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Epigenetic modification, specifically DNA methylation, is one possible mechanism
for intergenerational plasticity. Before inheritance of methylation patterns can be
characterized, we need a better understanding of how environmental change modifies
the parental epigenome. To examine the influence of experimental ocean acidification
on eastern oyster (Crassostrea virginica) gonad tissue, oysters were cultured in the
laboratory under control (491 ± 49 µatm) or high (2550 ± 211 µatm) pCO2 conditions
for 4 weeks. DNA from reproductive tissue was isolated from five oysters per treatment,
then subjected to bisulfite treatment and DNA sequencing. Irrespective of treatment,
DNA methylation was primarily found in gene bodies with approximately 22% of CpGs
(2.7% of total cytosines) in the C. virginica genome predicted to be methylated.
In response to elevated pCO2, we found 598 differentially methylated loci primarily
overlapping with gene bodies. A majority of differentially methylated loci were in exons
(61.5%) with less intron overlap (31.9%). While there was no evidence of a significant
tendency for the genes with differentially methylated loci to be associated with distinct
biological processes, the concentration of these loci in gene bodies, including genes
involved in protein ubiquitination and biomineralization, suggests DNA methylation may
be important for transcriptional control in response to ocean acidification. Changes in
gonad methylation also indicate potential for these methylation patterns to be inherited
by offspring. Understanding how experimental ocean acidification conditions modify
the oyster epigenome, and if these modifications are inherited, allows for a better
understanding of how ecosystems will respond to environmental change.

Keywords: eastern oyster, DNA methylation, epigenetics, ocean acidification, Crassostrea virginica

INTRODUCTION

As increased anthropogenic carbon dioxide is expected to create adverse conditions for calcifying
organisms (IPCC, 2019), efforts have been made to understand how ocean acidification impacts
ecologically and economically important organisms like bivalves (Parker et al., 2013; Ekstrom
et al., 2015). Bivalve species are sensitive to reduced aragonite saturation associated with ocean
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acidification, with larvae being particularly vulnerable (Barton
et al., 2012; Waldbusser et al., 2014). Shell structure may be
compromised in larvae, juveniles, and adults (Gazeau et al., 2007;
Kurihara et al., 2007; Beniash et al., 2010; Ries, 2011). Aside
from affecting calcification and shell growth, ocean acidification
can impact protein synthesis, energy production, metabolism,
antioxidant responses, and reproduction (Tomanek et al., 2011;
Timmins-Schiffman et al., 2014; Dineshram et al., 2016; Boulais
et al., 2017; Omoregie et al., 2019).

Additionally, adult exposure to ocean acidification
may impact their larvae [reviewed in Ross et al. (2016),
Byrne et al. (2019)]. For example, adult Manila clams
(Ruditapes philippinarum) and mussels (Musculista senhousia)
reproductively conditioned in high pCO2 waters yield
offspring that exhibit significantly faster development or
lower oxidative stress protein activity in those same conditions
(Zhao et al., 2018, 2019). In contrast, northern quahog (hard
clam; Mercenaria mercenaria) and bay scallop (Argopecten
irradians) larvae may be more vulnerable to ocean acidification
and additional stressors when parents are reproductively
conditioned in high pCO2 waters (Griffith and Gobler, 2017).
Some species exhibit both positive and negative carryover
effects [e.g., Saccostrea glomerata; (Parker et al., 2012, 2017)].
Intergenerational effects have also been documented when
adult exposure to ocean acidification does not coincide with
reproductive maturity [e.g., Crassostrea gigas; (Venkataraman
et al., 2019)]. Although intergenerational carryover effects
are now at the forefront of ocean acidification research in
bivalve species, the mechanisms responsible for these effects
are still unclear.

Epigenetics is the next frontier for understanding how
environmental memory may modulate phenotypic plasticity
across generations (Eirin-Lopez and Putnam, 2018). Epigenetics
refers to changes in gene expression that do not arise from
changes in the DNA sequence, with methylation of cytosine
bases being the most studied mechanism (Bird, 2002; Deans
and Maggert, 2015). Unlike highly methylated vertebrate
genomes, marine invertebrate taxa have sparse methylation
throughout their genomes, similar to a mosaic pattern (Suzuki
and Bird, 2008). Genes that benefit from stable transcription,
such as housekeeping genes, tend to be more methylated,
while environmental response genes that are less methylated
are prone to more spurious transcription and alternative
splicing patterns, thereby possibly increasing phenotypic
plasticity (Roberts and Gavery, 2012; Dimond and Roberts,
2016; Gatzmann et al., 2018). Increased levels of DNA
methylation can also correlate with increased transcription.
Several base pair resolution studies in C. gigas demonstrate
a positive association between DNA methylation and gene
expression that is consistent across cell types (Roberts
and Gavery, 2012; Gavery and Roberts, 2013; Olson and
Roberts, 2014). Since DNA methylation could provide a direct
link between environmental conditions and phenotypic
plasticity via influencing gene activity, elucidating how
invertebrate methylomes respond to abiotic factors is crucial for
understanding potential acclimatization mechanisms (Bossdorf
et al., 2008; Hofmann, 2017).

While bivalve species have been used as model organisms
to characterize marine invertebrate methylomes, how ocean
acidification affects bivalve DNA methylation is poorly
understood. Methylation responses to ocean acidification
have been studied in multiple coral species. When placed in
low pH conditions (7.6–7.35), Montipora capitata did not
demonstrate any differences in calcification, metabolic profiles,
or DNA methylation in comparison to clonal fragments
in ambient pH (7.9–7.65) (Putnam et al., 2016). DNA
methylation increased in another coral species, Pocillopora
damicornis, in addition to reduced calficiation and more
differences in metabolic profiles (Putnam et al., 2016).
The coral Stylophora pistillata also demonstrates increased
global methylation as pH decreases (pHtreatment = 7.2, 7.4,
7.8; pHcontrol = 8.0), with methylation reducing spurious
transcription (Liew et al., 2018b). Combined whole genome
bisulfite sequencing and RNA sequencing revealed differential
methylation and expression of growth and stress response
pathways controlled differences in cell and polyp size between
treatments (Liew et al., 2018b). The association between
DNA methylation and phenotypic differences in these
corals demonstrates that epigenetic regulation of genes is
potentially important for acclimatization and adaptation
to environmental perturbation. Recent examination of
C. virginica methylation patterns in response to a natural
salinity gradient suggests that differential methylation
may modulate environmental response in this species
(Johnson and Kelly, 2019).

There is evidence that suggests that methylation patterns
can be inherited in marine invertebrates. For example,
purple sea urchin (Strongylocentrotus purpuratus) offspring
have methylomes that reflect maternal rearing conditions
(Strader et al., 2019). Different parental temperature and
salinity regimes influence larval methylomes in Platygyra
daedalea (Liew et al., 2018a). In the Pacific oyster (C. gigas),
parental exposure to pesticides influence DNA methylation
in spat, even though the spat were not exposed to these
conditions (Rondon et al., 2017). Methylation changes in
gametes are likely the ones that could be inherited, and may
play a role in carryover effects. Before determining if DNA
methylation is a viable mechanism for altering the phenotypes
of offspring or subsequent generations, the epigenome of bivalve
reproductive tissue in response to ocean acidification must
be characterized.

The present study is the first to determine if ocean
acidification induces differential methylation in reproductive
tissue in the eastern oyster (Crassostrea virginica). Adult
C. virginica were exposed to control or elevated pCO2
conditions. We hypothesize that ocean acidification will
induce differential methylation in C. virginica gonad tissue,
and that genes with differentially methylated loci will have
biological functions that could allow for acclimatization to
environmental perturbation. Understanding how experimental
ocean acidification conditions modify the oyster epigenome,
and if these modifications are inherited, allows for a
better understanding of how ecosystems will respond to
environmental change.
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MATERIALS AND METHODS

Experimental Design
Adult C. virginica (9.55 cm ± 0.45) were collected from an
intertidal oyster reef in Plum Island Sound, MA, United States
(42.681764, −70.813498) in mid-July 2016. The oysters were
transported to the Marine Science Center at Northeastern
University (Nahant, MA, United States), where they were
cleaned and randomly assigned to one of six flow-through tanks
(50 L) maintained at ambient seawater conditions. Oysters were
acclimated for 14 days under control conditions (500 µatm; 14–
15◦C) before initiating a 28-day experimental exposure. Half
of the tanks remained at control pCO2 conditions (500 µatm,
�calcite > 1), while the other half were ramped up to elevated
pCO2 conditions (2500 µatm, �calcite < 1) over 24 h. This
elevated treatment is consistent with observations in other
estuarine ecosystems that oysters inhabit (Feely et al., 2010),
although pH in nature only stays as extreme for short periods
of time (e.g., hours). Moreover, the extreme treatment was also
chosen to increase precision and therefore power to detect a
response (Whitlock and Schluter, 2014).

Treatment conditions were replicated across three tanks, with
oysters distributed evenly among tanks (1–2 oysters per tank).
Each tank had an independent flow-regulator that delivered fresh,
natural seawater at approximately 150 ml min−1. Carbonate
chemistry was maintained independently for each tank by
mixtures of compressed CO2 and compressed air at flow rates
proportional to the target pCO2 conditions. Gas flow rates
were maintained with Aalborg digital solenoid-valve-controlled
mass flow controllers (Model GFC17, precision = 0.1 mL/min).
Within a treatment, tanks were replenished with fresh seawater
and each tank was independently bubbled with its own mixed
gas stream, with partial recirculation and filtration with other
tanks in the treatment. As a result, the carbonate chemistry
(i.e., the independent variable by which the treatments were
differentiated) of the replicate tanks were slightly different from
each other, which is evidence of their technical independence.
Temperature was maintained at 15◦C using Aqua Euro
United States model MC-1/4HP chillers coupled with 50-
watt electric heaters. Average salinity was determined by
the incoming natural seawater and reflected ambient ocean
salinity of Massachusetts Bay near the Marine Science Center
(Latitude = 42.416100, Longitude =−70.907737).

Oysters were fed 2.81 mL/day of a 10% Shellfish Diet 1800
twice daily following Food and Agriculture Organization’s best
practices for oysters (Helm and Bourne, 2004). Five oysters were
collected from each treatment at the end of the 28-day exposure.
They were immediately dissected with gonadal tissue harvested
and immediately flash frozen. Partial gamete maturation was
evident upon visual inspection.

Measurement and Control of Seawater
Carbonate Chemistry
The carbonate chemistry of tanks was controlled by bubbling
mixtures of compressed CO2 and compressed air at flow
rates proportional to the target pCO2 conditions. The control

pCO2 treatments were maintained by bubbling compressed
ambient air only.

Temperature, pH, and salinity of all replicate tanks
was measured three times per week for the duration of
the experiment. Temperature was measured using a glass
thermometer to 0.1◦C accuracy, pH was measured using
an Accumet solid state pH electrode (precision = 1 mV),
salinity was measured using a YSI 3200 conductivity probe
(precision = 0.1 ppt). Every 2 weeks, seawater samples were
collected from each replicate tank for analysis of dissolved
inorganic carbon (DIC) and total alkalinity (AT). Samples were
collected in 250 mL borosilicate glass bottles sealed with a greased
stopper, immediately poisoned with 100 µL saturated HgCl2
solution, and then refrigerated. Samples were analyzed for DIC
via coulometry and AlkT via closed-cell potentiometric Gran
Titration with a VINDTA 3C (Marianda Corporation). Other
carbonate system parameters, including �calcite, pH, and pCO2,
were calculated from DIC, AT, salinity, and temperature using
CO2SYS software version 2.1 (Lewis and Wallace, 1998; Van
Heuven et al., 2011), using the seawater pH scale (mol/kg-SW)
with K1 and K2 values from Roy et al. (1993), a KHSO4 value
from Dickson (1990), and a [B]T value from Lee et al. (2010).

MBD-BS Library Preparation
DNA was isolated from five gonad tissue samples per treatment
using the E.Z.N.A. Mollusc Kit (Omega) according to the
manufacturer’s instructions. Isolated DNA was quantified using
a Qubit dsDNA BR Kit (Invitrogen). DNA samples, ranging from
12.8 to 157 ng/µL, were placed in 1.5 mL centrifuge tubes and
sonicated using a QSONICA CD0004054245 (Newtown, CT) in
30 s interval periods over 10 min at 4◦C and 25% intensity.
Shearing size (350 bp) was verified using a 2200 TapeStation
System (Agilent Technologies). Samples were enriched for
methylated DNA with the MethylMiner kit (Invitrogen).
A single-fraction elution using 400 µL of high salt buffer was
used to obtain captured DNA. After ethanol precipitation, 25 µL
of buffer was used for the final elution. Library preparation and
sequencing was performed by ZymoResearch using Pico Methyl-
Seq Library Prep Kit (Cat. #D5455). Libraries were then barcoded
and pooled into two lanes (eight samples in one and two in
another) to generate 100bp paired-end reads on the HiSeq1500
sequencer (Illumina, Inc.).

Global Methylation Characterization
Sequences were trimmed with 10 bp removed from both
the 5′ and 3′ ends using TrimGalore! v.0.4.5 (Martin, 2011).
Quality of sequences was assessed with FastQC v.0.11.7
(Andrews, 2010). The C. virginica genome (NCBI Accession
GCA_002022765.4) was prepared using Bowtie 2-2.3.4 [Linux
x84_64 version; (Langmead and Salzberg, 2012)] within the
bismark_genome_preparation function in Bismark v.0.19.0
(Krueger and Andrews, 2011). Trimmed sample sequences were
then aligned to the genome using Bismark v.0.19.0 (Krueger
and Andrews, 2011) with non-directionality specified and
alignment score set using -score_min L,0,-1.2. Alignment
files (i.e., bam) were deduplicated (deduplicate_bismark),
sorted and indexed using SAMtools v.1.9 (Li et al., 2009).
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Methylation calls were extracted from deduplicated files using
bismark_methylation_extractor.

Various C. virginica genome feature tracks were created
for downstream analyses using BEDtools v2.26.0 (Quinlan and
Hall, 2010). Genes, mRNA, coding sequences, and exons were
derived directly from the C. virginica genome on NCBI (Gómez-
Chiarri et al., 2015). The complement of the exon track was
used to identify introns, and coding sequences were subtracted
from exons to identify untranslated regions of exons (UTR).
Exon locations were removed from the complement of the
gene track to define intergenic regions. Putative promoter
regions were defined as the 1 kb upstream of transcription
start sites. Putative transposable elements were identified using
RepeatMasker (v4.07) with RepBase-20170127 and RMBlast 2.6.0
(Smit et al., 2013; Bao et al., 2015). All species available in
RepBase-20170127 were used to identify transposable elements.

Overall C. virginica gonad methylation patterns were
characterized using information from all samples. Individual
CpG dinucleotides with at least 5× coverage in each sample
were classified as methylated (≥50% methylation), sparsely
methylated (10–50% methylation), or unmethylated (<10%
methylation). The locations of all methylated CpGs were
characterized in relation to putative promoter regions, UTR,
exons, introns, transposable elements, and intergenic regions.
We tested the null hypothesis that there was no association
between the genomic location of CpG loci and methylation status
(all CpGs vs.methylated CpGs) with a chi-squared contingency
test (chisq.test in R Version 3.5.0).

Methylation islands were determined to characterize overall
methylation in the C. virginica genome using a sliding window
analysis based on (Jeong et al., 2018). Islands were defined
as areas of the genome with enriched levels of methylated
CpGs (>50% methylation). To define methylation islands, each
chromosome was examined using an initial 500 bp window
starting at the first methylated CpG. If the proportion of
methylated CpGs in the window was greater than 0.2, the
window was extended by 50 bp; if not, the analysis proceeded
to the next methylated CpG. Windows were continually
extended until the proportion of methylated CpGs in the
window fell below the 0.2 criteria. The location of methylation
islands in the genome were characterized using BEDtools
intersect v2.26.0.

Differential Methylation Analysis
Differential methylation analysis for individual CpG
dinucleotides was performed using methylKit v.1.7.9 in R
(Akalin et al., 2012) using deduplicated, sorted bam files
as input. Only CpGs with at least 5× coverage in each
sample were considered for analysis. Methylation differences
between treatments were obtained for all loci in the CpG
background using calculateDiffMeth, a logistic regression built
into methylKit. The logistic regression models the log odds
ratio based on the proportion of methylation at each locus:

log
(

πi

1 − πi

)
= β0 + β1Treatmenti

A differentially methylated locus (DML) was defined as an
individual CpG dinucleotide with at least a 50% methylation
change between treatment and control groups, and a
q-value < 0.01 based on correction for false discovery rate
with the SLIM method (Wang et al., 2011). Hypermethylated
DML were defined as those with significantly higher
percent methylation in oysters exposed to high pCO2
conditions, and hypomethylated DML with significantly
lower percent methylation in the high pCO2 treatment.
A Principal Components Analysis (PCA) was performed
for differentially methylated loci (DML) for oyster sample
methylation profiles between treatments, then compared to a
PCA for all MBD-enriched CpG loci. The location of DML
were characterized in relation to putative promoter regions,
UTR, exons, introns, transposable elements, and intergenic
regions using BEDtools intersect v2.26.0. Loci that did not
overlap with the aforementioned genomic features were also
identified. A chi-squared contingency test was used to test the
null hypothesis of no association between genomic location
and methylation status between MBD-enriched CpGs and
DML. To describe the location of DML across different gene
architectures, the position of DML in the gene was scaled
from 0 to 100 bp.

Enrichment Analysis
Functional enrichment analyses were used to determine if any
biological processes were overrepresented in genes based on
individual CpG methylation levels. Enrichment was conducted
with GO-MWU, a rank-based gene enrichment method initially
developed for analyzing transcriptomics data (Wright et al.,
2015). Instead of only using genes with DML, GO-MWU
identifies GO categories that are overrepresented by genes
with any CpGs, allowing for more data to contribute to any
trends. GO-MWU scripts and a gene ontology database were
downloaded from the GO-MWU Github repository1.

A gene list and table of significance measures were used as
GO-MWU analysis inputs. The gene list contained Genbank
IDs and all associated gene ontology terms. For the table of
significance measures, Genbank IDs were matched with the
smallest P-value for associated CpGs analyzed by methylKit. To
match the Genbank IDs to CpG loci within mRNAs and create
the gene list, overlaps between the C. virginica mRNA track
from NCBI and the CpG background used in methylKit were
obtained using BEDtools intersect v2.26.0. The mRNAs were
then annotated with Uniprot Accession codes using a BLASTx
search [v.2.2.29; (Gish and States, 1993; UniProt Consortium,
2019)]. The Uniprot Swiss-Prot Database (downloaded from
SwissProt 2018-06-15) was used to obtain protein information
and Uniprot Accession codes. Genbank IDs provided by NCBI
were used to match CpG background-mRNA overlaps with the
annotated mRNA track. Gene ontology terms were paired to
Uniprot Accession codes using the Uniprot Swiss-Prot Database
(UniProt Consortium, 2019). All GO-MWU inputs are available
in the associated Github repository (Venkataraman, 2020).

1https://github.com/z0on/GO_MWU
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Once analysis inputs were created, gene ontology terms for
each gene were matched with parental terms using default GO-
MWU settings. Parental ontology categories with the exact same
gene list were combined. Groups were further combined if
they shared at least 75% of the same genes. After clustering
was complete, a Mann-Whitney U test identified gene ontology
categories that were significantly enriched by corresponding CpG
loci in genes using the default 10% FDR. Genes with DML were
mapped to gene ontology subsets (GO Slim terms) for biological
processes to further categorize gene functions.

RESULTS

Water Chemistry
All oysters were initially subjected to acclimation pCO2
conditions (pCO2 = 521 ± 32 ppm, �calcite = 2.82 ± 0.13) for
14 days. Following acclimation the treatments were initiated.
Oysters in control pCO2 conditions (pCO2 = 492 ± 50 µatm;
�calcite = 3.01 ± 0.25) experienced low pCO2 and
higher �calcite than those in elevated pCO2 conditions
(pCO2 = 2550± 211 µatm; �calicite = 0.72± 0.06) (Table 1).

MBD-BS-Seq
DNA sequencing yielded 280 million DNA sequence reads
(NCBI Sequence Read Archive: BioProject accession number
PRJNA513384). Of 276 million trimmed paired-end reads, 136
million (49.4%) were mapped to the C. virginica genome,
providing an average of 13.6 million reads per sample.
Sequencing efforts provided data for 4,304,257 CpG loci (30.7%
of 14,458,703 total CpGs in the C. virginica genome) with at
least 5× coverage across all samples combined. As expected,
the location of CpGs with 5× coverage in the genome differed
from the distribution of all CpG motifs (Contingency test;
χ2 = 1,306,900, df = 6, P-value < 2.2e-16). Of all loci with 5x
coverage, 3,255,049 CpGs (75.6%) were found in genic regions in
33,126 out of 38,929 annotated genes in the genome.

The general methylation landscape was defined using all
loci with a minimum 5× coverage in each sample. The
majority, 3,181,904 (73.9% of MBD-Enriched loci) loci were
methylated, with 481,788 (11.2%) sparsely methylated loci and
640,565 (14.9%) unmethylated loci (Figure 1). Median values
for global percent methylation and sample methylation varied
across genome features (Figure 1). Based on these parameters
and data, we calculated that 22% of all CpGs in the gonads
(2.7% of total cytosines) had methylation levels greater than
50%. Loci methylation was characterized in relation to putative

FIGURE 1 | Frequency distribution of methylation ratios for CpG loci in
C. virginica gonad tissue DNA subjected to MBD enrichment. A total of
4,304,257 CpGs with at least 5× coverage summed across all ten samples
were characterized. Loci were considered methylated if they were at least
50% methylated, sparsely methylated loci were 10–50% methylated, and
unmethylated loci were 0–10% methylated.

promoters, UTR, exons, introns, transposable elements, and
intergenic regions (Figure 2). Methylated CpGs were found
primarily in genic regions, with 2,521,653 loci (79.2%) in 25,496
genes. We rejected the null hypothesis that CpG methylation
status was independent of genomic location, as the proportion
of methylated CpG loci was different than expected in putative
promoters, UTR, exons, introns, transposable elements, and
intergenic regions (Contingency test; χ2 = 1,311,600, df = 6,
P-value < 2.2e-16; Figure 2). There was a larger proportion of
methylated loci found in exons compared to all CpGs in the
genome (Figure 2). Methylated loci were also found in introns
[with 1,448,786 loci (47.3% of methylated loci) vs.1,013,691
CpGs (31.9%) in exons], although this was not higher than
expected based on the distribution of all CpGs. Transposable
elements contained 755,222 methylated CpGs (23.7%). Putative
promoter regions overlapped with 106,111 loci (3.3%), UTR with
128,585 loci (4.0%), and intergenic regions with 660,197 loci
(20.7%). There were 372,047 methylated loci (11.7%) that did
not overlap with either exons, introns, transposable elements, or
promoter regions.

A total of 37,063 methylation islands were identified in the
C. virginica genome (Venkataraman, 2020). Methylation islands
contained between 11 and 24,777 methylated CpGs, with a
median of 30 methylated CpGs per island. Lengths of methylation

TABLE 1 | Summary of water chemistry during the 14-day acclimation period and 28-day experimental exposure.

Experimental Stage T (◦C) S (PSU) DIC AT pHsw pCO2 (µatm) �calcite

Acclimation 14.6 ± 0.4 31.4 ± 0.1 1978 ± 7 2127 ± 6 7.94 ± 0.00 521 ± 32 2.82 ± 0.13

Control pCO2 Conditions 14.5 ± 0.4 31.6 ± 0.3 1960 ± 32 2140 ± 15 7.95 ± 0.01 492 ± 50 3.01 ± 0.25

Elevated pCO2 Conditions 14.5 ± 0.3 31.5 ± 0.3 2173 ± 37 2132 ± 42 7.29 ± 0.01 2550 ± 211 0.72 ± 0.06

Values indicate mean and standard error for temperature (T), salinity (S), dissolved inorganic carbon (DIC), total alkalinity (AT), calculated pH on seawater scale, calculated
pCO2, and calculated calcite saturation (�calcite).
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FIGURE 2 | Proportion of CpG loci within genomic features. All CpGs are every dinucleotide in the C. virginica genome. Methylated CpGs refers to a dinucleotide
with a methylation level of at least 50%.

islands ranged from 500 to 1,236,482 base pairs, with a median
length of 1,024 bp. The majority of methylation islands (36,017;
97.2%) were less than 100,000 bp in length. There were 30,773
(83.0%) methylation islands that overlapped with genic regions.

Differential Methylation Analysis
A total of 598 CpG loci were differentially methylated
between oysters exposed to control or high pCO2, with 51.8%
hypermethylated and 48.2% hypomethylated between treatments
(Figure 3; Venkataraman, 2020). When considering a PCA using
methylation status of all CpG loci with 5× coverage across all
samples, the first two principal components explained 29.8% of
sample variation (Figure 4A). The first two principal components
in a PCA with only differentially methylated loci (DML)
explained 57.1% of the variation among treatments (Figure 4B).
These DML were distributed throughout the C. virginica genome
(Figure 5). The fifth chromosome had the most DML normalized
by number of CpGs in the chromosome, and had the most genes;
however, this was not the largest chromosome (Figure 5A).

Examination of DML within genes revealed that some genes
contained multiple DML (Figures 5B,C). Of the 481 genes with
DML, the majority only contained one DML (Figure 5B). There
were 48 genes with 2 DML, 16 genes with 3 DML, 6 genes with 4

DML and 1 gene with 5 DML (Figure 5B). When multiple DML
were found within a gene, they could be methylated in either the
same or opposite directions (Figure 5C).

Within the genome, DML were mostly present in genic
regions, with 560 DML in 481 genes (368 DML in exons and
192 in introns). In addition, 42 DML were found in putative
promoter regions, 27 in UTR, 57 in transposable elements,
and 38 in intergenic regions. There were 21 DML located
outside of exons, introns, transposable elements, and putative
promoters. Additionally, 537 DML were found in methylation
islands. The distribution of DML in C. virginica gonad tissue
was higher in exons than expected for MBD-enriched CpG loci
with minimum 5× coverage across all samples (Contingency
test; χ2 = 401.09, df = 6, P-value < 2.2e-16; Figure 6).
Of the 598 DML, 310 were hypermethylated and 288 were
hypomethylated in the high pCO2 treatment. The number
of hyper- and hypomethylated DML was almost evenly split
within each genomic feature, with the exception of putative
promoter regions that had 44 hypermethylated DML vs. 23
hypomethylated DML. Within a gene, DML did not appear to be
concentrated in one particular region. The distribution of hyper-
and hypomethylated DML along a gene do not differ from each
other (Figure 7).
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FIGURE 3 | Heatmap of DML in C. virginica reproductive tissue created using a euclidean distance matrix. Samples in control pCO2 conditions are represented by
gray, and samples in elevated pCO2 conditions are represented by a black bar. Loci with higher percent methylation are represented by darker colors. A logistic
regression identified 598 DML, defined as individual CpG dinucleotide with at least a 50% methylation change between treatment and control groups, and a
q-value < 0.01 based on correction for false discovery rate with the SLIM method. The density of DML at each percent methylation value is represented in the
heatmap legend.

The DML were found in genes responsible for various
biological processes. However, no gene ontology categories were
significantly represented (Figure 8). The majority of genes
with DML were involved in protein ubiquitination processes.
These genes were not consistently hyper- or hypomethylated.
Certain biomineralization genes did contain DML. The gene
coding for calmodulin-regulated spectrin-associated protein
contained three hypomethylated and one hypermethylated
DML. Genes coding for EF-hand protein with calcium-
binding domain, calmodulin-binding transcription activator, and
calmodulin-lysine N-methyltransferase contained one or two
hypermethylated DML.

DISCUSSION

The present study is a general description of DNA methylation in
C. virginica, and is one of the first to examine epigenetic responses
to ocean acidification in the gonad tissue of a mollusc species.
Five hundred ninety-eight differentially methylated loci (DML)

were identified in response to the elevated pCO2 treatments,
most of which were in exons. Not only was DNA methylation of
C. virginica altered in response to ocean acidification, but changes
in gonad methylation indicates potential for these methylation
patterns to be inherited by offspring.

Understanding how environmental stressors influence the
epigenome is crucial when considering potential acclimatization
mechanisms in marine invertebrates. Our finding that high pCO2
impacts C. virginica DNA methylation adds to a growing body of
work about ocean acidification’s impact on marine invertebrate
methylomes. The coral species P. damicornis demonstrated an
overall increase in DNA methylation when exposed to low
pH conditions (7.3–7.6) for 6 weeks, potentially influencing
biomineralization (Putnam et al., 2016). Another coral species,
S. pistillata, also demonstrated an increase in genome-wide
DNA methylation when exposed to low pH conditions for
2 years. Changes in the methylome also modified gene
expression and altered pathways involved in cell cycle regulation
(Liew et al., 2018b). The present study on an oyster, however, did
not observe the overall genome-wide increase in methylation
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FIGURE 4 | Principal Components Analysis of (A) all CpG loci with 5x
coverage across samples and (B) DML. Methylation status of individual CpG
loci explained 29.2% of variation between samples when considering all CpG
loci. Methylation status of DML explained 57.1% of sample variation.

that was reported for corals. Instead, we found subtle, but
significant, increases or decreases in percent methylation at
several hundred individual CpGs distributed across the genome.
As C. virginica and coral species are adapted to different
environments and ecological niches, it is possible that species-
specific differences in methylation responses contribute to the
observed methylation pattern.

The C. virginica methylation landscape suggests a role for
methylation in gene activity. Approximately 22% of CpGs
in the C. virginica gonad genome were methylated, which
is consistent with previous studies of marine invertebrate
genomes Gavery and Roberts, 2013; Olson and Roberts, 2014;
Hofmann, 2017; Dimond and Roberts, 2020). Methylated loci
were concentrated in introns for C. virginica, followed by exons
and transposable elements. This location of methylated CpGs
in gene bodies is consistent with what has been reported across
similar taxa (Roberts and Gavery, 2012; Eirin-Lopez and Putnam,
2018). The concentration of methylated CpGs in gene bodies
corresponds with proposed functionality in influencing gene
activity (Roberts and Gavery, 2012; Dixon et al., 2014; Liew
et al., 2018b). Our study also found methylation in transposable
elements, putative promoters and intragenic regions. In plants,
transposable element methylation has been shown to modulate
the effect of transposable element insertion in genic regions
(Hosaka and Kakutani, 2018). It is possible that methylation of
transposable elements in C. virginica could also limit the effect
of transposable elements. The characterization of methylation
islands in the C. virginica genome demonstrates the viability of
this descriptive tool for future work examining methylation in
mollusc species.

The presence of DML suggests that exposure to experimental
ocean acidification conditions elicits an epigenetic response.
Many studies have documented changes to oyster protein
synthesis, energy production, metabolism, antioxidant responses,

and reproduction in response to ocean acidification (Tomanek
et al., 2011; Timmins-Schiffman et al., 2014; Dineshram et al.,
2016; Boulais et al., 2017; Omoregie et al., 2019). Examination
of methylation associated with these physiological responses
could identify mechanisms that contribute to these changes. For
example, our study found a hypomethylated DML in the heat
shock protein 75 kDA gene, and gene expression responses to
ocean acidification in C. virginica have found downregulation
in a similar molecular chaperone, heat shock protein 70 kDa
(Beniash et al., 2010; Ivanina et al., 2014). Other gene expression
studies in bivalves have found changes in oxidative stress proteins
such as superoxide dismutase, cytochrome c, peroxiredoxin, and
NADH dehydrogenase (Chapman et al., 2011; Clark et al., 2013;
Goncalves et al., 2016, 2017). Although we did not find any
DML in these genes, combined study of DNA methylation and
transcription may reveal how changes in gene expression are
regulated in response to environmental stressors.

Although DML were found across various genome features,
they were mostly in exons and introns. This is consistent with
a recent study of C. virginica gill tissue found differentially
methylated regions in response to a salinity gradient were
primarily in genic regions (Johnson and Kelly, 2019).
Interestingly, DML were not found consistently in one particular
region of a gene. Similarly, methylated positions in genic regions
were evenly distributed after the coral S. pistillata was exposed
to low pH (Liew et al., 2018b). Examination of another coral,
P. daedalea, in different temperature and salinity conditions
found more frequent methylation at 5′ and 3′ ends of genes (Liew
et al., 2018a). We also found several genes with multiple DML.
These DML were not consistently hyper- or hypomethylated
in the same gene. As hyper- and hypomethylation may result
in different transcriptional outcomes, future work should
examine the role of multiple DML on alternative splicing and
gene expression.

The concentration of DML in gene bodies suggests
a role for DNA methylation in gene expression and
regulation. A majority of genes with DML were involved
in protein ubiquitination. Protein ubiquitination is a
post-translational protein modification that is involved
in protein synthesis and degradation (Peng et al., 2003;
Komander, 2009). Previous studies in which oysters were
exposed to experimental ocean acidification conditions have
demonstrated changes in this pathway. For example, shotgun
proteomic characterization of posterior gill lamellae from
adult C. gigas exposed to high pCO2 revealed increased
abundance of proteins involved in ubiquitination and
decreased protein degradation (Timmins-Schiffman et al.,
2014). Elevated pCO2 levels were also found to upregulate
malate dehydrogenase in adult C. virginica mantle tissue
(Tomanek et al., 2011). Several genes involved in protein
ubiquitination, including those for malate dehydrogenase,
ubiquitin-protein ligase, RNA polymerase-associated protein,
and DNA damage-binding protein, were significantly
hypermethylated in gonad tissue exposed to elevated pCO2.
Hypermethylation of these genes may decrease transcriptional
opportunities, thus indicating a critical role in the response to
ocean acidification.
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FIGURE 5 | Distribution of DML among chromosomes and genes. (A) Number of DML normalized by number of CpG in each chromosome (bars) and number of
genes (line) in each C. virginica chromosome. (B) Number of genes with various numbers of DML per gene (1–5). Most genes that contained DML only had 1 DML.
(C) Proportion of hypermethylated, hypomethylated DML in genes with various numbers of DML per gene (1–5). Mixed refers to a classification of a gene that has
both hypermethylated and hypomethylated DML.
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FIGURE 6 | Proportion CpG loci within putative promoters, untranslated regions (UTR), exons, introns, transposable elements, and intergenic regions for
MBD-enriched CpGs and differentially methylated loci (DML). The distribution of DML in C. virginica gonad tissue in response to ocean acidification differed from
distribution of MBD-enriched loci with 5× coverage across control and treatment samples (Contingency test; χ2 = 401.09, df = 6, P-value < 2.2e-16).

Four genes involved in biomineralization contained DML,
suggesting these genes can be epigenetically regulated.
Upregulation of calcium-binding gene expression has been
previously documented in C. virginica (Richards et al., 2018).
Since the hypermethylated DML in these genes are typically
associated with reduced transcriptional opportunities, it is
unclear how methylation changes relate to gene expression
for biomineralization genes. Many studies examining ocean
acidification-induced carryover effects in bivalves note changes
to calcification processes. For example, the Sydney rock oyster
(S, glomerata) larvae exhibit faster shell growth in high pCO2
conditions when parents mature in those same conditions
(Parker et al., 2012, 2015). In contrast, larvae from other species
found in the North Atlantic such as northern quahog (hard
clam; M. mercenaria) and bay scallops (A. irradians) developed
slower when parents were reproductively conditioned in low pH
conditions (Griffith and Gobler, 2017). There is some evidence
to suggest that C. virginica larvae may be more resilient to high
pCO2 conditions than M. mercenaria or A. irradians (Gobler and
Talmage, 2014). Differential methylation of biomineralization
genes in C. virginica reproductive tissue could be a mechanism

to explain when parental experience impacts larval calcification
if in fact these DML are inherited.

Although our work documents significant changes to DNA
methylation in reproductive tissue after high pCO2 exposure,
this finding may be confounded by secondary effects of gonad
maturation. Specimens collected were from mixed populations,
and sampled tissue contained both mature and immature
gametes. Reproductive tissue likely contained both gametic and
somatic cell types. Sex-specific effects have also been documented
in response to ocean acidification in mollusc species (Parker
et al., 2018; Venkataraman et al., 2019). Lack of a reproductive
phenotype precludes any interpretation of how maturation stage
or sex can influence changes DNA methylation, as previous
work in C. gigas demonstrates these factors as significant
influences on baseline methylation patterns (Zhang et al., 2018).
Nevertheless, differential methylation in stress response and
biomineralization genes suggests that our study does record
epigenetic responses to ocean acidification. Future work should
pair methylation data with reproductive phenotypes to provide
additional information on sex- or stage-specific epigenetic
responses to ocean acidification.
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FIGURE 7 | Distribution of hyper- and hypomethylated DML along a hypothetical gene. The scaled position of a DML within a gene was calculated by dividing the
base pair position of the DML by gene length. Counts of hypermethylated DML are plotted above the x-axis, and hypomethylated DML counts are below the x-axis.

FIGURE 8 | Biological processes represented by all genes used in enrichment background (% Genes) and those with DML (% Genes with DML). Gene ontology
categories with similar functions are represented by the same color. Genes may be involved in multiple biological processes. No gene ontologies were significantly
enriched.
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CONCLUSION

Our study found that C. virginica demonstrates a significant
epigenetic response to elevated pCO2 exposure, with 598 DML
identified. The concentration of these DML in gene bodies
suggests that methylation may be important for transcriptional
control in response to environmental stressors. As ocean
acidification induced differential methylation in C. virginica
gonad tissue, there is a potential for intergenerational epigenetic
inheritance, which could control the gene activity of processes
such as biomineralization. As carryover effects can persist even
when stressors are long-removed (Venkataraman et al., 2019),
understanding the mechanisms involved in intergenerational
acclimatization is crucial. Future work should focus on
methylation patterns in adult C. virginica fully-formed gametes
and larvae exposed to various pCO2 conditions to determine to
what degree a difference in methylation influences gene activity
and how this might influence phenotypic plasticity.
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