC
from AOM, OSR, and deep flux to methane entering the SMTZ.
F(DIC−AOM), F(DIC−OSR), and F(DIC−deep) represent the DIC
input to Total(DIC) via AOM, OSR, and deep flux, respectively.
F(DIC−OSR) considers the depth-integrated DIC pool via OSR,
which includes the SMTZ and sulfate reduction zone (SRZ)
above. F(Carb), F(SOC), and F(DIC−out) represent the DIC output
from Total(DIC) via authigenic carbonate precipitation, microbial
uptake to SOC, and DIC outflux toward the water column,
respectively (Figure 1). Net DIC fluxes from the sediment in
methane-charged shallow sediments depend on the rates of these
parameters. We would also like to mention that DIC cycling
in shallow marine sediments, in general, can be influenced by
processes not directly related to methane cycling like carbonate
dissolution, organic matter degradation using electron acceptors
other than sulfate, as well as submarine groundwater discharge
(e.g., Berelson et al., 2007; Higgins et al., 2009; Moore, 2010; Hu
and Cai, 2011; Aleksandra and Katarzyna, 2018). However, we
focus our attention on diffusive methane charged settings and
hence to the parameters in Eqs 6 and 7 for our DIC calculations,
with an emphasis on their importance in marine DIC budgets.

Estimations of Parameter Values
F(DIC−AOM) and F(DIC−OSR)

Modeling studies have shown that the methane flux at fluid
advection rates of up to 60 cm year−1 is almost completely
consumed within shallow sediments (Luff and Wallmann, 2003;
Luff et al., 2004), primarily via AOM. Hence, AOM efficiency
would be lower in advective settings and higher in diffusive
settings. As we focus on diffusive settings in this study, a 100%
AOM efficiency is used for our budget calculation. Thus, for a
1:1.4 ratio of CH4:SO4

2− fluxing toward the SMTZ as a global
average in diffusive settings (Egger et al., 2018), AOM accounts

for 1 mol (70%) and OSR accounts for 0.4 mol (30%) of total
SO4

2− consumption.

F(DIC−deep)

Deep-DIC flux to the SMTZ is prevalent in diffusive methane flux
settings (e.g., Aloisi et al., 2004; Wallmann et al., 2008; Dickens
and Snyder, 2009; Chatterjee et al., 2011; Scholz et al., 2013;
Solomon et al., 2014). However, the global trend of this deep-
DIC flux is not well established. If methane from deep below
is biogenic, F(DIC−deep) should be 100% of the CH4 flux. As
a result of MSiW, methanogenic DIC contributes as alkalinity,
and silicate-bond cations are released (Wallmann et al., 2008;
Solomon et al., 2014; Pierre et al., 2016), resulting in deep-DIC
sequestration via carbonate precipitation within methanogenic
zones (Torres et al., 2020). Additional deep-DIC sinks coupled
to Fe/Mn reduction in the methanogenic zones was proposed
by Solomon et al. (2014) and available literature reports also
show a lower deep-DIC flux rate (Dickens and Snyder, 2009;
Chatterjee et al., 2011; Wehrmann et al., 2011; Komada et al.,
2016; Hu et al., 2017; Zhang et al., 2019). Hence, we assume a
conservative estimate of 50% of CH4 flux to our budget as the
average F(DIC−deep).

Fcarb
Reported average DIC uptake by authigenic carbonates from
the total DIC pool at the SMTZ varies from 7–36% (Luff and
Wallmann, 2003; Snyder et al., 2007; Wallmann et al., 2008; Hong
et al., 2013; Coffin et al., 2014; Komada et al., 2016; Chuang
et al., 2019; Zhang et al., 2019), with upper estimates ranging
up to 50% (Smith and Coffin, 2014). However, it is important
to note that authigenic carbonates may not precipitate at all
methane flux settings. Events of high-intensity fluxes (Karaca
et al., 2010; Coffin et al., 2014), fluid flux with low dissolved
methane concentrations, settings with intense bioturbation or
high sedimentation rates (Luff et al., 2004; Bayon et al., 2007)
can inhibit carbonate precipitation. Furthermore, dissolution
of authigenic carbonates can occur under multiple conditions,
including when aerobic methanotrophy produces CO2, when
sulfide oxidation produces acid, which is corrosive (Matsumoto,
1990; Himmler et al., 2011); CO2 produced from methanogenesis
(Meister et al., 2011); and due to CO2 produced in thermogenic
gas seeps (Kinnaman et al., 2010)—among other drivers of
dissolution. Rates of authigenic carbonate dissolution at diffusive
methane flux sites are not well known. In our calculations, we
assume a conservative estimate of 20% for FCarb as an average,
considering the still-limited global perspective. This value is
comparable to the recent estimates of Zhang et al. (2019, 20%)
and Komada et al. (2016, 25%), who treated all three parameters
in Eq. 6 as Total(DIC).

Fsoc
In exceptional cases, up to 85% incorporation of AOM induced
DIC has been reported for the SOC pool (Coffin et al., 2015).
However, in general, the production of new microbial biomass in
anoxic sediments based on AOM is negligible due to low growth
yield and accounts for only 1–3% of the methane consumption
(Nauhaus et al., 2007; Treude et al., 2007). Hence the bulk
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SOC pool often does not represent the new biomass and the
DOC produced via AOM (Ussler and Paull, 2008; Coffin et al.,
2014). Modeling studies have shown that AOM is the dominant
process at SOC values <5% (Sivan et al., 2007). Hence, we use an
FSOC = 5% as an average estimate for DIC conversion to organic
carbon at the SMTZ in our calculation.

F(DIC−out)
With a portion of Total(DIC) going to authigenic carbonate and
SOC, the remaining DIC from Total(DIC) (averaging 75% based
on a Fcarb = 20 and FSOC = 5%) enters the overlying sediment
and eventually the water column if it is not involved in diagenesis
on the way. This DIC flux can, in turn, and significantly impact
ocean chemistry.

It is also important to mention that methane fluxes are highly
variable in time, resulting in upward and downward movement
of the SMTZ (e.g., Malone et al., 2002; Meister et al., 2007, 2019a;
Contreras et al., 2013; Meister, 2015). Such dynamic conditions
could lead to strong variations in the parameters discussed above
and the net DIC sinks and sources. Hence, we consider an
extended range of these parameters in Table 1 to address the flux
variability. This approach also considers the still-limited global
perspective of these parameters.

TABLE 1 | Parameters controlling the DIC fluxes at SMTZ, with their average and
extended range considered in carbon flux calculation.

Average Variable

Parameter rate range Examples

AOM:OSR (for
consumption of
total sulfate
entering SMTZ)

70:30 100:0–30:70 Kastner et al., 2008; Burdige
and Komada, 2011; Boetius
and Wenzhöfer, 2013; Meister
et al., 2013; Hu et al., 2015,
2017; Komada et al., 2016; Wu
et al., 2016; Wurgaft et al.,
2019; Zhang et al., 2019

F(DIC−deep) 50% 20–75% Luff and Wallmann, 2003;
Snyder et al., 2007; Wallmann
et al., 2008; Hong et al., 2013;
Coffin et al., 2014; Komada
et al., 2016; Hu et al., 2017;
Chuang et al., 2019; Zhang
et al., 2019

Fcarb 20% 10–35% Luff and Wallmann, 2003;
Wallmann et al., 2006; Snyder
et al., 2007; Karaca et al.,
2010; Hong et al., 2013; Coffin
et al., 2014; Komada et al.,
2016; Hu et al., 2017; Chuang
et al., 2019; Zhang et al., 2019

FSOM 5% 1–10% Nauhaus et al., 2007; Sivan
et al., 2007; Treude et al., 2007;
Ussler and Paull, 2008;
Contreras et al., 2013; Coffin
et al., 2014; Jørgensen et al.,
2019a

F(DIC−out) 75% 50–90% Aloisi et al., 2004; Wallmann
et al., 2008; Dickens and
Snyder, 2009; Chatterjee et al.,
2011; Wehrmann et al., 2011;
Scholz et al., 2013; Solomon
et al., 2014; Zhang et al., 2019

DIC Production via AOM and OSR
We assume global average DIC production at SMTZ as suggested
by Egger et al. (2018) along with their average CH4:SO4

2− fluxes
to SMTZ of 1:1.4. This approach assumes quantitative methane
consumption at SMTZ. AOM produces 1 mole of DIC for every
mole of SO4

2− consumed. OSR, on the other hand, would
produce 2 moles of DIC for every mole of SO4

2− consumed (Eqs
1 and 2). For a global average CH4:SO4

2− flux to the SMTZ of
1:1.4, 1.8 moles of DIC will be produced by sulfate reduction via
AOM and OSR—that is, of the total 1.4 moles of SO4

2− entering
SMTZ, 1 mole DIC will be produced by 1 mole SO4

2− reduction
via AOM, and the remaining 0.4 moles of SO4

2− yields 0.8 moles
DIC via OSR. Thus, the SO4

2−: DIC ratio from a CH4: SO4
2−

flux ratio of 1:1.4 at the SMTZ will be 1.4:1.8 or 1:1.3 (Figure 3).

Total DIC Through the SMTZ
Considering an average F(DIC−deep) of 50% of the CH4 flux,
Total(DIC) through the SMTZ for a CH4: SO4

2− flux ratio of 1:1.4
can be given as:

Total(DIC) = F(DIC−AOM) + F(DIC−OSR) + F(DIC−deep)

= 1+ 0.8+ 0.5

= 2.3moles.

Of this Total(DIC), an estimated DIC outflow toward the water
column can be calculated using an average estimate of FCarb = 20
and FSOC = 5 as:

F(DIC−out) = Total(DIC) − (FCarb + FSOC)

= 2.3− (0.20× 2.3+ 0.05× 2.3)

= 1.73moles.

Thus, on average, for every mole of CH4 entering the SMTZ
in diffusive setting, ∼0.5 moles of DIC precipitates as authigenic
carbonate and ∼1.7 moles of DIC flow upward from the SMTZ
toward the seafloor and water column.

Global Estimate
A global estimate of DIC cycling in diffusive methane-charged
shallow sediments is derived using the recent compilation of
global diffusive methane and sulfate fluxes into the SMTZ in
marine settings from 740 sites by Egger et al. (2018, Tables 2–4).

SYNTHESIS

We highlight the major DIC fluxes through the SMTZ in
methane-charged shallow marine sediments under diffusion-
controlled settings with the following estimated values (Figure 4):

a. 8.7 Tmol year−1 DIC input [Total(DIC)] due to AOM, OSR,
and deep-DIC flux (range: 6.4–10.2 Tmol year−1) enters
the shallow sediments.

b. 6.5 Tmol year−1 DIC outflux F(DIC−out) toward the
seafloor and water column (range 3.2–9.2 Tmol year−1).
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FIGURE 3 | Plots for SO4
2-: DIC ratio for AOM and OSR. Black slopes indicate AOM (1:1) and OSR (1:2). The blue slope indicates SO4

2-: DIC plot calculated from
740 diffusion-controlled marine methane flux sites globally by Egger et al. (2018), with SO4

2- flux data from 509 sites. CH4 concentrations were adjusted using a
1:1.4 flux ratio for CH4: SO4

2- and the combined effect of AOM and OSR results in a SO4
2-: DIC ratio ∼1:1.3.

c. 1.7 Tmol year−1 DIC sink via authigenic carbonate
precipitation (Fcarb) (range: 0.6–3.6 Tmol year−1).

d. 0.4 Tmol year−1 DIC enters the SOC pool due to microbial
uptake (FSOC) (range 0.1–1 Tmol year−1).

We would like to point out that our model curve is determined
from current turnover rates and methane fluxes would vary
strongly over time. While data necessary to constrain the
temporal variability of fluxes is not available, we acknowledge
this limitation. Consideration of an extended range for all
the parameters we used in our DIC budget aims to address
this dynamic nature of methane fluxes. Furthermore, it is also
important to note that present estimates on global marine
methane fluxes are heavily dependent on data from continental
margins. Methane venting in the deep sea remains to a great
part unexplored (e.g., Boetius and Wenzhöfer, 2013). The
uncertainty on global marine methane flux estimates is expected
to narrow down in the coming decade with rapidly improving
mapping efforts and long-term flux monitoring programs. We
also emphasize that we based our DIC flux estimates on the pore

TABLE 2 | Global estimate of diffusive CH4 and SO4
2− flux based on 1:1.4 ratio,

and average SMTZ depth compiled from 740 sites (Egger et al., 2018).

Region [water SO4
2− flux CH4 flux Average SMTZ

depth (m)] (Tmol year−1) (Tmol year−1) depth (mbsf)

Inner shelf (0–10) 1.6 1.2 0.5

Inner shelf (10–50) 1.7 1.2 2

Outer shelf (50–200) 1 0.7 4

Slope (200–2000) 0.8 0.5 12.8

Rise (2000–3500) 0.07 0.05 143.4

>3500 0.1 0.07 168.9

Total 5.3 3.8

fluid data compiled by Egger et al. (2018), due to an extensive
geochemical database it considers (740 global sites from a wide
range of oceanographic settings). Calculations based on the other
estimates, ∼1.2 Tmol CH4 year−1 by Wallmann et al. (2012)
and 19 Tmol CH4 year−1 by Hinrichs and Boetius (2002) would
provide much wider flux range (Supplementary Table 3).

Importance of Methane Derived
Authigenic Carbonate Precipitation
Methane-derived authigenic carbonate precipitation in diffusive
settings averaging 1.7 Tmol year−1 (range: 0.6–3.6 Tmol year−1)
is close to the 1 Tmol year−1 estimated by Sun and Turchyn
(2014) and 1.5 Tmol year−1 suggested by Wallmann et al. (2008),
for a methane flux estimate of 5 Tmol year−1). Our estimated
average corresponds to 11–15% of 11–15 Tmol year−1 carbonate
accumulation estimated for continental shelf sediments and 15%
of ∼11 Tmol year−1 in pelagic oceans (Milliman, 1993; Archer,
1996; Milliman and Droxler, 1996; Iglesias-Rodriguez et al., 2002;
Schneider et al., 2006; Wallmann and Aloisi, 2012).

However, this estimate is an order of magnitude higher
than the recently suggested estimate of 0.14 Tmol year−1

by Bradbury and Turchyn (2019). Multiple factors could be
responsible for this mismatch. Previous estimates for global
carbonate authigenesis were based primarily on the Ca2+ flux
into sediments from the overlying water column and do not
account for Ca2+ fluxes toward shallow sediment from deep
methanogenic zones due to MSiW (Longman et al., 2019).
Further, a higher authigenic carbonate sink is expected when
Mg2+ fluxes into shallow marine sediments are also considered
along with the Ca2+ fluxes (Berg, 2018; Berg et al., 2019).
Moreover, the CH4 and SO4

2− flux data used in this study from
the compilation by Egger et al. (2018) covers a higher number
of diffusive methane flux locations from IODP and non-IODP
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TABLE 3 | Average values for parameters in Table 2, for a global CH4 flux of 3.8 Tmol year−1 and SO4
2− flux of 5.3 Tmol year−1.

From Egger et al. (2018) Calculated

Region [water
depth (m)]

SO4
2− flux

(Tmol year−1)
CH4 flux

(Tmol year−1)
DIC Via AOM¶

(Tmol year−1)
DIC via OSR∗

(Tmol year−1)
DIC from

deep
sediments#

(Tmol year−1)

Total(DIC)

(Tmol year−1)
DIC

sequestered
via

Carbonates¶¶

(Tmol year−1)

DIC
sequestered

via SOC∗∗

(Tmol year−1)

DIC Out##

(Tmol year−1)

Inner shelf (0–10) 1.6 1.2 1.2 0.8 0.60 2.60 0.52 0.13 1.95

Inner shelf (0–50) 1.7 1.2 1.2 1 0.60 2.80 0.56 0.14 2.10

Outer shelf (50–200) 1 0.7 0.7 0.6 0.35 1.65 0.33 0.08 1.24

Slope (200–2000) 0.8 0.5 0.5 0.6 0.25 1.35 0.27 0.07 1.01

Rise (2000–3500) 0.07 0.05 0.05 0.04 0.03 0.12 0.02 0.01 0.09

>3500 0.1 0.07 0.07 0.06 0.04 0.17 0.03 0.01 0.12

TOTAL 5.3 3.8 3.8 3 1.9 8.7 1.7 0.4 6.5

AOM and OSR consumes 70% and 30% of SO4
2− entering the SMTZ, respectively, F(DIC-deep) = 50% of CH4 flux, Fcarb = 20%, FSOC = 5%, and F(DIC-out) = 75% of the

Total(DIC). ¶ DIC via AOM = CH4 flux (quantitative methane consumption). *DIC via OSR = 2 ∗ (SO4
2− flux – CH4 flux). #DIC from deep sediments = 0.5∗CH4 flux. ¶¶DIC

sequestered via Carbonates (Fcarb) = Total(DIC)∗0.2. **DIC sequestered via SOC (FSOC) = Total(DIC)∗0.05. ## DIC Outflux (FDIC-out) = Total(DIC)
∗0.75.

TABLE 4 | Range of DIC flux values based on variable ranges of DIC flux parameters in Table 1 details in the Supplementary Data.

From Egger et al. (2018) Calculated

Region [water
depth (m)]

SO4
2− flux

(Tmol year−1)
CH4 flux

(Tmol year−1)
DIC Via AOM
(Tmol year−1)

DIC via OSR
(Tmol year−1)

DIC from deep
sediments

(Tmol year−1)

Total(DIC)

(Tmol year−1)
DIC

sequestered
via

Carbonates
(Tmol year−1)

DIC
sequestered

via SOC
(Tmol year−1)

DIC out
(Tmol year−1)

Inner shelf (0–10) 1.6 0.5–1.6 0.5–1.6 0–2.24 0.1–1.2 1.9–3.1 0.19–1.0 0.02–0.3 1.0–2.8

Inner shelf (10–50) 1.7 0.5–1.7 0.5–1.7 0–2.38 0.1–1.3 2.0–3.3 0.2–1.2 0.02–0.3 1.0–3.0

Outer shelf (50–200) 1 0.3–1 0.3–1 0–1.4 0.06–0.8 1.2–1.9 0.12–0.7 0.01–0.2 0.6–1.7

Slope (200–2000) 0.8 0.2–0.8 0.2–0.8 0–1.12 0.05–0.6 1.0–1.5 0.1–0.5 0.01–0.2 0.5–1.4

Rise (2000–3500) 0.07 0.02–0.07 0.02–0.07 0–0.098 0.004–0.1 0.08–0.13 0.01–0.05 0.001–0.01 0.04–0.12

>3500 0.1 0.03–0.1 0.03–0.1 0–0.14 0.01–0.1 0.1–0.2 0.01–0.07 0.001–0.02 0.06–0.2

Total 5.3 1.6–5.3 1.6–5.3 0–7.4 0.3–4.0 6.4–10.2 0.6–3.6 0.1–1 3.2–9.2

expeditions than those used by Sun and Turchyn (2014) and
Bradbury and Turchyn (2019), which were based solely on the
ODP/IODP database. Estimates of global methane flux-related

FIGURE 4 | Sources and sinks of DIC through the SMTZ in methane-charged
shallow sediments. The numbers in bold indicate flux values in Tmol year-1.
Numbers in the parentheses indicate the flux values with an extended range of
parameters considered in Table 1. Size of the arrows indicates relative DIC
flux contribution.

processes based exclusively on the ODP/IODP dataset have
important limitations. So far, only a handful of ODP/IODP
expeditions (e.g., 146, 164, 204, X311, and X341S) were dedicated
to methane/gas hydrate research. Further, to the best of our
knowledge, ∼33 drill sites have shown SMTZ depths below
10 mbsf. The data compilation used here from Egger et al. (2018)
includes data from 323 non-IODP sediment cores (coring sites)
globally with ∼290 sites with an SMTZ depth of <10 mbsf, and
the remaining sites have an SMTZ depth of <20 mbsf. Many of
the past ODP/IODP sites do not have pore fluid measurements
from the top 1 mbsf whereas the data from non-IODP sediment
cores focused on diffusive methane flux sites shows ∼100 global
sites with an SMTZ less than 1 mbsf. Thus, the drilling-based
dataset grossly underestimates DIC entering the SMTZs in coastal
settings, which in turn constitutes ∼65% of global diffusive
methane flux. Hence, the combination of IODP and non-IODP
sediment core data used here, based on Egger et al. (2018), can
provide better constraints to the global DIC cycling at diffusive
methane flux settings.

Recently, it was postulated that carbonate cap rocks sealing
the majority of hydrocarbon systems could be formed via AOM
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(Caesar et al., 2019). Further, carbonate authigenesis is suggested
to be more dominant in slope settings, especially during the
periods of widespread anoxia in geologic history, because of
the prevalent anaerobic respiration in comparison to margins
(Higgins et al., 2009; Schrag et al., 2013). These studies suggest
large unexplored authigenic carbonate deposits that account
for thousands of Gt C sequestration over millions of years.
Authigenic carbonates formed below SMTZ in methanogenic
zones (Ca[Fe,Mg,Mn,Ba]CO3) with distinctly enriched δ13C
(>5h) are well known (e.g., Rodriguez et al., 2000; Naehr et al.,
2007; Meister et al., 2011; Solomon et al., 2014; Teichert et al.,
2014; Pierre et al., 2016; Phillips et al., 2018; Torres et al.,
2020). If we assume 20–50% of the DIC from methanogenic
zones is sequestered as authigenic carbonate below the SMTZ,
net methane-induced authigenic carbonate precipitation at the
SMTZ and in the methanogenic depths below would be 2.5–
3.6 Tmol year−1, for a global 3.8 Tmol year−1 of methane
production suggested by Egger et al. (2018). This range
is consistent, at the lower end, with the estimate of 3.3–
13.3 Tmol year−1 by Wallmann et al. (2008) and the higher end
of 1–4 Tmol year−1 suggested by Torres et al. (2020). These
estimates amount to a significant carbon sink that must be
accounted for in global carbonate accumulation budgets.

Importance of DIC Outflux to the Water
Column: Implication to C-S-Fe Dynamics
In present-day settings, 6.5 Tmol year−1 (range 3.2–
9.2 Tmol year−1) of DIC flux toward the seafloor and water
column from the SMTZ. In comparison, this amount is ∼20%
(range: 10–28%) of the ∼33 Tmol year−1 of global riverine
DIC fluxing to the oceans (Meybeck, 1993; Amiotte Suchet
et al., 2003; Aufdenkampe et al., 2011; Li et al., 2017). Most of
our estimated DIC outflux (98%) occurs in continental margin
sediments with shallow SMTZ depths of ∼13 mbsf (Table 2).
Hence, this DIC flux can enter the water column, if it is not
involved in diagenesis on the way, and impact ocean chemistry.
As oceans continue to absorb rapidly rising atmospheric CO2,
the water column is prone to pH reduction with significant
changes to ocean chemistry, associated biogeochemical cycling,
and marine ecology (Doney et al., 2009). A pH reduction on
the scale of 0.3–0.4 units has been predicted for the end of
the 21st century (Feely et al., 2009). Further, under advective
conditions, methane can enter the water column and undergo
aerobic methane oxidation, which consumes bottom water
oxygen and contributes to acidification through the production
of CO2 (Biastoch et al., 2011; Boetius and Wenzhöfer, 2013;
Boudreau et al., 2015).

Alkalinity contribution from the sediments to the water
column has important implications for ongoing climate change
as they can reduce the ocean acidification effect and even enhance
the CO2 absorption capacity of surface water (Chen and Wang,
1999; Chen, 2002; Thomas et al., 2008; Hu and Cai, 2011;
Krumins et al., 2013; Brenner et al., 2016). Hence, evaluating the
contribution of DIC outflux to the water column in terms of total
alkalinity (TA) to DIC ratio is of great importance. Most (86%)
of the DIC outflux at diffusive methane flux settings is occurring
within SMTZ depths of ≤4 mbsf and bathymetry below 200 m

(Tables 2–4). Minimum TA/DIC ratios in the water column 20 m
above the seabed under oxygen-limited conditions on continental
shelves (100–250 m bathymetry) is generally ≤1 (Figure 5).
This relationship implies that if the DIC outflux has a TA/DIC
ratio of >1, it is contributed as alkalinity to the water column.

TA/DIC for the net DIC entering the SMTZ and above
in diffusive settings—considering inputs from AOM (TA/DIC
ratio = 2), OSR (TA/DIC ratio = 1), the deep-DIC flux (TA/DIC
ratio = 1), and the average rates of DIC input parameters in
Table 1 – will produce a value∼1.4:

TA/DIC(Total−DIC) = 2× (%(DIC−AOM))+ 1× (%(DIC−OSR))

+ 1× (%(DIC−deep))

= [(2× 0.44)+ (1× 0.34)+ (1× 0.22)]

= 1.44 (8)

However, the TA/DIC flux ratio from this pool would be
determined by the authigenic carbonate precipitation and the
balance between sulfide burial and oxidation. As discussed below,
sulfide burial relates to the extent of sulfide oxidation and related
acid production. Otherwise, assuming the stoichiometry from
Wallmann et al. (2008) (H2S + 2/5Fe2O3 → 2/5FeS2 + 1/5
FeS + 1/5 FeO + H2O), formation of sulfide minerals at the
SMTZ would have no net impact on the TA/DIC ratio of DIC
outflux. Carbonate precipitation would consume bicarbonate and
reduce the TA by a factor of two. Thus, while methane derived
authigenic carbonate precipitation sequesters a portion of total
DIC entering the SMTZ, it will also contribute CO2 to the water
column from shallow sediments by reducing the alkalinity of the
DIC outflux. Net TA/DIC of DIC outflux for our average DIC
budget (Figure 4) under hypothetical complete sulfide burial can
be given by:

TA/DIC(DIC−0ut) = 2× (%(DIC−AOM))+ 1× (%(DIC−OSR))

+ 1× (%(DIC−deep))− 2× Fcarb

= [(2× 0.44)+ (1× 0.34)+ (1× 0.22)]

− (2× 0.22)

= 1.04 (9)

This relationship suggests that even with a hypothetical
complete sulfide burial, Fcarb > 20% can cause DIC outflux
to contribute CO2 to the water column. Maximum and
Minimum TA/DIC estimates for DIC outflux based on
varying parameter ranges used in this model are provided in
Supplementary Table 2.

Alkalinity flux would be different when sulfide oxidation
occurs. AOM and OSR produce ∼5.3 Tmol year−1 sulfide at
SMTZ (equivalent to total SO4

2− consumption). Complete or at
least significant sulfide burial (e.g., Hensen et al., 2003; Dickens,
2011) could result in a substantial alkalinity contribution from
sediments. Oxidation of this entire sulfide pool can, in contrast,
produce acid and effectively neutralize the alkalinity flux. It has
been suggested that globally 5 to 20% of the sulfide produced
in sediments is buried as iron minerals (e.g., FeS, FeS2) or
with organic matter and the remaining is reoxidized to sulfate
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FIGURE 5 | Global trend of TA/DIC ratio above the seafloor for oxygen-limited coastal setting. (A) Global distribution of TA/DIC at 100–250 m bathymetry within
20 m above the seabed. (B) Global distribution of TA/DIC at different oxygen concentrations. It can be noticed that the minimum TA/DIC ratio is about 1, under
oxygen-limited condition in the shallow bathymetry settings. Data Resource: GLODAPv2 (Key et al., 2015; Lauvset et al., 2016; Olsen et al., 2016).

(Berner, 1982; Jørgensen, 1982; Jørgensen and Nelson, 2004;
Zopfi et al., 2004; Wasmund et al., 2017).

Since marine methane flux settings have diagenetic systems
different than sites without methane fluxes (e.g., Formolo and
Lyons, 2013), the sulfide burial rate at diffusive methane flux
settings could differ from the global average (Dickens, 2011).
For example, nearly quantitative precipitation of all reduced
sulfur by AOM was reported for an iron-rich, non-steady-state
setting (Hensen et al., 2003) and more recently, and two thirds of
sulfide produced via AOM and OSR at the SMTZ was inferred to
undergo burial (Wurgaft et al., 2019). Availability of reactive iron
(for sulfide burial) as well as the ratio of burial versus oxidation of
the sulfide produced at the SMTZ is thus an important parameter
in determining the impact of methane induced carbon cycling
at diffusive methane flux settings. In general, a combination of
higher sulfide burial with lower carbonate precipitation rates
can result in a DIC outflux that contributes alkalinity from
sediments, and the opposite can result in DIC contribution as
CO2. We assume the latter to be dominant in the present-
day setting—that is, inefficient sulfide burial and high carbonate
precipitation—which implies that out fluxing DIC would be a
contributor to ongoing ocean acidification. We also emphasize
the importance of integrated C-S-Fe approach to understand
how these subsurface processes affect water column chemistry.
Future studies should quantify the rates of sulfide oxidation and
carbonate authigenesis in diverse and globally distributed settings
characterized by subsurface methane fluxes to improve on these
first-order estimates.

CONCLUSION

We estimated DIC cycling in methane charged shallow sediments
with global values for diffusive methane and sulfate fluxes
into the SMTZ. Our synthesis highlights major diffusive
methane-powered carbon fluxes with 8.7 Tmol year−1 DIC

(range 6.4–10.2 Tmol year−1) entering the shallow sediments
due to AOM, OSR, and the deep-DIC flux. An estimated
6.5 Tmol year−1 (range 3.2–9.2 Tmol year−1) of the this DIC pool
flows toward the water column. This DIC outflux will contribute
alkalinity or CO2 in different proportions to the water column,
depending on the rates of authigenic carbonate precipitation
and sulfide oxidation. At present, settings with pervasive
authigenic carbonate precipitation and sulfide oxidation are
contributing CO2 and thus to ocean acidification. Our estimates
also suggest that globally distributed precipitation of authigenic
carbonate minerals at SMTZ characterized by diffusive methane
transport sequesters an average of 1.7 Tmol year−1 (range:
0.6–3.6 Tmol year−1). This estimate is equivalent to ∼15% of
carbonate accumulation in neritic and in pelagic sediments,
respectively. Our study also suggests the need for detailed
pore fluid chemical analysis in future expeditions at diffusive
settings, which would include quantification of F(DIC−deep), Fcarb,
and sulfide oxidation rates. Overall, we emphasize that settings
characterized by diffusive methane fluxes may play an even larger
role in oceanic carbon cycling via conversion of methane carbon
to inorganic carbon, which contributes significantly to oceanic
DIC pool and carbonate accumulation. These pathways must be
included in coastal and geologic carbon models.
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